Properties

Label 336.4.q.k
Level 336336
Weight 44
Character orbit 336.q
Analytic conductor 19.82519.825
Analytic rank 00
Dimension 66
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [336,4,Mod(193,336)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(336, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 4])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("336.193"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 336=2437 336 = 2^{4} \cdot 3 \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 336.q (of order 33, degree 22, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-9,0,-11] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 19.824641761919.8246417619
Analytic rank: 00
Dimension: 66
Relative dimension: 33 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: 6.0.9924270768.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x6x5+25x4+12x3+582x2144x+36 x^{6} - x^{5} + 25x^{4} + 12x^{3} + 582x^{2} - 144x + 36 Copy content Toggle raw display
Coefficient ring: Z[a1,,a19]\Z[a_1, \ldots, a_{19}]
Coefficient ring index: 243 2^{4}\cdot 3
Twist minimal: no (minimal twist has level 21)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β51,\beta_1,\ldots,\beta_{5} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+3β3q3+(β44β3+β24)q5+(β5+β42β3++1)q7+(9β39)q9+(β52β4++β1)q11++(18β29β199)q99+O(q100) q + 3 \beta_{3} q^{3} + (\beta_{4} - 4 \beta_{3} + \beta_{2} - 4) q^{5} + (\beta_{5} + \beta_{4} - 2 \beta_{3} + \cdots + 1) q^{7} + ( - 9 \beta_{3} - 9) q^{9} + (\beta_{5} - 2 \beta_{4} + \cdots + \beta_1) q^{11}+ \cdots + ( - 18 \beta_{2} - 9 \beta_1 - 99) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q9q311q5+13q727q9+35q11+124q13+66q1548q17202q19+3q21+216q23130q25+162q27+106q2995q31+105q3356q35+630q99+O(q100) 6 q - 9 q^{3} - 11 q^{5} + 13 q^{7} - 27 q^{9} + 35 q^{11} + 124 q^{13} + 66 q^{15} - 48 q^{17} - 202 q^{19} + 3 q^{21} + 216 q^{23} - 130 q^{25} + 162 q^{27} + 106 q^{29} - 95 q^{31} + 105 q^{33} - 56 q^{35}+ \cdots - 630 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x6x5+25x4+12x3+582x2144x+36 x^{6} - x^{5} + 25x^{4} + 12x^{3} + 582x^{2} - 144x + 36 : Copy content Toggle raw display

β1\beta_{1}== (11ν5+275ν4+328ν3+6402ν21584ν+118833)/7203 ( -11\nu^{5} + 275\nu^{4} + 328\nu^{3} + 6402\nu^{2} - 1584\nu + 118833 ) / 7203 Copy content Toggle raw display
β2\beta_{2}== (13ν5+325ν4922ν3+7566ν21872ν+118830)/7203 ( -13\nu^{5} + 325\nu^{4} - 922\nu^{3} + 7566\nu^{2} - 1872\nu + 118830 ) / 7203 Copy content Toggle raw display
β3\beta_{3}== (100ν599ν4+2475ν3+1825ν2+57618ν14256)/14406 ( 100\nu^{5} - 99\nu^{4} + 2475\nu^{3} + 1825\nu^{2} + 57618\nu - 14256 ) / 14406 Copy content Toggle raw display
β4\beta_{4}== (801ν5817ν4+20425ν3+6815ν2+475494ν117648)/7203 ( 801\nu^{5} - 817\nu^{4} + 20425\nu^{3} + 6815\nu^{2} + 475494\nu - 117648 ) / 7203 Copy content Toggle raw display
β5\beta_{5}== (1676ν5+1083ν441481ν330587ν2947238ν2514)/14406 ( -1676\nu^{5} + 1083\nu^{4} - 41481\nu^{3} - 30587\nu^{2} - 947238\nu - 2514 ) / 14406 Copy content Toggle raw display
ν\nu== (β5+β4+β3+β2+1)/4 ( \beta_{5} + \beta_{4} + \beta_{3} + \beta_{2} + 1 ) / 4 Copy content Toggle raw display
ν2\nu^{2}== (β5β4+33β3+β1)/2 ( \beta_{5} - \beta_{4} + 33\beta_{3} + \beta_1 ) / 2 Copy content Toggle raw display
ν3\nu^{3}== (11β2+13β133)/2 ( -11\beta_{2} + 13\beta _1 - 33 ) / 2 Copy content Toggle raw display
ν4\nu^{4}== 17β5+8β4411β3+8β2411 -17\beta_{5} + 8\beta_{4} - 411\beta_{3} + 8\beta_{2} - 411 Copy content Toggle raw display
ν5\nu^{5}== 170β5127β4708β3170β1 -170\beta_{5} - 127\beta_{4} - 708\beta_{3} - 170\beta_1 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/336Z)×\left(\mathbb{Z}/336\mathbb{Z}\right)^\times.

nn 8585 113113 127127 241241
χ(n)\chi(n) 11 11 11 1β3-1 - \beta_{3}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
193.1
−2.27818 3.94593i
2.65415 + 4.59712i
0.124036 + 0.214837i
−2.27818 + 3.94593i
2.65415 4.59712i
0.124036 0.214837i
0 −1.50000 + 2.59808i 0 −8.93660 15.4786i 0 −2.26047 18.3818i 0 −4.50000 7.79423i 0
193.2 0 −1.50000 + 2.59808i 0 −2.78070 4.81631i 0 −9.67799 + 15.7904i 0 −4.50000 7.79423i 0
193.3 0 −1.50000 + 2.59808i 0 6.21730 + 10.7687i 0 18.4385 1.73873i 0 −4.50000 7.79423i 0
289.1 0 −1.50000 2.59808i 0 −8.93660 + 15.4786i 0 −2.26047 + 18.3818i 0 −4.50000 + 7.79423i 0
289.2 0 −1.50000 2.59808i 0 −2.78070 + 4.81631i 0 −9.67799 15.7904i 0 −4.50000 + 7.79423i 0
289.3 0 −1.50000 2.59808i 0 6.21730 10.7687i 0 18.4385 + 1.73873i 0 −4.50000 + 7.79423i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 193.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 336.4.q.k 6
4.b odd 2 1 21.4.e.b 6
7.c even 3 1 inner 336.4.q.k 6
7.c even 3 1 2352.4.a.ci 3
7.d odd 6 1 2352.4.a.cg 3
12.b even 2 1 63.4.e.c 6
28.d even 2 1 147.4.e.n 6
28.f even 6 1 147.4.a.m 3
28.f even 6 1 147.4.e.n 6
28.g odd 6 1 21.4.e.b 6
28.g odd 6 1 147.4.a.l 3
84.h odd 2 1 441.4.e.w 6
84.j odd 6 1 441.4.a.t 3
84.j odd 6 1 441.4.e.w 6
84.n even 6 1 63.4.e.c 6
84.n even 6 1 441.4.a.s 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
21.4.e.b 6 4.b odd 2 1
21.4.e.b 6 28.g odd 6 1
63.4.e.c 6 12.b even 2 1
63.4.e.c 6 84.n even 6 1
147.4.a.l 3 28.g odd 6 1
147.4.a.m 3 28.f even 6 1
147.4.e.n 6 28.d even 2 1
147.4.e.n 6 28.f even 6 1
336.4.q.k 6 1.a even 1 1 trivial
336.4.q.k 6 7.c even 3 1 inner
441.4.a.s 3 84.n even 6 1
441.4.a.t 3 84.j odd 6 1
441.4.e.w 6 84.h odd 2 1
441.4.e.w 6 84.j odd 6 1
2352.4.a.cg 3 7.d odd 6 1
2352.4.a.ci 3 7.c even 3 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T56+11T55+313T54+360T53+50460T52+237312T5+1527696 T_{5}^{6} + 11T_{5}^{5} + 313T_{5}^{4} + 360T_{5}^{3} + 50460T_{5}^{2} + 237312T_{5} + 1527696 acting on S4new(336,[χ])S_{4}^{\mathrm{new}}(336, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T6 T^{6} Copy content Toggle raw display
33 (T2+3T+9)3 (T^{2} + 3 T + 9)^{3} Copy content Toggle raw display
55 T6+11T5++1527696 T^{6} + 11 T^{5} + \cdots + 1527696 Copy content Toggle raw display
77 T613T5++40353607 T^{6} - 13 T^{5} + \cdots + 40353607 Copy content Toggle raw display
1111 T635T5++91470096 T^{6} - 35 T^{5} + \cdots + 91470096 Copy content Toggle raw display
1313 (T362T2++18452)2 (T^{3} - 62 T^{2} + \cdots + 18452)^{2} Copy content Toggle raw display
1717 T6++12745506816 T^{6} + \cdots + 12745506816 Copy content Toggle raw display
1919 T6++54664310416 T^{6} + \cdots + 54664310416 Copy content Toggle raw display
2323 T6++2498119335936 T^{6} + \cdots + 2498119335936 Copy content Toggle raw display
2929 (T353T2+824976)2 (T^{3} - 53 T^{2} + \cdots - 824976)^{2} Copy content Toggle raw display
3131 T6+95T5++139783329 T^{6} + 95 T^{5} + \cdots + 139783329 Copy content Toggle raw display
3737 T6++2415919104 T^{6} + \cdots + 2415919104 Copy content Toggle raw display
4141 (T3244T2+300384)2 (T^{3} - 244 T^{2} + \cdots - 300384)^{2} Copy content Toggle raw display
4343 (T3+360T2+18269746)2 (T^{3} + 360 T^{2} + \cdots - 18269746)^{2} Copy content Toggle raw display
4747 T6++26205471480384 T^{6} + \cdots + 26205471480384 Copy content Toggle raw display
5353 T6++11 ⁣ ⁣64 T^{6} + \cdots + 11\!\cdots\!64 Copy content Toggle raw display
5959 T6++10 ⁣ ⁣36 T^{6} + \cdots + 10\!\cdots\!36 Copy content Toggle raw display
6161 T6++71 ⁣ ⁣00 T^{6} + \cdots + 71\!\cdots\!00 Copy content Toggle raw display
6767 T6++783608160972004 T^{6} + \cdots + 783608160972004 Copy content Toggle raw display
7171 (T3+318T2++28535976)2 (T^{3} + 318 T^{2} + \cdots + 28535976)^{2} Copy content Toggle raw display
7373 T6++20 ⁣ ⁣24 T^{6} + \cdots + 20\!\cdots\!24 Copy content Toggle raw display
7979 T6++37 ⁣ ⁣69 T^{6} + \cdots + 37\!\cdots\!69 Copy content Toggle raw display
8383 (T3+519T2+47916036)2 (T^{3} + 519 T^{2} + \cdots - 47916036)^{2} Copy content Toggle raw display
8989 T6++169118164647936 T^{6} + \cdots + 169118164647936 Copy content Toggle raw display
9797 (T319T2++44776452)2 (T^{3} - 19 T^{2} + \cdots + 44776452)^{2} Copy content Toggle raw display
show more
show less