Newspace parameters
Level: | \( N \) | \(=\) | \( 336 = 2^{4} \cdot 3 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 336.bh (of order \(6\), degree \(2\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(9.15533688251\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Relative dimension: | \(4\) over \(\Q(\zeta_{6})\) |
Coefficient field: | 8.0.35911766016.9 |
Defining polynomial: |
\( x^{8} - 2x^{7} - 7x^{6} - 2x^{5} + 78x^{4} - 18x^{3} - 153x^{2} - 230x + 529 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 2^{4}\cdot 7 \) |
Twist minimal: | no (minimal twist has level 168) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{8} - 2x^{7} - 7x^{6} - 2x^{5} + 78x^{4} - 18x^{3} - 153x^{2} - 230x + 529 \)
:
\(\beta_{1}\) | \(=\) |
\( ( 4244 \nu^{7} + 873 \nu^{6} - 33756 \nu^{5} - 71462 \nu^{4} + 213594 \nu^{3} + 469674 \nu^{2} - 193196 \nu - 1034839 ) / 658490 \)
|
\(\beta_{2}\) | \(=\) |
\( ( 3371 \nu^{7} + 6667 \nu^{6} - 38294 \nu^{5} - 96948 \nu^{4} + 94716 \nu^{3} + 623641 \nu^{2} + 796111 \nu - 1188686 ) / 329245 \)
|
\(\beta_{3}\) | \(=\) |
\( ( 33\nu^{7} + 41\nu^{6} - 222\nu^{5} - 414\nu^{4} + 488\nu^{3} + 1608\nu^{2} - 207\nu + 3637 ) / 2045 \)
|
\(\beta_{4}\) | \(=\) |
\( ( 6088 \nu^{7} - 4954 \nu^{6} - 27942 \nu^{5} - 30829 \nu^{4} + 324398 \nu^{3} - 31292 \nu^{2} + 378248 \nu - 816983 ) / 329245 \)
|
\(\beta_{5}\) | \(=\) |
\( ( - 6546 \nu^{7} - 1812 \nu^{6} + 70064 \nu^{5} + 173218 \nu^{4} - 443336 \nu^{3} - 974856 \nu^{2} + 215444 \nu + 3514676 ) / 329245 \)
|
\(\beta_{6}\) | \(=\) |
\( ( - 11533 \nu^{7} + 30909 \nu^{6} + 121832 \nu^{5} - 29696 \nu^{4} - 997968 \nu^{3} - 162453 \nu^{2} + 2146717 \nu + 2603393 ) / 329245 \)
|
\(\beta_{7}\) | \(=\) |
\( ( - 45244 \nu^{7} - 5583 \nu^{6} + 215876 \nu^{5} + 916372 \nu^{4} - 1365974 \nu^{3} - 3003654 \nu^{2} - 3864944 \nu + 10829159 ) / 658490 \)
|
\(\nu\) | \(=\) |
\( ( \beta_{5} + 2\beta_{4} - 2\beta_{3} + 4\beta_{2} - 4\beta _1 + 6 ) / 14 \)
|
\(\nu^{2}\) | \(=\) |
\( ( 6\beta_{5} - 2\beta_{4} - 5\beta_{3} + 3\beta_{2} + 32\beta _1 + 1 ) / 7 \)
|
\(\nu^{3}\) | \(=\) |
\( ( 7\beta_{7} + 7\beta_{6} - 18\beta_{5} + 27\beta_{4} - 6\beta_{3} - 9\beta_{2} + 9\beta _1 + 81 ) / 14 \)
|
\(\nu^{4}\) | \(=\) |
\( ( 7\beta_{7} + 33\beta_{5} + 10\beta_{4} - 10\beta_{3} + 20\beta_{2} + 141\beta _1 - 131 ) / 7 \)
|
\(\nu^{5}\) | \(=\) |
\( ( 49\beta_{6} + 75\beta_{5} + 66\beta_{4} - 108\beta_{3} - 99\beta_{2} + 736\beta _1 - 33 ) / 14 \)
|
\(\nu^{6}\) | \(=\) |
\( ( 91\beta_{7} + 91\beta_{6} - 150\beta_{5} + 225\beta_{4} + 160\beta_{3} - 75\beta_{2} + 75\beta _1 - 494 ) / 7 \)
|
\(\nu^{7}\) | \(=\) |
\( ( -22\beta_{7} + 199\beta_{5} - 8\beta_{4} + 8\beta_{3} - 16\beta_{2} + 718\beta _1 - 726 ) / 2 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/336\mathbb{Z}\right)^\times\).
\(n\) | \(85\) | \(113\) | \(127\) | \(241\) |
\(\chi(n)\) | \(1\) | \(1\) | \(1\) | \(\beta_{1}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
145.1 |
|
0 | −1.50000 | + | 0.866025i | 0 | −6.80550 | − | 3.92916i | 0 | −6.99187 | − | 0.337312i | 0 | 1.50000 | − | 2.59808i | 0 | ||||||||||||||||||||||||||||||||||
145.2 | 0 | −1.50000 | + | 0.866025i | 0 | −4.68140 | − | 2.70281i | 0 | 6.12873 | + | 3.38210i | 0 | 1.50000 | − | 2.59808i | 0 | |||||||||||||||||||||||||||||||||||
145.3 | 0 | −1.50000 | + | 0.866025i | 0 | 3.18140 | + | 1.83678i | 0 | −2.47188 | − | 6.54903i | 0 | 1.50000 | − | 2.59808i | 0 | |||||||||||||||||||||||||||||||||||
145.4 | 0 | −1.50000 | + | 0.866025i | 0 | 5.30550 | + | 3.06313i | 0 | −0.664986 | + | 6.96834i | 0 | 1.50000 | − | 2.59808i | 0 | |||||||||||||||||||||||||||||||||||
241.1 | 0 | −1.50000 | − | 0.866025i | 0 | −6.80550 | + | 3.92916i | 0 | −6.99187 | + | 0.337312i | 0 | 1.50000 | + | 2.59808i | 0 | |||||||||||||||||||||||||||||||||||
241.2 | 0 | −1.50000 | − | 0.866025i | 0 | −4.68140 | + | 2.70281i | 0 | 6.12873 | − | 3.38210i | 0 | 1.50000 | + | 2.59808i | 0 | |||||||||||||||||||||||||||||||||||
241.3 | 0 | −1.50000 | − | 0.866025i | 0 | 3.18140 | − | 1.83678i | 0 | −2.47188 | + | 6.54903i | 0 | 1.50000 | + | 2.59808i | 0 | |||||||||||||||||||||||||||||||||||
241.4 | 0 | −1.50000 | − | 0.866025i | 0 | 5.30550 | − | 3.06313i | 0 | −0.664986 | − | 6.96834i | 0 | 1.50000 | + | 2.59808i | 0 | |||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.d | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 336.3.bh.g | 8 | |
3.b | odd | 2 | 1 | 1008.3.cg.p | 8 | ||
4.b | odd | 2 | 1 | 168.3.z.b | ✓ | 8 | |
7.c | even | 3 | 1 | 2352.3.f.g | 8 | ||
7.d | odd | 6 | 1 | inner | 336.3.bh.g | 8 | |
7.d | odd | 6 | 1 | 2352.3.f.g | 8 | ||
12.b | even | 2 | 1 | 504.3.by.c | 8 | ||
21.g | even | 6 | 1 | 1008.3.cg.p | 8 | ||
28.d | even | 2 | 1 | 1176.3.z.c | 8 | ||
28.f | even | 6 | 1 | 168.3.z.b | ✓ | 8 | |
28.f | even | 6 | 1 | 1176.3.f.c | 8 | ||
28.g | odd | 6 | 1 | 1176.3.f.c | 8 | ||
28.g | odd | 6 | 1 | 1176.3.z.c | 8 | ||
84.j | odd | 6 | 1 | 504.3.by.c | 8 | ||
84.j | odd | 6 | 1 | 3528.3.f.b | 8 | ||
84.n | even | 6 | 1 | 3528.3.f.b | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
168.3.z.b | ✓ | 8 | 4.b | odd | 2 | 1 | |
168.3.z.b | ✓ | 8 | 28.f | even | 6 | 1 | |
336.3.bh.g | 8 | 1.a | even | 1 | 1 | trivial | |
336.3.bh.g | 8 | 7.d | odd | 6 | 1 | inner | |
504.3.by.c | 8 | 12.b | even | 2 | 1 | ||
504.3.by.c | 8 | 84.j | odd | 6 | 1 | ||
1008.3.cg.p | 8 | 3.b | odd | 2 | 1 | ||
1008.3.cg.p | 8 | 21.g | even | 6 | 1 | ||
1176.3.f.c | 8 | 28.f | even | 6 | 1 | ||
1176.3.f.c | 8 | 28.g | odd | 6 | 1 | ||
1176.3.z.c | 8 | 28.d | even | 2 | 1 | ||
1176.3.z.c | 8 | 28.g | odd | 6 | 1 | ||
2352.3.f.g | 8 | 7.c | even | 3 | 1 | ||
2352.3.f.g | 8 | 7.d | odd | 6 | 1 | ||
3528.3.f.b | 8 | 84.j | odd | 6 | 1 | ||
3528.3.f.b | 8 | 84.n | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{8} + 6T_{5}^{7} - 53T_{5}^{6} - 390T_{5}^{5} + 2861T_{5}^{4} + 13260T_{5}^{3} - 48268T_{5}^{2} - 195024T_{5} + 913936 \)
acting on \(S_{3}^{\mathrm{new}}(336, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{8} \)
$3$
\( (T^{2} + 3 T + 3)^{4} \)
$5$
\( T^{8} + 6 T^{7} - 53 T^{6} + \cdots + 913936 \)
$7$
\( T^{8} + 8 T^{7} + 42 T^{6} + \cdots + 5764801 \)
$11$
\( T^{8} - 22 T^{7} + 527 T^{6} + \cdots + 17875984 \)
$13$
\( T^{8} + 262 T^{6} + 19817 T^{4} + \cdots + 2408704 \)
$17$
\( T^{8} - 36 T^{7} + \cdots + 3470623744 \)
$19$
\( T^{8} + 42 T^{7} + 43 T^{6} + \cdots + 17272336 \)
$23$
\( T^{8} + 48 T^{7} + \cdots + 22620160000 \)
$29$
\( (T^{4} - 34 T^{3} - 1063 T^{2} + \cdots + 224128)^{2} \)
$31$
\( T^{8} - 60 T^{7} + \cdots + 25912950625 \)
$37$
\( T^{8} + 118 T^{7} + \cdots + 17069945104 \)
$41$
\( T^{8} + 7280 T^{6} + \cdots + 580010189056 \)
$43$
\( (T^{4} - 46 T^{3} - 3723 T^{2} + \cdots + 1658308)^{2} \)
$47$
\( T^{8} - 12 T^{7} + \cdots + 52408029184 \)
$53$
\( T^{8} - 10 T^{7} + \cdots + 1491466217536 \)
$59$
\( T^{8} - 54 T^{7} + \cdots + 1048985640000 \)
$61$
\( T^{8} - 24 T^{7} + \cdots + 43785853599744 \)
$67$
\( T^{8} + 22 T^{7} + \cdots + 95387087104 \)
$71$
\( (T^{4} - 196 T^{3} + 2460 T^{2} + \cdots - 13209344)^{2} \)
$73$
\( T^{8} + \cdots + 622497709609216 \)
$79$
\( T^{8} + 164 T^{7} + \cdots + 26\!\cdots\!25 \)
$83$
\( T^{8} + 4430 T^{6} + \cdots + 839297841424 \)
$89$
\( T^{8} + 60 T^{7} + \cdots + 723343446016 \)
$97$
\( T^{8} + 65270 T^{6} + \cdots + 22\!\cdots\!16 \)
show more
show less