Newspace parameters
Level: | \( N \) | \(=\) | \( 336 = 2^{4} \cdot 3 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 336.q (of order \(3\), degree \(2\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(19.8246417619\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\sqrt{-3}) \) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{2} - x + 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 42) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/336\mathbb{Z}\right)^\times\).
\(n\) | \(85\) | \(113\) | \(127\) | \(241\) |
\(\chi(n)\) | \(1\) | \(1\) | \(1\) | \(-\zeta_{6}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
193.1 |
|
0 | −1.50000 | + | 2.59808i | 0 | 7.50000 | + | 12.9904i | 0 | −17.5000 | + | 6.06218i | 0 | −4.50000 | − | 7.79423i | 0 | ||||||||||||||||
289.1 | 0 | −1.50000 | − | 2.59808i | 0 | 7.50000 | − | 12.9904i | 0 | −17.5000 | − | 6.06218i | 0 | −4.50000 | + | 7.79423i | 0 | |||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 336.4.q.d | 2 | |
4.b | odd | 2 | 1 | 42.4.e.b | ✓ | 2 | |
7.c | even | 3 | 1 | inner | 336.4.q.d | 2 | |
7.c | even | 3 | 1 | 2352.4.a.u | 1 | ||
7.d | odd | 6 | 1 | 2352.4.a.q | 1 | ||
12.b | even | 2 | 1 | 126.4.g.a | 2 | ||
28.d | even | 2 | 1 | 294.4.e.e | 2 | ||
28.f | even | 6 | 1 | 294.4.a.g | 1 | ||
28.f | even | 6 | 1 | 294.4.e.e | 2 | ||
28.g | odd | 6 | 1 | 42.4.e.b | ✓ | 2 | |
28.g | odd | 6 | 1 | 294.4.a.a | 1 | ||
84.h | odd | 2 | 1 | 882.4.g.l | 2 | ||
84.j | odd | 6 | 1 | 882.4.a.h | 1 | ||
84.j | odd | 6 | 1 | 882.4.g.l | 2 | ||
84.n | even | 6 | 1 | 126.4.g.a | 2 | ||
84.n | even | 6 | 1 | 882.4.a.r | 1 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
42.4.e.b | ✓ | 2 | 4.b | odd | 2 | 1 | |
42.4.e.b | ✓ | 2 | 28.g | odd | 6 | 1 | |
126.4.g.a | 2 | 12.b | even | 2 | 1 | ||
126.4.g.a | 2 | 84.n | even | 6 | 1 | ||
294.4.a.a | 1 | 28.g | odd | 6 | 1 | ||
294.4.a.g | 1 | 28.f | even | 6 | 1 | ||
294.4.e.e | 2 | 28.d | even | 2 | 1 | ||
294.4.e.e | 2 | 28.f | even | 6 | 1 | ||
336.4.q.d | 2 | 1.a | even | 1 | 1 | trivial | |
336.4.q.d | 2 | 7.c | even | 3 | 1 | inner | |
882.4.a.h | 1 | 84.j | odd | 6 | 1 | ||
882.4.a.r | 1 | 84.n | even | 6 | 1 | ||
882.4.g.l | 2 | 84.h | odd | 2 | 1 | ||
882.4.g.l | 2 | 84.j | odd | 6 | 1 | ||
2352.4.a.q | 1 | 7.d | odd | 6 | 1 | ||
2352.4.a.u | 1 | 7.c | even | 3 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{2} - 15T_{5} + 225 \)
acting on \(S_{4}^{\mathrm{new}}(336, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{2} \)
$3$
\( T^{2} + 3T + 9 \)
$5$
\( T^{2} - 15T + 225 \)
$7$
\( T^{2} + 35T + 343 \)
$11$
\( T^{2} + 9T + 81 \)
$13$
\( (T + 88)^{2} \)
$17$
\( T^{2} - 84T + 7056 \)
$19$
\( T^{2} - 104T + 10816 \)
$23$
\( T^{2} + 84T + 7056 \)
$29$
\( (T - 51)^{2} \)
$31$
\( T^{2} - 185T + 34225 \)
$37$
\( T^{2} + 44T + 1936 \)
$41$
\( (T + 168)^{2} \)
$43$
\( (T + 326)^{2} \)
$47$
\( T^{2} + 138T + 19044 \)
$53$
\( T^{2} + 639T + 408321 \)
$59$
\( T^{2} - 159T + 25281 \)
$61$
\( T^{2} + 722T + 521284 \)
$67$
\( T^{2} + 166T + 27556 \)
$71$
\( (T + 1086)^{2} \)
$73$
\( T^{2} + 218T + 47524 \)
$79$
\( T^{2} + 583T + 339889 \)
$83$
\( (T - 597)^{2} \)
$89$
\( T^{2} - 1038 T + 1077444 \)
$97$
\( (T + 169)^{2} \)
show more
show less