Properties

Label 336.4.q.k
Level 336
Weight 4
Character orbit 336.q
Analytic conductor 19.825
Analytic rank 0
Dimension 6
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 336 = 2^{4} \cdot 3 \cdot 7 \)
Weight: \( k \) = \( 4 \)
Character orbit: \([\chi]\) = 336.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(19.8246417619\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.9924270768.1
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{4}\cdot 3 \)
Twist minimal: no (minimal twist has level 21)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 3 \beta_{3} q^{3} + ( -4 + \beta_{2} - 4 \beta_{3} + \beta_{4} ) q^{5} + ( 1 + \beta_{1} + \beta_{2} - 2 \beta_{3} + \beta_{4} + \beta_{5} ) q^{7} + ( -9 - 9 \beta_{3} ) q^{9} +O(q^{10})\) \( q + 3 \beta_{3} q^{3} + ( -4 + \beta_{2} - 4 \beta_{3} + \beta_{4} ) q^{5} + ( 1 + \beta_{1} + \beta_{2} - 2 \beta_{3} + \beta_{4} + \beta_{5} ) q^{7} + ( -9 - 9 \beta_{3} ) q^{9} + ( \beta_{1} - 11 \beta_{3} - 2 \beta_{4} + \beta_{5} ) q^{11} + ( 20 - \beta_{1} + 2 \beta_{2} ) q^{13} + ( 12 - 3 \beta_{2} ) q^{15} + ( \beta_{1} + 17 \beta_{3} - 3 \beta_{4} + \beta_{5} ) q^{17} + ( -67 - \beta_{2} - 67 \beta_{3} - \beta_{4} - 2 \beta_{5} ) q^{19} + ( 6 - 3 \beta_{2} + 9 \beta_{3} - 3 \beta_{5} ) q^{21} + ( 73 - 3 \beta_{2} + 73 \beta_{3} - 3 \beta_{4} - 7 \beta_{5} ) q^{23} + ( -7 \beta_{1} + 46 \beta_{3} - 8 \beta_{4} - 7 \beta_{5} ) q^{25} + 27 q^{27} + ( 21 + 5 \beta_{1} - 10 \beta_{2} ) q^{29} + ( -5 \beta_{1} + 34 \beta_{3} - 7 \beta_{4} - 5 \beta_{5} ) q^{31} + ( 33 + 6 \beta_{2} + 33 \beta_{3} + 6 \beta_{4} - 3 \beta_{5} ) q^{33} + ( 61 - 10 \beta_{1} + 14 \beta_{2} + 151 \beta_{3} - 3 \beta_{4} - 7 \beta_{5} ) q^{35} + ( -86 - 4 \beta_{2} - 86 \beta_{3} - 4 \beta_{4} - 5 \beta_{5} ) q^{37} + ( 3 \beta_{1} + 60 \beta_{3} + 6 \beta_{4} + 3 \beta_{5} ) q^{39} + ( 78 + 4 \beta_{1} + 10 \beta_{2} ) q^{41} + ( -125 - 18 \beta_{1} + 15 \beta_{2} ) q^{43} + ( 36 \beta_{3} - 9 \beta_{4} ) q^{45} + ( -71 + 3 \beta_{2} - 71 \beta_{3} + 3 \beta_{4} - 25 \beta_{5} ) q^{47} + ( -111 - 3 \beta_{1} + 16 \beta_{2} - 107 \beta_{3} - 10 \beta_{4} - 12 \beta_{5} ) q^{49} + ( -51 + 9 \beta_{2} - 51 \beta_{3} + 9 \beta_{4} - 3 \beta_{5} ) q^{51} + ( -20 \beta_{1} + 134 \beta_{3} - 9 \beta_{4} - 20 \beta_{5} ) q^{53} + ( 339 + 11 \beta_{1} + 14 \beta_{2} ) q^{55} + ( 201 - 6 \beta_{1} + 3 \beta_{2} ) q^{57} + ( -10 \beta_{1} - 368 \beta_{3} - 39 \beta_{4} - 10 \beta_{5} ) q^{59} + ( 10 + 40 \beta_{2} + 10 \beta_{3} + 40 \beta_{4} + 20 \beta_{5} ) q^{61} + ( -27 - 9 \beta_{1} - 9 \beta_{3} - 9 \beta_{4} ) q^{63} + ( 157 + \beta_{2} + 157 \beta_{3} + \beta_{4} - 17 \beta_{5} ) q^{65} + ( -16 \beta_{1} + 199 \beta_{3} + 31 \beta_{4} - 16 \beta_{5} ) q^{67} + ( -219 - 21 \beta_{1} + 9 \beta_{2} ) q^{69} + ( -99 + 33 \beta_{1} - 21 \beta_{2} ) q^{71} + ( -31 \beta_{1} + 332 \beta_{3} - 8 \beta_{4} - 31 \beta_{5} ) q^{73} + ( -138 + 24 \beta_{2} - 138 \beta_{3} + 24 \beta_{4} + 21 \beta_{5} ) q^{75} + ( -39 + 16 \beta_{1} - 16 \beta_{2} - 433 \beta_{3} - 40 \beta_{4} + 5 \beta_{5} ) q^{77} + ( 302 - 45 \beta_{2} + 302 \beta_{3} - 45 \beta_{4} + 3 \beta_{5} ) q^{79} + 81 \beta_{3} q^{81} + ( -162 + 6 \beta_{1} - 33 \beta_{2} ) q^{83} + ( 606 + 18 \beta_{1} - 18 \beta_{2} ) q^{85} + ( -15 \beta_{1} + 63 \beta_{3} - 30 \beta_{4} - 15 \beta_{5} ) q^{87} + ( -580 - 26 \beta_{2} - 580 \beta_{3} - 26 \beta_{4} - 48 \beta_{5} ) q^{89} + ( 257 + 30 \beta_{1} + 11 \beta_{2} + 305 \beta_{3} - 5 \beta_{4} + 18 \beta_{5} ) q^{91} + ( -102 + 21 \beta_{2} - 102 \beta_{3} + 21 \beta_{4} + 15 \beta_{5} ) q^{93} + ( 13 \beta_{1} + 259 \beta_{3} - 41 \beta_{4} + 13 \beta_{5} ) q^{95} + ( 23 + \beta_{1} - 50 \beta_{2} ) q^{97} + ( -99 - 9 \beta_{1} - 18 \beta_{2} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6q - 9q^{3} - 11q^{5} + 13q^{7} - 27q^{9} + O(q^{10}) \) \( 6q - 9q^{3} - 11q^{5} + 13q^{7} - 27q^{9} + 35q^{11} + 124q^{13} + 66q^{15} - 48q^{17} - 202q^{19} + 3q^{21} + 216q^{23} - 130q^{25} + 162q^{27} + 106q^{29} - 95q^{31} + 105q^{33} - 56q^{35} - 262q^{37} - 186q^{39} + 488q^{41} - 720q^{43} - 99q^{45} - 210q^{47} - 303q^{49} - 144q^{51} - 393q^{53} + 2062q^{55} + 1212q^{57} + 1143q^{59} + 70q^{61} - 126q^{63} + 472q^{65} - 628q^{67} - 1296q^{69} - 636q^{71} - 988q^{73} - 390q^{75} + 1073q^{77} + 861q^{79} - 243q^{81} - 1038q^{83} + 3600q^{85} - 159q^{87} - 1766q^{89} + 654q^{91} - 285q^{93} - 736q^{95} + 38q^{97} - 630q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{6} - x^{5} + 25 x^{4} + 12 x^{3} + 582 x^{2} - 144 x + 36\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\((\)\( -11 \nu^{5} + 275 \nu^{4} + 328 \nu^{3} + 6402 \nu^{2} - 1584 \nu + 118833 \)\()/7203\)
\(\beta_{2}\)\(=\)\((\)\( -13 \nu^{5} + 325 \nu^{4} - 922 \nu^{3} + 7566 \nu^{2} - 1872 \nu + 118830 \)\()/7203\)
\(\beta_{3}\)\(=\)\((\)\( 100 \nu^{5} - 99 \nu^{4} + 2475 \nu^{3} + 1825 \nu^{2} + 57618 \nu - 14256 \)\()/14406\)
\(\beta_{4}\)\(=\)\((\)\( 801 \nu^{5} - 817 \nu^{4} + 20425 \nu^{3} + 6815 \nu^{2} + 475494 \nu - 117648 \)\()/7203\)
\(\beta_{5}\)\(=\)\((\)\( -1676 \nu^{5} + 1083 \nu^{4} - 41481 \nu^{3} - 30587 \nu^{2} - 947238 \nu - 2514 \)\()/14406\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(\beta_{5} + \beta_{4} + \beta_{3} + \beta_{2} + 1\)\()/4\)
\(\nu^{2}\)\(=\)\((\)\(\beta_{5} - \beta_{4} + 33 \beta_{3} + \beta_{1}\)\()/2\)
\(\nu^{3}\)\(=\)\((\)\(-11 \beta_{2} + 13 \beta_{1} - 33\)\()/2\)
\(\nu^{4}\)\(=\)\(-17 \beta_{5} + 8 \beta_{4} - 411 \beta_{3} + 8 \beta_{2} - 411\)
\(\nu^{5}\)\(=\)\(-170 \beta_{5} - 127 \beta_{4} - 708 \beta_{3} - 170 \beta_{1}\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/336\mathbb{Z}\right)^\times\).

\(n\) \(85\) \(113\) \(127\) \(241\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1 - \beta_{3}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
193.1
−2.27818 3.94593i
2.65415 + 4.59712i
0.124036 + 0.214837i
−2.27818 + 3.94593i
2.65415 4.59712i
0.124036 0.214837i
0 −1.50000 + 2.59808i 0 −8.93660 15.4786i 0 −2.26047 18.3818i 0 −4.50000 7.79423i 0
193.2 0 −1.50000 + 2.59808i 0 −2.78070 4.81631i 0 −9.67799 + 15.7904i 0 −4.50000 7.79423i 0
193.3 0 −1.50000 + 2.59808i 0 6.21730 + 10.7687i 0 18.4385 1.73873i 0 −4.50000 7.79423i 0
289.1 0 −1.50000 2.59808i 0 −8.93660 + 15.4786i 0 −2.26047 + 18.3818i 0 −4.50000 + 7.79423i 0
289.2 0 −1.50000 2.59808i 0 −2.78070 + 4.81631i 0 −9.67799 15.7904i 0 −4.50000 + 7.79423i 0
289.3 0 −1.50000 2.59808i 0 6.21730 10.7687i 0 18.4385 + 1.73873i 0 −4.50000 + 7.79423i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 289.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 336.4.q.k 6
4.b odd 2 1 21.4.e.b 6
7.c even 3 1 inner 336.4.q.k 6
7.c even 3 1 2352.4.a.ci 3
7.d odd 6 1 2352.4.a.cg 3
12.b even 2 1 63.4.e.c 6
28.d even 2 1 147.4.e.n 6
28.f even 6 1 147.4.a.m 3
28.f even 6 1 147.4.e.n 6
28.g odd 6 1 21.4.e.b 6
28.g odd 6 1 147.4.a.l 3
84.h odd 2 1 441.4.e.w 6
84.j odd 6 1 441.4.a.t 3
84.j odd 6 1 441.4.e.w 6
84.n even 6 1 63.4.e.c 6
84.n even 6 1 441.4.a.s 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
21.4.e.b 6 4.b odd 2 1
21.4.e.b 6 28.g odd 6 1
63.4.e.c 6 12.b even 2 1
63.4.e.c 6 84.n even 6 1
147.4.a.l 3 28.g odd 6 1
147.4.a.m 3 28.f even 6 1
147.4.e.n 6 28.d even 2 1
147.4.e.n 6 28.f even 6 1
336.4.q.k 6 1.a even 1 1 trivial
336.4.q.k 6 7.c even 3 1 inner
441.4.a.s 3 84.n even 6 1
441.4.a.t 3 84.j odd 6 1
441.4.e.w 6 84.h odd 2 1
441.4.e.w 6 84.j odd 6 1
2352.4.a.cg 3 7.d odd 6 1
2352.4.a.ci 3 7.c even 3 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{6} + 11 T_{5}^{5} + 313 T_{5}^{4} + 360 T_{5}^{3} + 50460 T_{5}^{2} + 237312 T_{5} + 1527696 \) acting on \(S_{4}^{\mathrm{new}}(336, [\chi])\).

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ 1
$3$ \( ( 1 + 3 T + 9 T^{2} )^{3} \)
$5$ \( 1 + 11 T - 62 T^{2} - 1015 T^{3} - 6040 T^{4} - 54313 T^{5} + 121696 T^{6} - 6789125 T^{7} - 94375000 T^{8} - 1982421875 T^{9} - 15136718750 T^{10} + 335693359375 T^{11} + 3814697265625 T^{12} \)
$7$ \( 1 - 13 T + 236 T^{2} - 12145 T^{3} + 80948 T^{4} - 1529437 T^{5} + 40353607 T^{6} \)
$11$ \( 1 - 35 T - 1400 T^{2} + 113593 T^{3} - 198940 T^{4} - 87110135 T^{5} + 3928586038 T^{6} - 115943589685 T^{7} - 352434345340 T^{8} + 267846352063763 T^{9} - 4393799727409400 T^{10} - 146203685929547785 T^{11} + 5559917313492231481 T^{12} \)
$13$ \( ( 1 - 62 T + 7016 T^{2} - 253976 T^{3} + 15414152 T^{4} - 299262158 T^{5} + 10604499373 T^{6} )^{2} \)
$17$ \( 1 + 48 T - 10035 T^{2} - 125232 T^{3} + 74409318 T^{4} - 234420432 T^{5} - 437742983351 T^{6} - 1151707582416 T^{7} + 1796060047467942 T^{8} - 14850996949472304 T^{9} - 5846614150600651635 T^{10} + \)\(13\!\cdots\!64\)\( T^{11} + \)\(14\!\cdots\!09\)\( T^{12} \)
$19$ \( 1 + 202 T + 7946 T^{2} + 627636 T^{3} + 247297462 T^{4} + 17185599794 T^{5} + 349471935958 T^{6} + 117876028987046 T^{7} + 11634326968854022 T^{8} + 202530415883220444 T^{9} + 17587000346899715306 T^{10} + \)\(30\!\cdots\!98\)\( T^{11} + \)\(10\!\cdots\!41\)\( T^{12} \)
$23$ \( 1 - 216 T + 10827 T^{2} - 387864 T^{3} + 53856198 T^{4} + 24653558952 T^{5} - 5413409425505 T^{6} + 299959851768984 T^{7} + 7972650149090022 T^{8} - 698602275885685032 T^{9} + \)\(23\!\cdots\!67\)\( T^{10} - \)\(57\!\cdots\!12\)\( T^{11} + \)\(32\!\cdots\!69\)\( T^{12} \)
$29$ \( ( 1 - 53 T + 52695 T^{2} - 3410210 T^{3} + 1285178355 T^{4} - 31525636013 T^{5} + 14507145975869 T^{6} )^{2} \)
$31$ \( 1 + 95 T - 70347 T^{2} - 3756594 T^{3} + 3398738767 T^{4} + 83374434539 T^{5} - 110906046363338 T^{6} + 2483807779351349 T^{7} + 3016393166469901327 T^{8} - 99322925971043714574 T^{9} - \)\(55\!\cdots\!67\)\( T^{10} + \)\(22\!\cdots\!45\)\( T^{11} + \)\(69\!\cdots\!41\)\( T^{12} \)
$37$ \( 1 + 262 T - 97404 T^{2} - 9678072 T^{3} + 12194182072 T^{4} + 680381910454 T^{5} - 605701122868778 T^{6} + 34463384910226462 T^{7} + 31286934978284739448 T^{8} - \)\(12\!\cdots\!44\)\( T^{9} - \)\(64\!\cdots\!24\)\( T^{10} + \)\(87\!\cdots\!66\)\( T^{11} + \)\(16\!\cdots\!29\)\( T^{12} \)
$41$ \( ( 1 - 244 T + 187983 T^{2} - 33933832 T^{3} + 12955976343 T^{4} - 1159025434804 T^{5} + 327381934393961 T^{6} )^{2} \)
$43$ \( ( 1 + 360 T + 166158 T^{2} + 38975294 T^{3} + 13210724106 T^{4} + 2275690697640 T^{5} + 502592611936843 T^{6} )^{2} \)
$47$ \( 1 + 210 T - 20853 T^{2} - 83809446 T^{3} - 12756928590 T^{4} + 2596137940074 T^{5} + 3698984470026571 T^{6} + 269538829352302902 T^{7} - \)\(13\!\cdots\!10\)\( T^{8} - \)\(93\!\cdots\!82\)\( T^{9} - \)\(24\!\cdots\!73\)\( T^{10} + \)\(25\!\cdots\!30\)\( T^{11} + \)\(12\!\cdots\!89\)\( T^{12} \)
$53$ \( 1 + 393 T - 211446 T^{2} - 23899125 T^{3} + 46453564620 T^{4} - 3425920762143 T^{5} - 9724787230272680 T^{6} - 510040805305563411 T^{7} + \)\(10\!\cdots\!80\)\( T^{8} - \)\(78\!\cdots\!25\)\( T^{9} - \)\(10\!\cdots\!86\)\( T^{10} + \)\(28\!\cdots\!01\)\( T^{11} + \)\(10\!\cdots\!89\)\( T^{12} \)
$59$ \( 1 - 1143 T + 557208 T^{2} - 118327563 T^{3} - 14314666608 T^{4} + 27063102119841 T^{5} - 16891447327378130 T^{6} + 5558192850270824739 T^{7} - \)\(60\!\cdots\!28\)\( T^{8} - \)\(10\!\cdots\!57\)\( T^{9} + \)\(99\!\cdots\!48\)\( T^{10} - \)\(41\!\cdots\!57\)\( T^{11} + \)\(75\!\cdots\!21\)\( T^{12} \)
$61$ \( 1 - 70 T - 335143 T^{2} - 129510330 T^{3} + 42145697866 T^{4} + 25171752927730 T^{5} - 316289217432887 T^{6} + 5713509651289083130 T^{7} + \)\(21\!\cdots\!26\)\( T^{8} - \)\(15\!\cdots\!30\)\( T^{9} - \)\(88\!\cdots\!03\)\( T^{10} - \)\(42\!\cdots\!70\)\( T^{11} + \)\(13\!\cdots\!81\)\( T^{12} \)
$67$ \( 1 + 628 T - 202942 T^{2} - 436381932 T^{3} - 77667044702 T^{4} + 73528811914784 T^{5} + 76060129771959310 T^{6} + 22114746057926180192 T^{7} - \)\(70\!\cdots\!38\)\( T^{8} - \)\(11\!\cdots\!04\)\( T^{9} - \)\(16\!\cdots\!62\)\( T^{10} + \)\(15\!\cdots\!04\)\( T^{11} + \)\(74\!\cdots\!09\)\( T^{12} \)
$71$ \( ( 1 + 318 T + 742929 T^{2} + 256167372 T^{3} + 265902461319 T^{4} + 40735890286878 T^{5} + 45848500718449031 T^{6} )^{2} \)
$73$ \( 1 + 988 T - 186552 T^{2} - 102237300 T^{3} + 281568890272 T^{4} - 16988127696596 T^{5} - 164639785652996186 T^{6} - 6608670472146686132 T^{7} + \)\(42\!\cdots\!08\)\( T^{8} - \)\(60\!\cdots\!00\)\( T^{9} - \)\(42\!\cdots\!92\)\( T^{10} + \)\(88\!\cdots\!16\)\( T^{11} + \)\(34\!\cdots\!69\)\( T^{12} \)
$79$ \( 1 - 861 T - 479895 T^{2} + 258646666 T^{3} + 325257480351 T^{4} + 27564282842211 T^{5} - 246706047980056146 T^{6} + 13590266448240869229 T^{7} + \)\(79\!\cdots\!71\)\( T^{8} + \)\(30\!\cdots\!54\)\( T^{9} - \)\(28\!\cdots\!95\)\( T^{10} - \)\(25\!\cdots\!39\)\( T^{11} + \)\(14\!\cdots\!61\)\( T^{12} \)
$83$ \( ( 1 + 519 T + 1583745 T^{2} + 545598870 T^{3} + 905564802315 T^{4} + 169682053778511 T^{5} + 186940255267540403 T^{6} )^{2} \)
$89$ \( 1 + 1766 T + 725929 T^{2} - 728159446 T^{3} - 335534377858 T^{4} + 846551335831238 T^{5} + 1249625385561159997 T^{6} + \)\(59\!\cdots\!22\)\( T^{7} - \)\(16\!\cdots\!38\)\( T^{8} - \)\(25\!\cdots\!14\)\( T^{9} + \)\(17\!\cdots\!09\)\( T^{10} + \)\(30\!\cdots\!34\)\( T^{11} + \)\(12\!\cdots\!81\)\( T^{12} \)
$97$ \( ( 1 - 19 T + 2168419 T^{2} + 10094878 T^{3} + 1979057473987 T^{4} - 15826468093651 T^{5} + 760231058654565217 T^{6} )^{2} \)
show more
show less