gp: [N,k,chi] = [336,4,Mod(193,336)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(336, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 0, 4]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("336.193");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [6,0,-9,0,-11]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 5 1,\beta_1,\ldots,\beta_{5} 1 , β 1 , … , β 5 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 6 − x 5 + 25 x 4 + 12 x 3 + 582 x 2 − 144 x + 36 x^{6} - x^{5} + 25x^{4} + 12x^{3} + 582x^{2} - 144x + 36 x 6 − x 5 + 2 5 x 4 + 1 2 x 3 + 5 8 2 x 2 − 1 4 4 x + 3 6
x^6 - x^5 + 25*x^4 + 12*x^3 + 582*x^2 - 144*x + 36
:
β 1 \beta_{1} β 1 = = =
( − 11 ν 5 + 275 ν 4 + 328 ν 3 + 6402 ν 2 − 1584 ν + 118833 ) / 7203 ( -11\nu^{5} + 275\nu^{4} + 328\nu^{3} + 6402\nu^{2} - 1584\nu + 118833 ) / 7203 ( − 1 1 ν 5 + 2 7 5 ν 4 + 3 2 8 ν 3 + 6 4 0 2 ν 2 − 1 5 8 4 ν + 1 1 8 8 3 3 ) / 7 2 0 3
(-11*v^5 + 275*v^4 + 328*v^3 + 6402*v^2 - 1584*v + 118833) / 7203
β 2 \beta_{2} β 2 = = =
( − 13 ν 5 + 325 ν 4 − 922 ν 3 + 7566 ν 2 − 1872 ν + 118830 ) / 7203 ( -13\nu^{5} + 325\nu^{4} - 922\nu^{3} + 7566\nu^{2} - 1872\nu + 118830 ) / 7203 ( − 1 3 ν 5 + 3 2 5 ν 4 − 9 2 2 ν 3 + 7 5 6 6 ν 2 − 1 8 7 2 ν + 1 1 8 8 3 0 ) / 7 2 0 3
(-13*v^5 + 325*v^4 - 922*v^3 + 7566*v^2 - 1872*v + 118830) / 7203
β 3 \beta_{3} β 3 = = =
( 100 ν 5 − 99 ν 4 + 2475 ν 3 + 1825 ν 2 + 57618 ν − 14256 ) / 14406 ( 100\nu^{5} - 99\nu^{4} + 2475\nu^{3} + 1825\nu^{2} + 57618\nu - 14256 ) / 14406 ( 1 0 0 ν 5 − 9 9 ν 4 + 2 4 7 5 ν 3 + 1 8 2 5 ν 2 + 5 7 6 1 8 ν − 1 4 2 5 6 ) / 1 4 4 0 6
(100*v^5 - 99*v^4 + 2475*v^3 + 1825*v^2 + 57618*v - 14256) / 14406
β 4 \beta_{4} β 4 = = =
( 801 ν 5 − 817 ν 4 + 20425 ν 3 + 6815 ν 2 + 475494 ν − 117648 ) / 7203 ( 801\nu^{5} - 817\nu^{4} + 20425\nu^{3} + 6815\nu^{2} + 475494\nu - 117648 ) / 7203 ( 8 0 1 ν 5 − 8 1 7 ν 4 + 2 0 4 2 5 ν 3 + 6 8 1 5 ν 2 + 4 7 5 4 9 4 ν − 1 1 7 6 4 8 ) / 7 2 0 3
(801*v^5 - 817*v^4 + 20425*v^3 + 6815*v^2 + 475494*v - 117648) / 7203
β 5 \beta_{5} β 5 = = =
( − 1676 ν 5 + 1083 ν 4 − 41481 ν 3 − 30587 ν 2 − 947238 ν − 2514 ) / 14406 ( -1676\nu^{5} + 1083\nu^{4} - 41481\nu^{3} - 30587\nu^{2} - 947238\nu - 2514 ) / 14406 ( − 1 6 7 6 ν 5 + 1 0 8 3 ν 4 − 4 1 4 8 1 ν 3 − 3 0 5 8 7 ν 2 − 9 4 7 2 3 8 ν − 2 5 1 4 ) / 1 4 4 0 6
(-1676*v^5 + 1083*v^4 - 41481*v^3 - 30587*v^2 - 947238*v - 2514) / 14406
ν \nu ν = = =
( β 5 + β 4 + β 3 + β 2 + 1 ) / 4 ( \beta_{5} + \beta_{4} + \beta_{3} + \beta_{2} + 1 ) / 4 ( β 5 + β 4 + β 3 + β 2 + 1 ) / 4
(b5 + b4 + b3 + b2 + 1) / 4
ν 2 \nu^{2} ν 2 = = =
( β 5 − β 4 + 33 β 3 + β 1 ) / 2 ( \beta_{5} - \beta_{4} + 33\beta_{3} + \beta_1 ) / 2 ( β 5 − β 4 + 3 3 β 3 + β 1 ) / 2
(b5 - b4 + 33*b3 + b1) / 2
ν 3 \nu^{3} ν 3 = = =
( − 11 β 2 + 13 β 1 − 33 ) / 2 ( -11\beta_{2} + 13\beta _1 - 33 ) / 2 ( − 1 1 β 2 + 1 3 β 1 − 3 3 ) / 2
(-11*b2 + 13*b1 - 33) / 2
ν 4 \nu^{4} ν 4 = = =
− 17 β 5 + 8 β 4 − 411 β 3 + 8 β 2 − 411 -17\beta_{5} + 8\beta_{4} - 411\beta_{3} + 8\beta_{2} - 411 − 1 7 β 5 + 8 β 4 − 4 1 1 β 3 + 8 β 2 − 4 1 1
-17*b5 + 8*b4 - 411*b3 + 8*b2 - 411
ν 5 \nu^{5} ν 5 = = =
− 170 β 5 − 127 β 4 − 708 β 3 − 170 β 1 -170\beta_{5} - 127\beta_{4} - 708\beta_{3} - 170\beta_1 − 1 7 0 β 5 − 1 2 7 β 4 − 7 0 8 β 3 − 1 7 0 β 1
-170*b5 - 127*b4 - 708*b3 - 170*b1
Character values
We give the values of χ \chi χ on generators for ( Z / 336 Z ) × \left(\mathbb{Z}/336\mathbb{Z}\right)^\times ( Z / 3 3 6 Z ) × .
n n n
85 85 8 5
113 113 1 1 3
127 127 1 2 7
241 241 2 4 1
χ ( n ) \chi(n) χ ( n )
1 1 1
1 1 1
1 1 1
− 1 − β 3 -1 - \beta_{3} − 1 − β 3
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 5 6 + 11 T 5 5 + 313 T 5 4 + 360 T 5 3 + 50460 T 5 2 + 237312 T 5 + 1527696 T_{5}^{6} + 11T_{5}^{5} + 313T_{5}^{4} + 360T_{5}^{3} + 50460T_{5}^{2} + 237312T_{5} + 1527696 T 5 6 + 1 1 T 5 5 + 3 1 3 T 5 4 + 3 6 0 T 5 3 + 5 0 4 6 0 T 5 2 + 2 3 7 3 1 2 T 5 + 1 5 2 7 6 9 6
T5^6 + 11*T5^5 + 313*T5^4 + 360*T5^3 + 50460*T5^2 + 237312*T5 + 1527696
acting on S 4 n e w ( 336 , [ χ ] ) S_{4}^{\mathrm{new}}(336, [\chi]) S 4 n e w ( 3 3 6 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 6 T^{6} T 6
T^6
3 3 3
( T 2 + 3 T + 9 ) 3 (T^{2} + 3 T + 9)^{3} ( T 2 + 3 T + 9 ) 3
(T^2 + 3*T + 9)^3
5 5 5
T 6 + 11 T 5 + ⋯ + 1527696 T^{6} + 11 T^{5} + \cdots + 1527696 T 6 + 1 1 T 5 + ⋯ + 1 5 2 7 6 9 6
T^6 + 11*T^5 + 313*T^4 + 360*T^3 + 50460*T^2 + 237312*T + 1527696
7 7 7
T 6 − 13 T 5 + ⋯ + 40353607 T^{6} - 13 T^{5} + \cdots + 40353607 T 6 − 1 3 T 5 + ⋯ + 4 0 3 5 3 6 0 7
T^6 - 13*T^5 + 236*T^4 - 12145*T^3 + 80948*T^2 - 1529437*T + 40353607
11 11 1 1
T 6 − 35 T 5 + ⋯ + 91470096 T^{6} - 35 T^{5} + \cdots + 91470096 T 6 − 3 5 T 5 + ⋯ + 9 1 4 7 0 0 9 6
T^6 - 35*T^5 + 2593*T^4 + 67008*T^3 + 1536684*T^2 + 13083552*T + 91470096
13 13 1 3
( T 3 − 62 T 2 + ⋯ + 18452 ) 2 (T^{3} - 62 T^{2} + \cdots + 18452)^{2} ( T 3 − 6 2 T 2 + ⋯ + 1 8 4 5 2 ) 2
(T^3 - 62*T^2 + 425*T + 18452)^2
17 17 1 7
T 6 + ⋯ + 12745506816 T^{6} + \cdots + 12745506816 T 6 + ⋯ + 1 2 7 4 5 5 0 6 8 1 6
T^6 + 48*T^5 + 4704*T^4 + 110592*T^3 + 11179008*T^2 + 270950400*T + 12745506816
19 19 1 9
T 6 + ⋯ + 54664310416 T^{6} + \cdots + 54664310416 T 6 + ⋯ + 5 4 6 6 4 3 1 0 4 1 6
T^6 + 202*T^5 + 28523*T^4 + 2013154*T^3 + 103594553*T^2 + 2871346924*T + 54664310416
23 23 2 3
T 6 + ⋯ + 2498119335936 T^{6} + \cdots + 2498119335936 T 6 + ⋯ + 2 4 9 8 1 1 9 3 3 5 9 3 6
T^6 - 216*T^5 + 47328*T^4 - 3015936*T^3 + 341849088*T^2 - 1062125568*T + 2498119335936
29 29 2 9
( T 3 − 53 T 2 + ⋯ − 824976 ) 2 (T^{3} - 53 T^{2} + \cdots - 824976)^{2} ( T 3 − 5 3 T 2 + ⋯ − 8 2 4 9 7 6 ) 2
(T^3 - 53*T^2 - 20472*T - 824976)^2
31 31 3 1
T 6 + 95 T 5 + ⋯ + 139783329 T^{6} + 95 T^{5} + \cdots + 139783329 T 6 + 9 5 T 5 + ⋯ + 1 3 9 7 8 3 3 2 9
T^6 + 95*T^5 + 19026*T^4 - 926449*T^3 + 101143186*T^2 + 118241823*T + 139783329
37 37 3 7
T 6 + ⋯ + 2415919104 T^{6} + \cdots + 2415919104 T 6 + ⋯ + 2 4 1 5 9 1 9 1 0 4
T^6 + 262*T^5 + 54555*T^4 + 3593014*T^3 + 185622097*T^2 + 692502528*T + 2415919104
41 41 4 1
( T 3 − 244 T 2 + ⋯ − 300384 ) 2 (T^{3} - 244 T^{2} + \cdots - 300384)^{2} ( T 3 − 2 4 4 T 2 + ⋯ − 3 0 0 3 8 4 ) 2
(T^3 - 244*T^2 - 18780*T - 300384)^2
43 43 4 3
( T 3 + 360 T 2 + ⋯ − 18269746 ) 2 (T^{3} + 360 T^{2} + \cdots - 18269746)^{2} ( T 3 + 3 6 0 T 2 + ⋯ − 1 8 2 6 9 7 4 6 ) 2
(T^3 + 360*T^2 - 72363*T - 18269746)^2
47 47 4 7
T 6 + ⋯ + 26205471480384 T^{6} + \cdots + 26205471480384 T 6 + ⋯ + 2 6 2 0 5 4 7 1 4 8 0 3 8 4
T^6 + 210*T^5 + 290616*T^4 - 62006616*T^3 + 59695121376*T^2 - 1261946958048*T + 26205471480384
53 53 5 3
T 6 + ⋯ + 11 ⋯ 64 T^{6} + \cdots + 11\!\cdots\!64 T 6 + ⋯ + 1 1 ⋯ 6 4
T^6 + 393*T^5 + 235185*T^4 + 34609536*T^3 + 19553872752*T^2 + 2677964032512*T + 1100208565649664
59 59 5 9
T 6 + ⋯ + 10 ⋯ 36 T^{6} + \cdots + 10\!\cdots\!36 T 6 + ⋯ + 1 0 ⋯ 3 6
T^6 - 1143*T^5 + 1173345*T^4 - 353075760*T^3 + 132552677808*T^2 + 13372818322176*T + 10094008708475136
61 61 6 1
T 6 + ⋯ + 71 ⋯ 00 T^{6} + \cdots + 71\!\cdots\!00 T 6 + ⋯ + 7 1 ⋯ 0 0
T^6 - 70*T^5 + 345800*T^4 - 145399000*T^3 + 122136980000*T^2 - 28850707900000*T + 7162406161000000
67 67 6 7
T 6 + ⋯ + 783608160972004 T^{6} + \cdots + 783608160972004 T 6 + ⋯ + 7 8 3 6 0 8 1 6 0 9 7 2 0 0 4
T^6 + 628*T^5 + 699347*T^4 - 247502768*T^3 + 75422826113*T^2 - 8536829868926*T + 783608160972004
71 71 7 1
( T 3 + 318 T 2 + ⋯ + 28535976 ) 2 (T^{3} + 318 T^{2} + \cdots + 28535976)^{2} ( T 3 + 3 1 8 T 2 + ⋯ + 2 8 5 3 5 9 7 6 ) 2
(T^3 + 318*T^2 - 330804*T + 28535976)^2
73 73 7 3
T 6 + ⋯ + 20 ⋯ 24 T^{6} + \cdots + 20\!\cdots\!24 T 6 + ⋯ + 2 0 ⋯ 2 4
T^6 + 988*T^5 + 980499*T^4 + 282111496*T^3 + 141507598609*T^2 + 623666998890*T + 20508278645865924
79 79 7 9
T 6 + ⋯ + 37 ⋯ 69 T^{6} + \cdots + 37\!\cdots\!69 T 6 + ⋯ + 3 7 ⋯ 6 9
T^6 - 861*T^5 + 999222*T^4 - 165859913*T^3 + 233509331958*T^2 - 50021533268637*T + 37619060662457569
83 83 8 3
( T 3 + 519 T 2 + ⋯ − 47916036 ) 2 (T^{3} + 519 T^{2} + \cdots - 47916036)^{2} ( T 3 + 5 1 9 T 2 + ⋯ − 4 7 9 1 6 0 3 6 ) 2
(T^3 + 519*T^2 - 131616*T - 47916036)^2
89 89 8 9
T 6 + ⋯ + 169118164647936 T^{6} + \cdots + 169118164647936 T 6 + ⋯ + 1 6 9 1 1 8 1 6 4 6 4 7 9 3 6
T^6 + 1766*T^5 + 2840836*T^4 + 516815808*T^3 + 100205551104*T^2 - 3614222868480*T + 169118164647936
97 97 9 7
( T 3 − 19 T 2 + ⋯ + 44776452 ) 2 (T^{3} - 19 T^{2} + \cdots + 44776452)^{2} ( T 3 − 1 9 T 2 + ⋯ + 4 4 7 7 6 4 5 2 ) 2
(T^3 - 19*T^2 - 569600*T + 44776452)^2
show more
show less