Properties

Label 336.4.bs
Level 336336
Weight 44
Character orbit 336.bs
Rep. character χ336(19,)\chi_{336}(19,\cdot)
Character field Q(ζ12)\Q(\zeta_{12})
Dimension 384384
Sturm bound 256256

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 336=2437 336 = 2^{4} \cdot 3 \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 336.bs (of order 1212 and degree 44)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 112 112
Character field: Q(ζ12)\Q(\zeta_{12})
Sturm bound: 256256

Dimensions

The following table gives the dimensions of various subspaces of M4(336,[χ])M_{4}(336, [\chi]).

Total New Old
Modular forms 784 384 400
Cusp forms 752 384 368
Eisenstein series 32 0 32

Trace form

384q+20q4+168q836q1040q11+416q14+60q1636q18976q22+656q23+416q28800q29+456q35+16q372340q40+660q421616q43+720q99+O(q100) 384 q + 20 q^{4} + 168 q^{8} - 36 q^{10} - 40 q^{11} + 416 q^{14} + 60 q^{16} - 36 q^{18} - 976 q^{22} + 656 q^{23} + 416 q^{28} - 800 q^{29} + 456 q^{35} + 16 q^{37} - 2340 q^{40} + 660 q^{42} - 1616 q^{43}+ \cdots - 720 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(336,[χ])S_{4}^{\mathrm{new}}(336, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S4old(336,[χ])S_{4}^{\mathrm{old}}(336, [\chi]) into lower level spaces

S4old(336,[χ]) S_{4}^{\mathrm{old}}(336, [\chi]) \simeq S4new(112,[χ])S_{4}^{\mathrm{new}}(112, [\chi])2^{\oplus 2}