Properties

Label 336.6.a.e.1.1
Level $336$
Weight $6$
Character 336.1
Self dual yes
Analytic conductor $53.889$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [336,6,Mod(1,336)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(336, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("336.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 336 = 2^{4} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 336.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(53.8889634572\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 84)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 336.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-9.00000 q^{3} -34.0000 q^{5} +49.0000 q^{7} +81.0000 q^{9} +O(q^{10})\) \(q-9.00000 q^{3} -34.0000 q^{5} +49.0000 q^{7} +81.0000 q^{9} +332.000 q^{11} -1026.00 q^{13} +306.000 q^{15} +922.000 q^{17} -452.000 q^{19} -441.000 q^{21} +3776.00 q^{23} -1969.00 q^{25} -729.000 q^{27} +1166.00 q^{29} +9792.00 q^{31} -2988.00 q^{33} -1666.00 q^{35} +2390.00 q^{37} +9234.00 q^{39} -7230.00 q^{41} -4652.00 q^{43} -2754.00 q^{45} -24672.0 q^{47} +2401.00 q^{49} -8298.00 q^{51} +1110.00 q^{53} -11288.0 q^{55} +4068.00 q^{57} -46892.0 q^{59} -9762.00 q^{61} +3969.00 q^{63} +34884.0 q^{65} +26252.0 q^{67} -33984.0 q^{69} -65440.0 q^{71} -5606.00 q^{73} +17721.0 q^{75} +16268.0 q^{77} +9840.00 q^{79} +6561.00 q^{81} -61108.0 q^{83} -31348.0 q^{85} -10494.0 q^{87} -62958.0 q^{89} -50274.0 q^{91} -88128.0 q^{93} +15368.0 q^{95} -37838.0 q^{97} +26892.0 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −9.00000 −0.577350
\(4\) 0 0
\(5\) −34.0000 −0.608210 −0.304105 0.952638i \(-0.598357\pi\)
−0.304105 + 0.952638i \(0.598357\pi\)
\(6\) 0 0
\(7\) 49.0000 0.377964
\(8\) 0 0
\(9\) 81.0000 0.333333
\(10\) 0 0
\(11\) 332.000 0.827287 0.413644 0.910439i \(-0.364256\pi\)
0.413644 + 0.910439i \(0.364256\pi\)
\(12\) 0 0
\(13\) −1026.00 −1.68379 −0.841897 0.539638i \(-0.818561\pi\)
−0.841897 + 0.539638i \(0.818561\pi\)
\(14\) 0 0
\(15\) 306.000 0.351150
\(16\) 0 0
\(17\) 922.000 0.773764 0.386882 0.922129i \(-0.373552\pi\)
0.386882 + 0.922129i \(0.373552\pi\)
\(18\) 0 0
\(19\) −452.000 −0.287246 −0.143623 0.989632i \(-0.545875\pi\)
−0.143623 + 0.989632i \(0.545875\pi\)
\(20\) 0 0
\(21\) −441.000 −0.218218
\(22\) 0 0
\(23\) 3776.00 1.48838 0.744188 0.667971i \(-0.232837\pi\)
0.744188 + 0.667971i \(0.232837\pi\)
\(24\) 0 0
\(25\) −1969.00 −0.630080
\(26\) 0 0
\(27\) −729.000 −0.192450
\(28\) 0 0
\(29\) 1166.00 0.257456 0.128728 0.991680i \(-0.458911\pi\)
0.128728 + 0.991680i \(0.458911\pi\)
\(30\) 0 0
\(31\) 9792.00 1.83007 0.915034 0.403377i \(-0.132164\pi\)
0.915034 + 0.403377i \(0.132164\pi\)
\(32\) 0 0
\(33\) −2988.00 −0.477635
\(34\) 0 0
\(35\) −1666.00 −0.229882
\(36\) 0 0
\(37\) 2390.00 0.287008 0.143504 0.989650i \(-0.454163\pi\)
0.143504 + 0.989650i \(0.454163\pi\)
\(38\) 0 0
\(39\) 9234.00 0.972139
\(40\) 0 0
\(41\) −7230.00 −0.671705 −0.335853 0.941915i \(-0.609024\pi\)
−0.335853 + 0.941915i \(0.609024\pi\)
\(42\) 0 0
\(43\) −4652.00 −0.383679 −0.191840 0.981426i \(-0.561445\pi\)
−0.191840 + 0.981426i \(0.561445\pi\)
\(44\) 0 0
\(45\) −2754.00 −0.202737
\(46\) 0 0
\(47\) −24672.0 −1.62914 −0.814572 0.580062i \(-0.803028\pi\)
−0.814572 + 0.580062i \(0.803028\pi\)
\(48\) 0 0
\(49\) 2401.00 0.142857
\(50\) 0 0
\(51\) −8298.00 −0.446733
\(52\) 0 0
\(53\) 1110.00 0.0542792 0.0271396 0.999632i \(-0.491360\pi\)
0.0271396 + 0.999632i \(0.491360\pi\)
\(54\) 0 0
\(55\) −11288.0 −0.503165
\(56\) 0 0
\(57\) 4068.00 0.165842
\(58\) 0 0
\(59\) −46892.0 −1.75375 −0.876877 0.480715i \(-0.840377\pi\)
−0.876877 + 0.480715i \(0.840377\pi\)
\(60\) 0 0
\(61\) −9762.00 −0.335903 −0.167952 0.985795i \(-0.553715\pi\)
−0.167952 + 0.985795i \(0.553715\pi\)
\(62\) 0 0
\(63\) 3969.00 0.125988
\(64\) 0 0
\(65\) 34884.0 1.02410
\(66\) 0 0
\(67\) 26252.0 0.714456 0.357228 0.934017i \(-0.383722\pi\)
0.357228 + 0.934017i \(0.383722\pi\)
\(68\) 0 0
\(69\) −33984.0 −0.859314
\(70\) 0 0
\(71\) −65440.0 −1.54063 −0.770313 0.637666i \(-0.779900\pi\)
−0.770313 + 0.637666i \(0.779900\pi\)
\(72\) 0 0
\(73\) −5606.00 −0.123125 −0.0615625 0.998103i \(-0.519608\pi\)
−0.0615625 + 0.998103i \(0.519608\pi\)
\(74\) 0 0
\(75\) 17721.0 0.363777
\(76\) 0 0
\(77\) 16268.0 0.312685
\(78\) 0 0
\(79\) 9840.00 0.177389 0.0886946 0.996059i \(-0.471730\pi\)
0.0886946 + 0.996059i \(0.471730\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) 0 0
\(83\) −61108.0 −0.973650 −0.486825 0.873500i \(-0.661845\pi\)
−0.486825 + 0.873500i \(0.661845\pi\)
\(84\) 0 0
\(85\) −31348.0 −0.470611
\(86\) 0 0
\(87\) −10494.0 −0.148642
\(88\) 0 0
\(89\) −62958.0 −0.842512 −0.421256 0.906942i \(-0.638411\pi\)
−0.421256 + 0.906942i \(0.638411\pi\)
\(90\) 0 0
\(91\) −50274.0 −0.636414
\(92\) 0 0
\(93\) −88128.0 −1.05659
\(94\) 0 0
\(95\) 15368.0 0.174706
\(96\) 0 0
\(97\) −37838.0 −0.408318 −0.204159 0.978938i \(-0.565446\pi\)
−0.204159 + 0.978938i \(0.565446\pi\)
\(98\) 0 0
\(99\) 26892.0 0.275762
\(100\) 0 0
\(101\) −56146.0 −0.547666 −0.273833 0.961777i \(-0.588291\pi\)
−0.273833 + 0.961777i \(0.588291\pi\)
\(102\) 0 0
\(103\) 26392.0 0.245120 0.122560 0.992461i \(-0.460890\pi\)
0.122560 + 0.992461i \(0.460890\pi\)
\(104\) 0 0
\(105\) 14994.0 0.132722
\(106\) 0 0
\(107\) −47124.0 −0.397908 −0.198954 0.980009i \(-0.563754\pi\)
−0.198954 + 0.980009i \(0.563754\pi\)
\(108\) 0 0
\(109\) −221474. −1.78549 −0.892743 0.450566i \(-0.851222\pi\)
−0.892743 + 0.450566i \(0.851222\pi\)
\(110\) 0 0
\(111\) −21510.0 −0.165704
\(112\) 0 0
\(113\) 54194.0 0.399259 0.199630 0.979871i \(-0.436026\pi\)
0.199630 + 0.979871i \(0.436026\pi\)
\(114\) 0 0
\(115\) −128384. −0.905245
\(116\) 0 0
\(117\) −83106.0 −0.561265
\(118\) 0 0
\(119\) 45178.0 0.292455
\(120\) 0 0
\(121\) −50827.0 −0.315596
\(122\) 0 0
\(123\) 65070.0 0.387809
\(124\) 0 0
\(125\) 173196. 0.991432
\(126\) 0 0
\(127\) 245760. 1.35208 0.676039 0.736866i \(-0.263695\pi\)
0.676039 + 0.736866i \(0.263695\pi\)
\(128\) 0 0
\(129\) 41868.0 0.221517
\(130\) 0 0
\(131\) 150268. 0.765047 0.382524 0.923946i \(-0.375055\pi\)
0.382524 + 0.923946i \(0.375055\pi\)
\(132\) 0 0
\(133\) −22148.0 −0.108569
\(134\) 0 0
\(135\) 24786.0 0.117050
\(136\) 0 0
\(137\) −401638. −1.82824 −0.914120 0.405443i \(-0.867117\pi\)
−0.914120 + 0.405443i \(0.867117\pi\)
\(138\) 0 0
\(139\) −374092. −1.64226 −0.821129 0.570743i \(-0.806655\pi\)
−0.821129 + 0.570743i \(0.806655\pi\)
\(140\) 0 0
\(141\) 222048. 0.940587
\(142\) 0 0
\(143\) −340632. −1.39298
\(144\) 0 0
\(145\) −39644.0 −0.156588
\(146\) 0 0
\(147\) −21609.0 −0.0824786
\(148\) 0 0
\(149\) −456042. −1.68283 −0.841413 0.540393i \(-0.818276\pi\)
−0.841413 + 0.540393i \(0.818276\pi\)
\(150\) 0 0
\(151\) 8024.00 0.0286384 0.0143192 0.999897i \(-0.495442\pi\)
0.0143192 + 0.999897i \(0.495442\pi\)
\(152\) 0 0
\(153\) 74682.0 0.257921
\(154\) 0 0
\(155\) −332928. −1.11307
\(156\) 0 0
\(157\) 110078. 0.356411 0.178206 0.983993i \(-0.442971\pi\)
0.178206 + 0.983993i \(0.442971\pi\)
\(158\) 0 0
\(159\) −9990.00 −0.0313381
\(160\) 0 0
\(161\) 185024. 0.562553
\(162\) 0 0
\(163\) 3628.00 0.0106954 0.00534772 0.999986i \(-0.498298\pi\)
0.00534772 + 0.999986i \(0.498298\pi\)
\(164\) 0 0
\(165\) 101592. 0.290502
\(166\) 0 0
\(167\) −192824. −0.535020 −0.267510 0.963555i \(-0.586201\pi\)
−0.267510 + 0.963555i \(0.586201\pi\)
\(168\) 0 0
\(169\) 681383. 1.83516
\(170\) 0 0
\(171\) −36612.0 −0.0957488
\(172\) 0 0
\(173\) 157142. 0.399188 0.199594 0.979879i \(-0.436038\pi\)
0.199594 + 0.979879i \(0.436038\pi\)
\(174\) 0 0
\(175\) −96481.0 −0.238148
\(176\) 0 0
\(177\) 422028. 1.01253
\(178\) 0 0
\(179\) 446868. 1.04243 0.521215 0.853426i \(-0.325479\pi\)
0.521215 + 0.853426i \(0.325479\pi\)
\(180\) 0 0
\(181\) 805638. 1.82786 0.913931 0.405869i \(-0.133031\pi\)
0.913931 + 0.405869i \(0.133031\pi\)
\(182\) 0 0
\(183\) 87858.0 0.193934
\(184\) 0 0
\(185\) −81260.0 −0.174561
\(186\) 0 0
\(187\) 306104. 0.640125
\(188\) 0 0
\(189\) −35721.0 −0.0727393
\(190\) 0 0
\(191\) 747912. 1.48343 0.741715 0.670715i \(-0.234013\pi\)
0.741715 + 0.670715i \(0.234013\pi\)
\(192\) 0 0
\(193\) −577534. −1.11605 −0.558026 0.829824i \(-0.688441\pi\)
−0.558026 + 0.829824i \(0.688441\pi\)
\(194\) 0 0
\(195\) −313956. −0.591265
\(196\) 0 0
\(197\) −771098. −1.41561 −0.707806 0.706407i \(-0.750315\pi\)
−0.707806 + 0.706407i \(0.750315\pi\)
\(198\) 0 0
\(199\) −557240. −0.997492 −0.498746 0.866748i \(-0.666206\pi\)
−0.498746 + 0.866748i \(0.666206\pi\)
\(200\) 0 0
\(201\) −236268. −0.412491
\(202\) 0 0
\(203\) 57134.0 0.0973093
\(204\) 0 0
\(205\) 245820. 0.408538
\(206\) 0 0
\(207\) 305856. 0.496125
\(208\) 0 0
\(209\) −150064. −0.237635
\(210\) 0 0
\(211\) 19660.0 0.0304003 0.0152001 0.999884i \(-0.495161\pi\)
0.0152001 + 0.999884i \(0.495161\pi\)
\(212\) 0 0
\(213\) 588960. 0.889481
\(214\) 0 0
\(215\) 158168. 0.233358
\(216\) 0 0
\(217\) 479808. 0.691701
\(218\) 0 0
\(219\) 50454.0 0.0710862
\(220\) 0 0
\(221\) −945972. −1.30286
\(222\) 0 0
\(223\) 896848. 1.20769 0.603847 0.797100i \(-0.293634\pi\)
0.603847 + 0.797100i \(0.293634\pi\)
\(224\) 0 0
\(225\) −159489. −0.210027
\(226\) 0 0
\(227\) −234228. −0.301699 −0.150850 0.988557i \(-0.548201\pi\)
−0.150850 + 0.988557i \(0.548201\pi\)
\(228\) 0 0
\(229\) −1.03563e6 −1.30501 −0.652506 0.757784i \(-0.726282\pi\)
−0.652506 + 0.757784i \(0.726282\pi\)
\(230\) 0 0
\(231\) −146412. −0.180529
\(232\) 0 0
\(233\) 457114. 0.551613 0.275807 0.961213i \(-0.411055\pi\)
0.275807 + 0.961213i \(0.411055\pi\)
\(234\) 0 0
\(235\) 838848. 0.990863
\(236\) 0 0
\(237\) −88560.0 −0.102416
\(238\) 0 0
\(239\) −676344. −0.765901 −0.382951 0.923769i \(-0.625092\pi\)
−0.382951 + 0.923769i \(0.625092\pi\)
\(240\) 0 0
\(241\) −96670.0 −0.107213 −0.0536067 0.998562i \(-0.517072\pi\)
−0.0536067 + 0.998562i \(0.517072\pi\)
\(242\) 0 0
\(243\) −59049.0 −0.0641500
\(244\) 0 0
\(245\) −81634.0 −0.0868872
\(246\) 0 0
\(247\) 463752. 0.483664
\(248\) 0 0
\(249\) 549972. 0.562137
\(250\) 0 0
\(251\) −288876. −0.289419 −0.144710 0.989474i \(-0.546225\pi\)
−0.144710 + 0.989474i \(0.546225\pi\)
\(252\) 0 0
\(253\) 1.25363e6 1.23131
\(254\) 0 0
\(255\) 282132. 0.271708
\(256\) 0 0
\(257\) −711846. −0.672285 −0.336142 0.941811i \(-0.609122\pi\)
−0.336142 + 0.941811i \(0.609122\pi\)
\(258\) 0 0
\(259\) 117110. 0.108479
\(260\) 0 0
\(261\) 94446.0 0.0858188
\(262\) 0 0
\(263\) 1.87368e6 1.67034 0.835172 0.549988i \(-0.185368\pi\)
0.835172 + 0.549988i \(0.185368\pi\)
\(264\) 0 0
\(265\) −37740.0 −0.0330132
\(266\) 0 0
\(267\) 566622. 0.486424
\(268\) 0 0
\(269\) −1.37660e6 −1.15992 −0.579960 0.814645i \(-0.696932\pi\)
−0.579960 + 0.814645i \(0.696932\pi\)
\(270\) 0 0
\(271\) 781776. 0.646635 0.323317 0.946291i \(-0.395202\pi\)
0.323317 + 0.946291i \(0.395202\pi\)
\(272\) 0 0
\(273\) 452466. 0.367434
\(274\) 0 0
\(275\) −653708. −0.521257
\(276\) 0 0
\(277\) 2.06932e6 1.62042 0.810210 0.586139i \(-0.199353\pi\)
0.810210 + 0.586139i \(0.199353\pi\)
\(278\) 0 0
\(279\) 793152. 0.610023
\(280\) 0 0
\(281\) 1.87911e6 1.41967 0.709835 0.704368i \(-0.248770\pi\)
0.709835 + 0.704368i \(0.248770\pi\)
\(282\) 0 0
\(283\) −670156. −0.497405 −0.248702 0.968580i \(-0.580004\pi\)
−0.248702 + 0.968580i \(0.580004\pi\)
\(284\) 0 0
\(285\) −138312. −0.100867
\(286\) 0 0
\(287\) −354270. −0.253881
\(288\) 0 0
\(289\) −569773. −0.401289
\(290\) 0 0
\(291\) 340542. 0.235743
\(292\) 0 0
\(293\) 1.69611e6 1.15421 0.577105 0.816670i \(-0.304182\pi\)
0.577105 + 0.816670i \(0.304182\pi\)
\(294\) 0 0
\(295\) 1.59433e6 1.06665
\(296\) 0 0
\(297\) −242028. −0.159212
\(298\) 0 0
\(299\) −3.87418e6 −2.50612
\(300\) 0 0
\(301\) −227948. −0.145017
\(302\) 0 0
\(303\) 505314. 0.316195
\(304\) 0 0
\(305\) 331908. 0.204300
\(306\) 0 0
\(307\) 1.09459e6 0.662834 0.331417 0.943484i \(-0.392473\pi\)
0.331417 + 0.943484i \(0.392473\pi\)
\(308\) 0 0
\(309\) −237528. −0.141520
\(310\) 0 0
\(311\) −1.21249e6 −0.710848 −0.355424 0.934705i \(-0.615663\pi\)
−0.355424 + 0.934705i \(0.615663\pi\)
\(312\) 0 0
\(313\) 1.69436e6 0.977564 0.488782 0.872406i \(-0.337441\pi\)
0.488782 + 0.872406i \(0.337441\pi\)
\(314\) 0 0
\(315\) −134946. −0.0766273
\(316\) 0 0
\(317\) 333342. 0.186312 0.0931562 0.995652i \(-0.470304\pi\)
0.0931562 + 0.995652i \(0.470304\pi\)
\(318\) 0 0
\(319\) 387112. 0.212990
\(320\) 0 0
\(321\) 424116. 0.229732
\(322\) 0 0
\(323\) −416744. −0.222261
\(324\) 0 0
\(325\) 2.02019e6 1.06092
\(326\) 0 0
\(327\) 1.99327e6 1.03085
\(328\) 0 0
\(329\) −1.20893e6 −0.615759
\(330\) 0 0
\(331\) −1.83614e6 −0.921162 −0.460581 0.887618i \(-0.652359\pi\)
−0.460581 + 0.887618i \(0.652359\pi\)
\(332\) 0 0
\(333\) 193590. 0.0956692
\(334\) 0 0
\(335\) −892568. −0.434540
\(336\) 0 0
\(337\) −973518. −0.466949 −0.233474 0.972363i \(-0.575009\pi\)
−0.233474 + 0.972363i \(0.575009\pi\)
\(338\) 0 0
\(339\) −487746. −0.230512
\(340\) 0 0
\(341\) 3.25094e6 1.51399
\(342\) 0 0
\(343\) 117649. 0.0539949
\(344\) 0 0
\(345\) 1.15546e6 0.522644
\(346\) 0 0
\(347\) −3.39810e6 −1.51500 −0.757500 0.652835i \(-0.773579\pi\)
−0.757500 + 0.652835i \(0.773579\pi\)
\(348\) 0 0
\(349\) −34370.0 −0.0151048 −0.00755242 0.999971i \(-0.502404\pi\)
−0.00755242 + 0.999971i \(0.502404\pi\)
\(350\) 0 0
\(351\) 747954. 0.324046
\(352\) 0 0
\(353\) −2.50239e6 −1.06885 −0.534427 0.845215i \(-0.679472\pi\)
−0.534427 + 0.845215i \(0.679472\pi\)
\(354\) 0 0
\(355\) 2.22496e6 0.937025
\(356\) 0 0
\(357\) −406602. −0.168849
\(358\) 0 0
\(359\) 3.02800e6 1.23999 0.619997 0.784604i \(-0.287134\pi\)
0.619997 + 0.784604i \(0.287134\pi\)
\(360\) 0 0
\(361\) −2.27180e6 −0.917490
\(362\) 0 0
\(363\) 457443. 0.182209
\(364\) 0 0
\(365\) 190604. 0.0748859
\(366\) 0 0
\(367\) 3.20944e6 1.24384 0.621919 0.783081i \(-0.286353\pi\)
0.621919 + 0.783081i \(0.286353\pi\)
\(368\) 0 0
\(369\) −585630. −0.223902
\(370\) 0 0
\(371\) 54390.0 0.0205156
\(372\) 0 0
\(373\) 1.51505e6 0.563837 0.281919 0.959438i \(-0.409029\pi\)
0.281919 + 0.959438i \(0.409029\pi\)
\(374\) 0 0
\(375\) −1.55876e6 −0.572403
\(376\) 0 0
\(377\) −1.19632e6 −0.433503
\(378\) 0 0
\(379\) −643516. −0.230124 −0.115062 0.993358i \(-0.536707\pi\)
−0.115062 + 0.993358i \(0.536707\pi\)
\(380\) 0 0
\(381\) −2.21184e6 −0.780623
\(382\) 0 0
\(383\) −4.75082e6 −1.65490 −0.827449 0.561541i \(-0.810209\pi\)
−0.827449 + 0.561541i \(0.810209\pi\)
\(384\) 0 0
\(385\) −553112. −0.190178
\(386\) 0 0
\(387\) −376812. −0.127893
\(388\) 0 0
\(389\) 379574. 0.127181 0.0635905 0.997976i \(-0.479745\pi\)
0.0635905 + 0.997976i \(0.479745\pi\)
\(390\) 0 0
\(391\) 3.48147e6 1.15165
\(392\) 0 0
\(393\) −1.35241e6 −0.441700
\(394\) 0 0
\(395\) −334560. −0.107890
\(396\) 0 0
\(397\) −5.42133e6 −1.72635 −0.863176 0.504902i \(-0.831528\pi\)
−0.863176 + 0.504902i \(0.831528\pi\)
\(398\) 0 0
\(399\) 199332. 0.0626823
\(400\) 0 0
\(401\) −6.20643e6 −1.92744 −0.963720 0.266915i \(-0.913996\pi\)
−0.963720 + 0.266915i \(0.913996\pi\)
\(402\) 0 0
\(403\) −1.00466e7 −3.08146
\(404\) 0 0
\(405\) −223074. −0.0675789
\(406\) 0 0
\(407\) 793480. 0.237438
\(408\) 0 0
\(409\) −4.25397e6 −1.25744 −0.628719 0.777633i \(-0.716420\pi\)
−0.628719 + 0.777633i \(0.716420\pi\)
\(410\) 0 0
\(411\) 3.61474e6 1.05554
\(412\) 0 0
\(413\) −2.29771e6 −0.662857
\(414\) 0 0
\(415\) 2.07767e6 0.592184
\(416\) 0 0
\(417\) 3.36683e6 0.948158
\(418\) 0 0
\(419\) 725484. 0.201880 0.100940 0.994893i \(-0.467815\pi\)
0.100940 + 0.994893i \(0.467815\pi\)
\(420\) 0 0
\(421\) −6.49867e6 −1.78698 −0.893489 0.449086i \(-0.851750\pi\)
−0.893489 + 0.449086i \(0.851750\pi\)
\(422\) 0 0
\(423\) −1.99843e6 −0.543048
\(424\) 0 0
\(425\) −1.81542e6 −0.487533
\(426\) 0 0
\(427\) −478338. −0.126959
\(428\) 0 0
\(429\) 3.06569e6 0.804238
\(430\) 0 0
\(431\) 1.96524e6 0.509592 0.254796 0.966995i \(-0.417992\pi\)
0.254796 + 0.966995i \(0.417992\pi\)
\(432\) 0 0
\(433\) 4.33531e6 1.11122 0.555611 0.831442i \(-0.312484\pi\)
0.555611 + 0.831442i \(0.312484\pi\)
\(434\) 0 0
\(435\) 356796. 0.0904059
\(436\) 0 0
\(437\) −1.70675e6 −0.427530
\(438\) 0 0
\(439\) −6.47748e6 −1.60415 −0.802075 0.597224i \(-0.796270\pi\)
−0.802075 + 0.597224i \(0.796270\pi\)
\(440\) 0 0
\(441\) 194481. 0.0476190
\(442\) 0 0
\(443\) −4.32696e6 −1.04755 −0.523774 0.851857i \(-0.675476\pi\)
−0.523774 + 0.851857i \(0.675476\pi\)
\(444\) 0 0
\(445\) 2.14057e6 0.512424
\(446\) 0 0
\(447\) 4.10438e6 0.971580
\(448\) 0 0
\(449\) 482210. 0.112881 0.0564404 0.998406i \(-0.482025\pi\)
0.0564404 + 0.998406i \(0.482025\pi\)
\(450\) 0 0
\(451\) −2.40036e6 −0.555693
\(452\) 0 0
\(453\) −72216.0 −0.0165344
\(454\) 0 0
\(455\) 1.70932e6 0.387074
\(456\) 0 0
\(457\) 8.52164e6 1.90868 0.954339 0.298725i \(-0.0965613\pi\)
0.954339 + 0.298725i \(0.0965613\pi\)
\(458\) 0 0
\(459\) −672138. −0.148911
\(460\) 0 0
\(461\) −5.99857e6 −1.31461 −0.657303 0.753627i \(-0.728303\pi\)
−0.657303 + 0.753627i \(0.728303\pi\)
\(462\) 0 0
\(463\) 4.59483e6 0.996133 0.498066 0.867139i \(-0.334044\pi\)
0.498066 + 0.867139i \(0.334044\pi\)
\(464\) 0 0
\(465\) 2.99635e6 0.642629
\(466\) 0 0
\(467\) −8.84330e6 −1.87639 −0.938193 0.346113i \(-0.887501\pi\)
−0.938193 + 0.346113i \(0.887501\pi\)
\(468\) 0 0
\(469\) 1.28635e6 0.270039
\(470\) 0 0
\(471\) −990702. −0.205774
\(472\) 0 0
\(473\) −1.54446e6 −0.317413
\(474\) 0 0
\(475\) 889988. 0.180988
\(476\) 0 0
\(477\) 89910.0 0.0180931
\(478\) 0 0
\(479\) 6.56062e6 1.30649 0.653245 0.757146i \(-0.273407\pi\)
0.653245 + 0.757146i \(0.273407\pi\)
\(480\) 0 0
\(481\) −2.45214e6 −0.483262
\(482\) 0 0
\(483\) −1.66522e6 −0.324790
\(484\) 0 0
\(485\) 1.28649e6 0.248343
\(486\) 0 0
\(487\) −7.87772e6 −1.50514 −0.752572 0.658510i \(-0.771187\pi\)
−0.752572 + 0.658510i \(0.771187\pi\)
\(488\) 0 0
\(489\) −32652.0 −0.00617501
\(490\) 0 0
\(491\) −637860. −0.119405 −0.0597024 0.998216i \(-0.519015\pi\)
−0.0597024 + 0.998216i \(0.519015\pi\)
\(492\) 0 0
\(493\) 1.07505e6 0.199210
\(494\) 0 0
\(495\) −914328. −0.167722
\(496\) 0 0
\(497\) −3.20656e6 −0.582302
\(498\) 0 0
\(499\) 4.93646e6 0.887492 0.443746 0.896153i \(-0.353649\pi\)
0.443746 + 0.896153i \(0.353649\pi\)
\(500\) 0 0
\(501\) 1.73542e6 0.308894
\(502\) 0 0
\(503\) −226872. −0.0399817 −0.0199908 0.999800i \(-0.506364\pi\)
−0.0199908 + 0.999800i \(0.506364\pi\)
\(504\) 0 0
\(505\) 1.90896e6 0.333096
\(506\) 0 0
\(507\) −6.13245e6 −1.05953
\(508\) 0 0
\(509\) 5.37404e6 0.919404 0.459702 0.888073i \(-0.347956\pi\)
0.459702 + 0.888073i \(0.347956\pi\)
\(510\) 0 0
\(511\) −274694. −0.0465368
\(512\) 0 0
\(513\) 329508. 0.0552806
\(514\) 0 0
\(515\) −897328. −0.149085
\(516\) 0 0
\(517\) −8.19110e6 −1.34777
\(518\) 0 0
\(519\) −1.41428e6 −0.230471
\(520\) 0 0
\(521\) −9.61419e6 −1.55174 −0.775869 0.630894i \(-0.782688\pi\)
−0.775869 + 0.630894i \(0.782688\pi\)
\(522\) 0 0
\(523\) −4.96430e6 −0.793604 −0.396802 0.917904i \(-0.629880\pi\)
−0.396802 + 0.917904i \(0.629880\pi\)
\(524\) 0 0
\(525\) 868329. 0.137495
\(526\) 0 0
\(527\) 9.02822e6 1.41604
\(528\) 0 0
\(529\) 7.82183e6 1.21526
\(530\) 0 0
\(531\) −3.79825e6 −0.584585
\(532\) 0 0
\(533\) 7.41798e6 1.13101
\(534\) 0 0
\(535\) 1.60222e6 0.242012
\(536\) 0 0
\(537\) −4.02181e6 −0.601847
\(538\) 0 0
\(539\) 797132. 0.118184
\(540\) 0 0
\(541\) 1.20449e7 1.76934 0.884668 0.466221i \(-0.154385\pi\)
0.884668 + 0.466221i \(0.154385\pi\)
\(542\) 0 0
\(543\) −7.25074e6 −1.05532
\(544\) 0 0
\(545\) 7.53012e6 1.08595
\(546\) 0 0
\(547\) −4.23695e6 −0.605459 −0.302730 0.953077i \(-0.597898\pi\)
−0.302730 + 0.953077i \(0.597898\pi\)
\(548\) 0 0
\(549\) −790722. −0.111968
\(550\) 0 0
\(551\) −527032. −0.0739534
\(552\) 0 0
\(553\) 482160. 0.0670468
\(554\) 0 0
\(555\) 731340. 0.100783
\(556\) 0 0
\(557\) −1.02575e7 −1.40089 −0.700444 0.713708i \(-0.747014\pi\)
−0.700444 + 0.713708i \(0.747014\pi\)
\(558\) 0 0
\(559\) 4.77295e6 0.646037
\(560\) 0 0
\(561\) −2.75494e6 −0.369577
\(562\) 0 0
\(563\) 5.40777e6 0.719031 0.359515 0.933139i \(-0.382942\pi\)
0.359515 + 0.933139i \(0.382942\pi\)
\(564\) 0 0
\(565\) −1.84260e6 −0.242834
\(566\) 0 0
\(567\) 321489. 0.0419961
\(568\) 0 0
\(569\) 5.38967e6 0.697882 0.348941 0.937145i \(-0.386541\pi\)
0.348941 + 0.937145i \(0.386541\pi\)
\(570\) 0 0
\(571\) 8.24552e6 1.05835 0.529173 0.848514i \(-0.322502\pi\)
0.529173 + 0.848514i \(0.322502\pi\)
\(572\) 0 0
\(573\) −6.73121e6 −0.856459
\(574\) 0 0
\(575\) −7.43494e6 −0.937795
\(576\) 0 0
\(577\) −1.15408e6 −0.144310 −0.0721549 0.997393i \(-0.522988\pi\)
−0.0721549 + 0.997393i \(0.522988\pi\)
\(578\) 0 0
\(579\) 5.19781e6 0.644353
\(580\) 0 0
\(581\) −2.99429e6 −0.368005
\(582\) 0 0
\(583\) 368520. 0.0449045
\(584\) 0 0
\(585\) 2.82560e6 0.341367
\(586\) 0 0
\(587\) 7.16464e6 0.858221 0.429111 0.903252i \(-0.358827\pi\)
0.429111 + 0.903252i \(0.358827\pi\)
\(588\) 0 0
\(589\) −4.42598e6 −0.525680
\(590\) 0 0
\(591\) 6.93988e6 0.817304
\(592\) 0 0
\(593\) 1.45534e7 1.69953 0.849763 0.527165i \(-0.176745\pi\)
0.849763 + 0.527165i \(0.176745\pi\)
\(594\) 0 0
\(595\) −1.53605e6 −0.177874
\(596\) 0 0
\(597\) 5.01516e6 0.575903
\(598\) 0 0
\(599\) 1.04320e7 1.18795 0.593977 0.804482i \(-0.297557\pi\)
0.593977 + 0.804482i \(0.297557\pi\)
\(600\) 0 0
\(601\) 416858. 0.0470763 0.0235381 0.999723i \(-0.492507\pi\)
0.0235381 + 0.999723i \(0.492507\pi\)
\(602\) 0 0
\(603\) 2.12641e6 0.238152
\(604\) 0 0
\(605\) 1.72812e6 0.191949
\(606\) 0 0
\(607\) 7.90834e6 0.871191 0.435596 0.900143i \(-0.356538\pi\)
0.435596 + 0.900143i \(0.356538\pi\)
\(608\) 0 0
\(609\) −514206. −0.0561816
\(610\) 0 0
\(611\) 2.53135e7 2.74314
\(612\) 0 0
\(613\) −1.13761e7 −1.22277 −0.611383 0.791335i \(-0.709387\pi\)
−0.611383 + 0.791335i \(0.709387\pi\)
\(614\) 0 0
\(615\) −2.21238e6 −0.235870
\(616\) 0 0
\(617\) −8.77271e6 −0.927728 −0.463864 0.885906i \(-0.653537\pi\)
−0.463864 + 0.885906i \(0.653537\pi\)
\(618\) 0 0
\(619\) −1.44110e7 −1.51171 −0.755854 0.654740i \(-0.772778\pi\)
−0.755854 + 0.654740i \(0.772778\pi\)
\(620\) 0 0
\(621\) −2.75270e6 −0.286438
\(622\) 0 0
\(623\) −3.08494e6 −0.318439
\(624\) 0 0
\(625\) 264461. 0.0270808
\(626\) 0 0
\(627\) 1.35058e6 0.137199
\(628\) 0 0
\(629\) 2.20358e6 0.222076
\(630\) 0 0
\(631\) 1.29466e7 1.29444 0.647221 0.762303i \(-0.275931\pi\)
0.647221 + 0.762303i \(0.275931\pi\)
\(632\) 0 0
\(633\) −176940. −0.0175516
\(634\) 0 0
\(635\) −8.35584e6 −0.822348
\(636\) 0 0
\(637\) −2.46343e6 −0.240542
\(638\) 0 0
\(639\) −5.30064e6 −0.513542
\(640\) 0 0
\(641\) −4.89035e6 −0.470105 −0.235052 0.971983i \(-0.575526\pi\)
−0.235052 + 0.971983i \(0.575526\pi\)
\(642\) 0 0
\(643\) −1.22604e6 −0.116943 −0.0584717 0.998289i \(-0.518623\pi\)
−0.0584717 + 0.998289i \(0.518623\pi\)
\(644\) 0 0
\(645\) −1.42351e6 −0.134729
\(646\) 0 0
\(647\) −1.21098e7 −1.13731 −0.568654 0.822577i \(-0.692536\pi\)
−0.568654 + 0.822577i \(0.692536\pi\)
\(648\) 0 0
\(649\) −1.55681e7 −1.45086
\(650\) 0 0
\(651\) −4.31827e6 −0.399354
\(652\) 0 0
\(653\) 9.28697e6 0.852298 0.426149 0.904653i \(-0.359870\pi\)
0.426149 + 0.904653i \(0.359870\pi\)
\(654\) 0 0
\(655\) −5.10911e6 −0.465310
\(656\) 0 0
\(657\) −454086. −0.0410416
\(658\) 0 0
\(659\) −451612. −0.0405090 −0.0202545 0.999795i \(-0.506448\pi\)
−0.0202545 + 0.999795i \(0.506448\pi\)
\(660\) 0 0
\(661\) −1.85508e6 −0.165143 −0.0825714 0.996585i \(-0.526313\pi\)
−0.0825714 + 0.996585i \(0.526313\pi\)
\(662\) 0 0
\(663\) 8.51375e6 0.752206
\(664\) 0 0
\(665\) 753032. 0.0660327
\(666\) 0 0
\(667\) 4.40282e6 0.383192
\(668\) 0 0
\(669\) −8.07163e6 −0.697262
\(670\) 0 0
\(671\) −3.24098e6 −0.277889
\(672\) 0 0
\(673\) 2.14534e7 1.82582 0.912911 0.408158i \(-0.133829\pi\)
0.912911 + 0.408158i \(0.133829\pi\)
\(674\) 0 0
\(675\) 1.43540e6 0.121259
\(676\) 0 0
\(677\) 1.56987e7 1.31641 0.658205 0.752839i \(-0.271316\pi\)
0.658205 + 0.752839i \(0.271316\pi\)
\(678\) 0 0
\(679\) −1.85406e6 −0.154330
\(680\) 0 0
\(681\) 2.10805e6 0.174186
\(682\) 0 0
\(683\) −1.40250e7 −1.15040 −0.575201 0.818012i \(-0.695076\pi\)
−0.575201 + 0.818012i \(0.695076\pi\)
\(684\) 0 0
\(685\) 1.36557e7 1.11196
\(686\) 0 0
\(687\) 9.32063e6 0.753449
\(688\) 0 0
\(689\) −1.13886e6 −0.0913950
\(690\) 0 0
\(691\) 1.89819e7 1.51232 0.756160 0.654387i \(-0.227073\pi\)
0.756160 + 0.654387i \(0.227073\pi\)
\(692\) 0 0
\(693\) 1.31771e6 0.104228
\(694\) 0 0
\(695\) 1.27191e7 0.998839
\(696\) 0 0
\(697\) −6.66606e6 −0.519741
\(698\) 0 0
\(699\) −4.11403e6 −0.318474
\(700\) 0 0
\(701\) 2.22806e7 1.71250 0.856251 0.516560i \(-0.172788\pi\)
0.856251 + 0.516560i \(0.172788\pi\)
\(702\) 0 0
\(703\) −1.08028e6 −0.0824419
\(704\) 0 0
\(705\) −7.54963e6 −0.572075
\(706\) 0 0
\(707\) −2.75115e6 −0.206998
\(708\) 0 0
\(709\) −476266. −0.0355823 −0.0177911 0.999842i \(-0.505663\pi\)
−0.0177911 + 0.999842i \(0.505663\pi\)
\(710\) 0 0
\(711\) 797040. 0.0591298
\(712\) 0 0
\(713\) 3.69746e7 2.72383
\(714\) 0 0
\(715\) 1.15815e7 0.847226
\(716\) 0 0
\(717\) 6.08710e6 0.442193
\(718\) 0 0
\(719\) 263568. 0.0190139 0.00950693 0.999955i \(-0.496974\pi\)
0.00950693 + 0.999955i \(0.496974\pi\)
\(720\) 0 0
\(721\) 1.29321e6 0.0926468
\(722\) 0 0
\(723\) 870030. 0.0618997
\(724\) 0 0
\(725\) −2.29585e6 −0.162218
\(726\) 0 0
\(727\) −9.28319e6 −0.651420 −0.325710 0.945470i \(-0.605603\pi\)
−0.325710 + 0.945470i \(0.605603\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) −4.28914e6 −0.296877
\(732\) 0 0
\(733\) −1.89547e7 −1.30304 −0.651520 0.758631i \(-0.725868\pi\)
−0.651520 + 0.758631i \(0.725868\pi\)
\(734\) 0 0
\(735\) 734706. 0.0501644
\(736\) 0 0
\(737\) 8.71566e6 0.591060
\(738\) 0 0
\(739\) −1.95454e7 −1.31654 −0.658269 0.752783i \(-0.728711\pi\)
−0.658269 + 0.752783i \(0.728711\pi\)
\(740\) 0 0
\(741\) −4.17377e6 −0.279243
\(742\) 0 0
\(743\) −1.54683e7 −1.02795 −0.513973 0.857806i \(-0.671827\pi\)
−0.513973 + 0.857806i \(0.671827\pi\)
\(744\) 0 0
\(745\) 1.55054e7 1.02351
\(746\) 0 0
\(747\) −4.94975e6 −0.324550
\(748\) 0 0
\(749\) −2.30908e6 −0.150395
\(750\) 0 0
\(751\) 1.45188e7 0.939354 0.469677 0.882838i \(-0.344370\pi\)
0.469677 + 0.882838i \(0.344370\pi\)
\(752\) 0 0
\(753\) 2.59988e6 0.167096
\(754\) 0 0
\(755\) −272816. −0.0174182
\(756\) 0 0
\(757\) 8.54477e6 0.541952 0.270976 0.962586i \(-0.412654\pi\)
0.270976 + 0.962586i \(0.412654\pi\)
\(758\) 0 0
\(759\) −1.12827e7 −0.710899
\(760\) 0 0
\(761\) −8.50398e6 −0.532305 −0.266153 0.963931i \(-0.585753\pi\)
−0.266153 + 0.963931i \(0.585753\pi\)
\(762\) 0 0
\(763\) −1.08522e7 −0.674850
\(764\) 0 0
\(765\) −2.53919e6 −0.156870
\(766\) 0 0
\(767\) 4.81112e7 2.95296
\(768\) 0 0
\(769\) −1.66581e7 −1.01580 −0.507901 0.861415i \(-0.669578\pi\)
−0.507901 + 0.861415i \(0.669578\pi\)
\(770\) 0 0
\(771\) 6.40661e6 0.388144
\(772\) 0 0
\(773\) 2.17326e7 1.30817 0.654083 0.756423i \(-0.273055\pi\)
0.654083 + 0.756423i \(0.273055\pi\)
\(774\) 0 0
\(775\) −1.92804e7 −1.15309
\(776\) 0 0
\(777\) −1.05399e6 −0.0626302
\(778\) 0 0
\(779\) 3.26796e6 0.192945
\(780\) 0 0
\(781\) −2.17261e7 −1.27454
\(782\) 0 0
\(783\) −850014. −0.0495475
\(784\) 0 0
\(785\) −3.74265e6 −0.216773
\(786\) 0 0
\(787\) −2.05602e6 −0.118329 −0.0591644 0.998248i \(-0.518844\pi\)
−0.0591644 + 0.998248i \(0.518844\pi\)
\(788\) 0 0
\(789\) −1.68631e7 −0.964374
\(790\) 0 0
\(791\) 2.65551e6 0.150906
\(792\) 0 0
\(793\) 1.00158e7 0.565592
\(794\) 0 0
\(795\) 339660. 0.0190602
\(796\) 0 0
\(797\) 3.17641e7 1.77129 0.885647 0.464359i \(-0.153715\pi\)
0.885647 + 0.464359i \(0.153715\pi\)
\(798\) 0 0
\(799\) −2.27476e7 −1.26057
\(800\) 0 0
\(801\) −5.09960e6 −0.280837
\(802\) 0 0
\(803\) −1.86119e6 −0.101860
\(804\) 0 0
\(805\) −6.29082e6 −0.342151
\(806\) 0 0
\(807\) 1.23894e7 0.669680
\(808\) 0 0
\(809\) −2.14050e7 −1.14986 −0.574930 0.818203i \(-0.694971\pi\)
−0.574930 + 0.818203i \(0.694971\pi\)
\(810\) 0 0
\(811\) 6.61432e6 0.353129 0.176564 0.984289i \(-0.443502\pi\)
0.176564 + 0.984289i \(0.443502\pi\)
\(812\) 0 0
\(813\) −7.03598e6 −0.373335
\(814\) 0 0
\(815\) −123352. −0.00650507
\(816\) 0 0
\(817\) 2.10270e6 0.110211
\(818\) 0 0
\(819\) −4.07219e6 −0.212138
\(820\) 0 0
\(821\) 1.78006e7 0.921674 0.460837 0.887485i \(-0.347549\pi\)
0.460837 + 0.887485i \(0.347549\pi\)
\(822\) 0 0
\(823\) 1.23818e7 0.637212 0.318606 0.947887i \(-0.396785\pi\)
0.318606 + 0.947887i \(0.396785\pi\)
\(824\) 0 0
\(825\) 5.88337e6 0.300948
\(826\) 0 0
\(827\) 2.17279e7 1.10473 0.552363 0.833604i \(-0.313726\pi\)
0.552363 + 0.833604i \(0.313726\pi\)
\(828\) 0 0
\(829\) −1.35893e7 −0.686771 −0.343385 0.939195i \(-0.611574\pi\)
−0.343385 + 0.939195i \(0.611574\pi\)
\(830\) 0 0
\(831\) −1.86239e7 −0.935550
\(832\) 0 0
\(833\) 2.21372e6 0.110538
\(834\) 0 0
\(835\) 6.55602e6 0.325405
\(836\) 0 0
\(837\) −7.13837e6 −0.352197
\(838\) 0 0
\(839\) 171272. 0.00840004 0.00420002 0.999991i \(-0.498663\pi\)
0.00420002 + 0.999991i \(0.498663\pi\)
\(840\) 0 0
\(841\) −1.91516e7 −0.933716
\(842\) 0 0
\(843\) −1.69120e7 −0.819647
\(844\) 0 0
\(845\) −2.31670e7 −1.11617
\(846\) 0 0
\(847\) −2.49052e6 −0.119284
\(848\) 0 0
\(849\) 6.03140e6 0.287177
\(850\) 0 0
\(851\) 9.02464e6 0.427175
\(852\) 0 0
\(853\) 2.90172e7 1.36547 0.682737 0.730664i \(-0.260789\pi\)
0.682737 + 0.730664i \(0.260789\pi\)
\(854\) 0 0
\(855\) 1.24481e6 0.0582354
\(856\) 0 0
\(857\) −3.84967e7 −1.79049 −0.895243 0.445578i \(-0.852998\pi\)
−0.895243 + 0.445578i \(0.852998\pi\)
\(858\) 0 0
\(859\) 1.98458e7 0.917670 0.458835 0.888521i \(-0.348267\pi\)
0.458835 + 0.888521i \(0.348267\pi\)
\(860\) 0 0
\(861\) 3.18843e6 0.146578
\(862\) 0 0
\(863\) 1.70833e7 0.780808 0.390404 0.920644i \(-0.372335\pi\)
0.390404 + 0.920644i \(0.372335\pi\)
\(864\) 0 0
\(865\) −5.34283e6 −0.242790
\(866\) 0 0
\(867\) 5.12796e6 0.231684
\(868\) 0 0
\(869\) 3.26688e6 0.146752
\(870\) 0 0
\(871\) −2.69346e7 −1.20300
\(872\) 0 0
\(873\) −3.06488e6 −0.136106
\(874\) 0 0
\(875\) 8.48660e6 0.374726
\(876\) 0 0
\(877\) −2.53810e7 −1.11432 −0.557159 0.830406i \(-0.688109\pi\)
−0.557159 + 0.830406i \(0.688109\pi\)
\(878\) 0 0
\(879\) −1.52650e7 −0.666384
\(880\) 0 0
\(881\) −2.59580e7 −1.12676 −0.563381 0.826198i \(-0.690499\pi\)
−0.563381 + 0.826198i \(0.690499\pi\)
\(882\) 0 0
\(883\) −4.37666e6 −0.188904 −0.0944520 0.995529i \(-0.530110\pi\)
−0.0944520 + 0.995529i \(0.530110\pi\)
\(884\) 0 0
\(885\) −1.43490e7 −0.615832
\(886\) 0 0
\(887\) −3.23310e7 −1.37978 −0.689889 0.723915i \(-0.742341\pi\)
−0.689889 + 0.723915i \(0.742341\pi\)
\(888\) 0 0
\(889\) 1.20422e7 0.511038
\(890\) 0 0
\(891\) 2.17825e6 0.0919208
\(892\) 0 0
\(893\) 1.11517e7 0.467966
\(894\) 0 0
\(895\) −1.51935e7 −0.634017
\(896\) 0 0
\(897\) 3.48676e7 1.44691
\(898\) 0 0
\(899\) 1.14175e7 0.471163
\(900\) 0 0
\(901\) 1.02342e6 0.0419993
\(902\) 0 0
\(903\) 2.05153e6 0.0837257
\(904\) 0 0
\(905\) −2.73917e7 −1.11173
\(906\) 0 0
\(907\) 3.67108e7 1.48175 0.740876 0.671642i \(-0.234411\pi\)
0.740876 + 0.671642i \(0.234411\pi\)
\(908\) 0 0
\(909\) −4.54783e6 −0.182555
\(910\) 0 0
\(911\) −3.52261e7 −1.40627 −0.703135 0.711056i \(-0.748217\pi\)
−0.703135 + 0.711056i \(0.748217\pi\)
\(912\) 0 0
\(913\) −2.02879e7 −0.805488
\(914\) 0 0
\(915\) −2.98717e6 −0.117953
\(916\) 0 0
\(917\) 7.36313e6 0.289161
\(918\) 0 0
\(919\) 3.16978e6 0.123806 0.0619029 0.998082i \(-0.480283\pi\)
0.0619029 + 0.998082i \(0.480283\pi\)
\(920\) 0 0
\(921\) −9.85129e6 −0.382687
\(922\) 0 0
\(923\) 6.71414e7 2.59410
\(924\) 0 0
\(925\) −4.70591e6 −0.180838
\(926\) 0 0
\(927\) 2.13775e6 0.0817068
\(928\) 0 0
\(929\) −2.98030e7 −1.13298 −0.566488 0.824070i \(-0.691698\pi\)
−0.566488 + 0.824070i \(0.691698\pi\)
\(930\) 0 0
\(931\) −1.08525e6 −0.0410352
\(932\) 0 0
\(933\) 1.09124e7 0.410408
\(934\) 0 0
\(935\) −1.04075e7 −0.389331
\(936\) 0 0
\(937\) −1.62312e7 −0.603952 −0.301976 0.953316i \(-0.597646\pi\)
−0.301976 + 0.953316i \(0.597646\pi\)
\(938\) 0 0
\(939\) −1.52493e7 −0.564397
\(940\) 0 0
\(941\) 1.09759e7 0.404079 0.202040 0.979377i \(-0.435243\pi\)
0.202040 + 0.979377i \(0.435243\pi\)
\(942\) 0 0
\(943\) −2.73005e7 −0.999749
\(944\) 0 0
\(945\) 1.21451e6 0.0442408
\(946\) 0 0
\(947\) −3.50304e6 −0.126932 −0.0634658 0.997984i \(-0.520215\pi\)
−0.0634658 + 0.997984i \(0.520215\pi\)
\(948\) 0 0
\(949\) 5.75176e6 0.207317
\(950\) 0 0
\(951\) −3.00008e6 −0.107568
\(952\) 0 0
\(953\) −1.00120e7 −0.357098 −0.178549 0.983931i \(-0.557140\pi\)
−0.178549 + 0.983931i \(0.557140\pi\)
\(954\) 0 0
\(955\) −2.54290e7 −0.902238
\(956\) 0 0
\(957\) −3.48401e6 −0.122970
\(958\) 0 0
\(959\) −1.96803e7 −0.691010
\(960\) 0 0
\(961\) 6.72541e7 2.34915
\(962\) 0 0
\(963\) −3.81704e6 −0.132636
\(964\) 0 0
\(965\) 1.96362e7 0.678794
\(966\) 0 0
\(967\) 652984. 0.0224562 0.0112281 0.999937i \(-0.496426\pi\)
0.0112281 + 0.999937i \(0.496426\pi\)
\(968\) 0 0
\(969\) 3.75070e6 0.128322
\(970\) 0 0
\(971\) 1.24897e7 0.425112 0.212556 0.977149i \(-0.431821\pi\)
0.212556 + 0.977149i \(0.431821\pi\)
\(972\) 0 0
\(973\) −1.83305e7 −0.620715
\(974\) 0 0
\(975\) −1.81817e7 −0.612525
\(976\) 0 0
\(977\) −7.43408e6 −0.249167 −0.124584 0.992209i \(-0.539759\pi\)
−0.124584 + 0.992209i \(0.539759\pi\)
\(978\) 0 0
\(979\) −2.09021e7 −0.696999
\(980\) 0 0
\(981\) −1.79394e7 −0.595162
\(982\) 0 0
\(983\) −2.44904e7 −0.808373 −0.404187 0.914677i \(-0.632445\pi\)
−0.404187 + 0.914677i \(0.632445\pi\)
\(984\) 0 0
\(985\) 2.62173e7 0.860990
\(986\) 0 0
\(987\) 1.08804e7 0.355509
\(988\) 0 0
\(989\) −1.75660e7 −0.571059
\(990\) 0 0
\(991\) −4.87464e7 −1.57673 −0.788367 0.615206i \(-0.789073\pi\)
−0.788367 + 0.615206i \(0.789073\pi\)
\(992\) 0 0
\(993\) 1.65253e7 0.531833
\(994\) 0 0
\(995\) 1.89462e7 0.606685
\(996\) 0 0
\(997\) 2.35242e6 0.0749510 0.0374755 0.999298i \(-0.488068\pi\)
0.0374755 + 0.999298i \(0.488068\pi\)
\(998\) 0 0
\(999\) −1.74231e6 −0.0552347
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 336.6.a.e.1.1 1
3.2 odd 2 1008.6.a.u.1.1 1
4.3 odd 2 84.6.a.b.1.1 1
12.11 even 2 252.6.a.c.1.1 1
28.3 even 6 588.6.i.e.373.1 2
28.11 odd 6 588.6.i.c.373.1 2
28.19 even 6 588.6.i.e.361.1 2
28.23 odd 6 588.6.i.c.361.1 2
28.27 even 2 588.6.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.6.a.b.1.1 1 4.3 odd 2
252.6.a.c.1.1 1 12.11 even 2
336.6.a.e.1.1 1 1.1 even 1 trivial
588.6.a.b.1.1 1 28.27 even 2
588.6.i.c.361.1 2 28.23 odd 6
588.6.i.c.373.1 2 28.11 odd 6
588.6.i.e.361.1 2 28.19 even 6
588.6.i.e.373.1 2 28.3 even 6
1008.6.a.u.1.1 1 3.2 odd 2