Properties

Label 336.6.a.f
Level $336$
Weight $6$
Character orbit 336.a
Self dual yes
Analytic conductor $53.889$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [336,6,Mod(1,336)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(336, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("336.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 336 = 2^{4} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 336.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(53.8889634572\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 168)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 9 q^{3} + 14 q^{5} + 49 q^{7} + 81 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 9 q^{3} + 14 q^{5} + 49 q^{7} + 81 q^{9} + 700 q^{11} + 158 q^{13} - 126 q^{15} - 1014 q^{17} + 604 q^{19} - 441 q^{21} - 1584 q^{23} - 2929 q^{25} - 729 q^{27} + 366 q^{29} + 5920 q^{31} - 6300 q^{33} + 686 q^{35} + 4246 q^{37} - 1422 q^{39} - 814 q^{41} + 4084 q^{43} + 1134 q^{45} + 10112 q^{47} + 2401 q^{49} + 9126 q^{51} - 23466 q^{53} + 9800 q^{55} - 5436 q^{57} + 34164 q^{59} - 24162 q^{61} + 3969 q^{63} + 2212 q^{65} - 41012 q^{67} + 14256 q^{69} + 32912 q^{71} + 51130 q^{73} + 26361 q^{75} + 34300 q^{77} + 76112 q^{79} + 6561 q^{81} + 108364 q^{83} - 14196 q^{85} - 3294 q^{87} + 76386 q^{89} + 7742 q^{91} - 53280 q^{93} + 8456 q^{95} + 101586 q^{97} + 56700 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −9.00000 0 14.0000 0 49.0000 0 81.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 336.6.a.f 1
3.b odd 2 1 1008.6.a.m 1
4.b odd 2 1 168.6.a.f 1
12.b even 2 1 504.6.a.c 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
168.6.a.f 1 4.b odd 2 1
336.6.a.f 1 1.a even 1 1 trivial
504.6.a.c 1 12.b even 2 1
1008.6.a.m 1 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(336))\):

\( T_{5} - 14 \) Copy content Toggle raw display
\( T_{11} - 700 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T + 9 \) Copy content Toggle raw display
$5$ \( T - 14 \) Copy content Toggle raw display
$7$ \( T - 49 \) Copy content Toggle raw display
$11$ \( T - 700 \) Copy content Toggle raw display
$13$ \( T - 158 \) Copy content Toggle raw display
$17$ \( T + 1014 \) Copy content Toggle raw display
$19$ \( T - 604 \) Copy content Toggle raw display
$23$ \( T + 1584 \) Copy content Toggle raw display
$29$ \( T - 366 \) Copy content Toggle raw display
$31$ \( T - 5920 \) Copy content Toggle raw display
$37$ \( T - 4246 \) Copy content Toggle raw display
$41$ \( T + 814 \) Copy content Toggle raw display
$43$ \( T - 4084 \) Copy content Toggle raw display
$47$ \( T - 10112 \) Copy content Toggle raw display
$53$ \( T + 23466 \) Copy content Toggle raw display
$59$ \( T - 34164 \) Copy content Toggle raw display
$61$ \( T + 24162 \) Copy content Toggle raw display
$67$ \( T + 41012 \) Copy content Toggle raw display
$71$ \( T - 32912 \) Copy content Toggle raw display
$73$ \( T - 51130 \) Copy content Toggle raw display
$79$ \( T - 76112 \) Copy content Toggle raw display
$83$ \( T - 108364 \) Copy content Toggle raw display
$89$ \( T - 76386 \) Copy content Toggle raw display
$97$ \( T - 101586 \) Copy content Toggle raw display
show more
show less