Properties

Label 336.4.w
Level 336336
Weight 44
Character orbit 336.w
Rep. character χ336(85,)\chi_{336}(85,\cdot)
Character field Q(ζ4)\Q(\zeta_{4})
Dimension 144144
Sturm bound 256256

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 336=2437 336 = 2^{4} \cdot 3 \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 336.w (of order 44 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 16 16
Character field: Q(i)\Q(i)
Sturm bound: 256256

Dimensions

The following table gives the dimensions of various subspaces of M4(336,[χ])M_{4}(336, [\chi]).

Total New Old
Modular forms 392 144 248
Cusp forms 376 144 232
Eisenstein series 16 0 16

Trace form

144q+20q4120q10+40q11+48q12+140q14240q15+324q16+36q1848q19668q22456q24+40q26400q29+816q30+1920q32+1696q34++360q99+O(q100) 144 q + 20 q^{4} - 120 q^{10} + 40 q^{11} + 48 q^{12} + 140 q^{14} - 240 q^{15} + 324 q^{16} + 36 q^{18} - 48 q^{19} - 668 q^{22} - 456 q^{24} + 40 q^{26} - 400 q^{29} + 816 q^{30} + 1920 q^{32} + 1696 q^{34}+ \cdots + 360 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(336,[χ])S_{4}^{\mathrm{new}}(336, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S4old(336,[χ])S_{4}^{\mathrm{old}}(336, [\chi]) into lower level spaces

S4old(336,[χ]) S_{4}^{\mathrm{old}}(336, [\chi]) \simeq S4new(16,[χ])S_{4}^{\mathrm{new}}(16, [\chi])4^{\oplus 4}\oplusS4new(48,[χ])S_{4}^{\mathrm{new}}(48, [\chi])2^{\oplus 2}\oplusS4new(112,[χ])S_{4}^{\mathrm{new}}(112, [\chi])2^{\oplus 2}