Newspace parameters
Level: | \( N \) | \(=\) | \( 336 = 2^{4} \cdot 3 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 336.bh (of order \(6\), degree \(2\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(9.15533688251\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Relative dimension: | \(2\) over \(\Q(\zeta_{6})\) |
Coefficient field: | \(\Q(\sqrt{-3}, \sqrt{65})\) |
Defining polynomial: |
\( x^{4} - x^{3} + 17x^{2} + 16x + 256 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 3 \) |
Twist minimal: | no (minimal twist has level 84) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{4} - x^{3} + 17x^{2} + 16x + 256 \)
:
\(\beta_{1}\) | \(=\) |
\( ( -\nu^{3} + 17\nu^{2} - 17\nu + 256 ) / 272 \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{3} - \nu^{2} + 33\nu + 16 ) / 16 \)
|
\(\beta_{3}\) | \(=\) |
\( ( \nu^{3} - 17\nu + 33 ) / 17 \)
|
\(\nu\) | \(=\) |
\( ( -\beta_{3} + \beta_{2} + \beta_1 ) / 3 \)
|
\(\nu^{2}\) | \(=\) |
\( ( \beta_{3} + 2\beta_{2} + 50\beta _1 - 51 ) / 3 \)
|
\(\nu^{3}\) | \(=\) |
\( ( 34\beta_{3} + 17\beta_{2} + 17\beta _1 - 99 ) / 3 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/336\mathbb{Z}\right)^\times\).
\(n\) | \(85\) | \(113\) | \(127\) | \(241\) |
\(\chi(n)\) | \(1\) | \(1\) | \(1\) | \(1 - \beta_{1}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
145.1 |
|
0 | 1.50000 | − | 0.866025i | 0 | −8.29669 | − | 4.79010i | 0 | −0.500000 | + | 6.98212i | 0 | 1.50000 | − | 2.59808i | 0 | ||||||||||||||||||||||
145.2 | 0 | 1.50000 | − | 0.866025i | 0 | 3.79669 | + | 2.19202i | 0 | −0.500000 | − | 6.98212i | 0 | 1.50000 | − | 2.59808i | 0 | |||||||||||||||||||||||
241.1 | 0 | 1.50000 | + | 0.866025i | 0 | −8.29669 | + | 4.79010i | 0 | −0.500000 | − | 6.98212i | 0 | 1.50000 | + | 2.59808i | 0 | |||||||||||||||||||||||
241.2 | 0 | 1.50000 | + | 0.866025i | 0 | 3.79669 | − | 2.19202i | 0 | −0.500000 | + | 6.98212i | 0 | 1.50000 | + | 2.59808i | 0 | |||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.d | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 336.3.bh.f | 4 | |
3.b | odd | 2 | 1 | 1008.3.cg.m | 4 | ||
4.b | odd | 2 | 1 | 84.3.m.b | ✓ | 4 | |
7.c | even | 3 | 1 | 2352.3.f.f | 4 | ||
7.d | odd | 6 | 1 | inner | 336.3.bh.f | 4 | |
7.d | odd | 6 | 1 | 2352.3.f.f | 4 | ||
12.b | even | 2 | 1 | 252.3.z.e | 4 | ||
20.d | odd | 2 | 1 | 2100.3.bd.f | 4 | ||
20.e | even | 4 | 2 | 2100.3.be.d | 8 | ||
21.g | even | 6 | 1 | 1008.3.cg.m | 4 | ||
28.d | even | 2 | 1 | 588.3.m.d | 4 | ||
28.f | even | 6 | 1 | 84.3.m.b | ✓ | 4 | |
28.f | even | 6 | 1 | 588.3.d.b | 4 | ||
28.g | odd | 6 | 1 | 588.3.d.b | 4 | ||
28.g | odd | 6 | 1 | 588.3.m.d | 4 | ||
84.h | odd | 2 | 1 | 1764.3.z.h | 4 | ||
84.j | odd | 6 | 1 | 252.3.z.e | 4 | ||
84.j | odd | 6 | 1 | 1764.3.d.f | 4 | ||
84.n | even | 6 | 1 | 1764.3.d.f | 4 | ||
84.n | even | 6 | 1 | 1764.3.z.h | 4 | ||
140.s | even | 6 | 1 | 2100.3.bd.f | 4 | ||
140.x | odd | 12 | 2 | 2100.3.be.d | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
84.3.m.b | ✓ | 4 | 4.b | odd | 2 | 1 | |
84.3.m.b | ✓ | 4 | 28.f | even | 6 | 1 | |
252.3.z.e | 4 | 12.b | even | 2 | 1 | ||
252.3.z.e | 4 | 84.j | odd | 6 | 1 | ||
336.3.bh.f | 4 | 1.a | even | 1 | 1 | trivial | |
336.3.bh.f | 4 | 7.d | odd | 6 | 1 | inner | |
588.3.d.b | 4 | 28.f | even | 6 | 1 | ||
588.3.d.b | 4 | 28.g | odd | 6 | 1 | ||
588.3.m.d | 4 | 28.d | even | 2 | 1 | ||
588.3.m.d | 4 | 28.g | odd | 6 | 1 | ||
1008.3.cg.m | 4 | 3.b | odd | 2 | 1 | ||
1008.3.cg.m | 4 | 21.g | even | 6 | 1 | ||
1764.3.d.f | 4 | 84.j | odd | 6 | 1 | ||
1764.3.d.f | 4 | 84.n | even | 6 | 1 | ||
1764.3.z.h | 4 | 84.h | odd | 2 | 1 | ||
1764.3.z.h | 4 | 84.n | even | 6 | 1 | ||
2100.3.bd.f | 4 | 20.d | odd | 2 | 1 | ||
2100.3.bd.f | 4 | 140.s | even | 6 | 1 | ||
2100.3.be.d | 8 | 20.e | even | 4 | 2 | ||
2100.3.be.d | 8 | 140.x | odd | 12 | 2 | ||
2352.3.f.f | 4 | 7.c | even | 3 | 1 | ||
2352.3.f.f | 4 | 7.d | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{4} + 9T_{5}^{3} - 15T_{5}^{2} - 378T_{5} + 1764 \)
acting on \(S_{3}^{\mathrm{new}}(336, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{4} \)
$3$
\( (T^{2} - 3 T + 3)^{2} \)
$5$
\( T^{4} + 9 T^{3} - 15 T^{2} + \cdots + 1764 \)
$7$
\( (T^{2} + T + 49)^{2} \)
$11$
\( T^{4} + 15 T^{3} + 315 T^{2} + \cdots + 8100 \)
$13$
\( T^{4} + 99T^{2} + 2304 \)
$17$
\( T^{4} + 18 T^{3} - 60 T^{2} + \cdots + 28224 \)
$19$
\( T^{4} - 81 T^{3} + 2685 T^{2} + \cdots + 248004 \)
$23$
\( (T^{2} + 24 T + 576)^{2} \)
$29$
\( (T^{2} - 3 T - 144)^{2} \)
$31$
\( T^{4} + 48 T^{3} - 795 T^{2} + \cdots + 2442969 \)
$37$
\( T^{4} - 73 T^{3} + 4143 T^{2} + \cdots + 1406596 \)
$41$
\( T^{4} + 2424 T^{2} + 121104 \)
$43$
\( (T^{2} + 35 T - 1010)^{2} \)
$47$
\( T^{4} - 90 T^{3} + 3180 T^{2} + \cdots + 230400 \)
$53$
\( T^{4} - 99 T^{3} + 7497 T^{2} + \cdots + 5308416 \)
$59$
\( T^{4} + 243 T^{3} + \cdots + 23736384 \)
$61$
\( T^{4} + 192 T^{3} + 12240 T^{2} + \cdots + 2304 \)
$67$
\( T^{4} - 7 T^{3} + 3693 T^{2} + \cdots + 13278736 \)
$71$
\( (T^{2} - 102 T - 2664)^{2} \)
$73$
\( T^{4} + 45 T^{3} - 1545 T^{2} + \cdots + 4928400 \)
$79$
\( T^{4} + 56 T^{3} + 2937 T^{2} + \cdots + 39601 \)
$83$
\( T^{4} + 28839 T^{2} + \cdots + 189282564 \)
$89$
\( T^{4} - 198 T^{3} + 14580 T^{2} + \cdots + 2286144 \)
$97$
\( T^{4} + 5211 T^{2} + \cdots + 4717584 \)
show more
show less