Properties

Label 336.2.w.a
Level 336
Weight 2
Character orbit 336.w
Analytic conductor 2.683
Analytic rank 0
Dimension 20
CM No
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 336 = 2^{4} \cdot 3 \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 336.w (of order \(4\) and degree \(2\))

Newform invariants

Self dual: No
Analytic conductor: \(2.68297350792\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{7} \)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{19}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\beta_{3} q^{2} -\beta_{7} q^{3} + ( \beta_{1} - \beta_{3} - \beta_{6} - \beta_{16} + \beta_{18} ) q^{4} + ( -\beta_{3} - \beta_{5} + \beta_{8} - \beta_{11} ) q^{5} + \beta_{5} q^{6} -\beta_{15} q^{7} + ( \beta_{5} + \beta_{13} - \beta_{14} - \beta_{15} + \beta_{19} ) q^{8} + \beta_{15} q^{9} +O(q^{10})\) \( q -\beta_{3} q^{2} -\beta_{7} q^{3} + ( \beta_{1} - \beta_{3} - \beta_{6} - \beta_{16} + \beta_{18} ) q^{4} + ( -\beta_{3} - \beta_{5} + \beta_{8} - \beta_{11} ) q^{5} + \beta_{5} q^{6} -\beta_{15} q^{7} + ( \beta_{5} + \beta_{13} - \beta_{14} - \beta_{15} + \beta_{19} ) q^{8} + \beta_{15} q^{9} + ( -1 + \beta_{1} - \beta_{3} - \beta_{4} + \beta_{5} - \beta_{7} - \beta_{10} + \beta_{12} + \beta_{14} - \beta_{15} - \beta_{16} + \beta_{18} ) q^{10} + ( 1 - \beta_{1} + \beta_{6} + \beta_{8} - \beta_{11} - 2 \beta_{12} - \beta_{15} + \beta_{19} ) q^{11} -\beta_{14} q^{12} + ( \beta_{3} - \beta_{6} - 2 \beta_{7} + \beta_{8} + \beta_{13} + \beta_{15} + \beta_{18} ) q^{13} + \beta_{16} q^{14} + ( -\beta_{4} + \beta_{5} ) q^{15} + ( \beta_{1} + \beta_{2} - \beta_{3} + \beta_{4} + 2 \beta_{7} - 2 \beta_{8} + \beta_{9} + \beta_{11} - \beta_{13} + \beta_{15} + \beta_{16} ) q^{16} + ( 2 \beta_{3} - \beta_{4} + \beta_{5} + \beta_{8} + \beta_{9} + \beta_{10} + \beta_{13} - \beta_{14} + \beta_{15} ) q^{17} -\beta_{16} q^{18} + ( \beta_{1} - \beta_{2} + \beta_{3} - \beta_{5} - 2 \beta_{7} - 2 \beta_{9} - \beta_{19} ) q^{19} + ( 2 - \beta_{1} + \beta_{2} - \beta_{3} + 2 \beta_{4} + \beta_{5} + 2 \beta_{7} - \beta_{8} - \beta_{10} - 2 \beta_{12} - \beta_{14} - 2 \beta_{15} + 2 \beta_{16} - \beta_{17} + 2 \beta_{19} ) q^{20} + \beta_{12} q^{21} + ( -1 + \beta_{2} - 2 \beta_{3} - \beta_{4} + \beta_{5} + \beta_{7} + 2 \beta_{9} - \beta_{10} - \beta_{12} - \beta_{13} + \beta_{14} + \beta_{17} + \beta_{19} ) q^{22} + ( \beta_{3} - 2 \beta_{5} - 2 \beta_{6} - 2 \beta_{7} - \beta_{9} - 2 \beta_{12} + \beta_{13} - \beta_{14} + \beta_{15} + \beta_{17} ) q^{23} + ( \beta_{1} - \beta_{2} + \beta_{3} - \beta_{4} + \beta_{5} + \beta_{11} + 2 \beta_{12} - \beta_{16} - \beta_{19} ) q^{24} + ( -\beta_{1} + 2 \beta_{3} + \beta_{5} - 2 \beta_{7} - \beta_{9} - \beta_{10} - 2 \beta_{12} + 2 \beta_{13} - \beta_{14} + \beta_{15} - 2 \beta_{17} + \beta_{18} + \beta_{19} ) q^{25} + ( -2 \beta_{1} + 2 \beta_{2} + \beta_{4} + \beta_{5} + 2 \beta_{6} + \beta_{9} - \beta_{11} - 2 \beta_{15} + 2 \beta_{16} - \beta_{18} + \beta_{19} ) q^{26} -\beta_{12} q^{27} + ( \beta_{2} - \beta_{3} + \beta_{4} - \beta_{5} + \beta_{6} - \beta_{11} - \beta_{13} + \beta_{14} - \beta_{15} + \beta_{16} + \beta_{17} - \beta_{18} ) q^{28} + ( -1 - 3 \beta_{2} + 3 \beta_{3} - 2 \beta_{4} + \beta_{5} - \beta_{6} - 2 \beta_{7} + \beta_{8} - 2 \beta_{9} + \beta_{10} + 3 \beta_{13} + 2 \beta_{15} - \beta_{16} - \beta_{17} - 2 \beta_{19} ) q^{29} + ( 1 + \beta_{2} - 2 \beta_{3} + \beta_{4} + \beta_{7} + \beta_{9} - \beta_{10} + \beta_{12} - \beta_{13} + \beta_{19} ) q^{30} + ( -2 + 2 \beta_{1} - 3 \beta_{2} + 3 \beta_{3} - 4 \beta_{4} + \beta_{5} - 2 \beta_{6} - 2 \beta_{7} - 3 \beta_{9} + \beta_{10} + 2 \beta_{11} + 2 \beta_{12} + \beta_{13} + \beta_{14} + \beta_{15} - 3 \beta_{16} + \beta_{17} - 4 \beta_{19} ) q^{31} + ( \beta_{1} - \beta_{2} + 2 \beta_{3} + \beta_{4} - 3 \beta_{5} - 3 \beta_{9} + 2 \beta_{10} - \beta_{11} + \beta_{13} + \beta_{15} + 3 \beta_{17} - 2 \beta_{18} - 2 \beta_{19} ) q^{32} + ( -2 + \beta_{1} - \beta_{4} - \beta_{7} + \beta_{8} - \beta_{11} + \beta_{12} + \beta_{14} - \beta_{16} + \beta_{17} ) q^{33} + ( -1 - \beta_{1} + 2 \beta_{2} + \beta_{4} + 2 \beta_{6} + \beta_{7} + \beta_{9} - \beta_{10} + \beta_{12} + \beta_{15} + 2 \beta_{16} + \beta_{17} - \beta_{18} ) q^{34} + ( \beta_{3} - \beta_{5} - \beta_{9} + \beta_{10} + \beta_{16} + \beta_{17} - \beta_{18} - \beta_{19} ) q^{35} + ( -\beta_{2} + \beta_{3} - \beta_{4} + \beta_{5} - \beta_{6} + \beta_{11} + \beta_{13} - \beta_{14} + \beta_{15} - \beta_{16} - \beta_{17} + \beta_{18} ) q^{36} + ( 3 - 3 \beta_{1} + 2 \beta_{4} + \beta_{5} - \beta_{6} + \beta_{8} - \beta_{10} + 2 \beta_{11} - 2 \beta_{12} + 2 \beta_{13} - 4 \beta_{14} - \beta_{15} - 4 \beta_{17} + \beta_{18} + 3 \beta_{19} ) q^{37} + ( -\beta_{1} - \beta_{2} + 2 \beta_{5} + 2 \beta_{6} + 2 \beta_{7} - 2 \beta_{12} - \beta_{13} - 3 \beta_{15} - \beta_{17} - \beta_{18} + \beta_{19} ) q^{38} + ( \beta_{2} - 2 \beta_{5} + \beta_{6} - \beta_{11} - \beta_{13} + \beta_{14} + \beta_{15} + \beta_{16} + \beta_{17} - \beta_{18} - \beta_{19} ) q^{39} + ( 2 \beta_{1} - \beta_{3} - 3 \beta_{5} - 2 \beta_{8} - \beta_{9} + 2 \beta_{10} + 2 \beta_{12} - 2 \beta_{13} + \beta_{14} + \beta_{16} + 3 \beta_{17} - 2 \beta_{18} - 2 \beta_{19} ) q^{40} + ( -\beta_{1} + \beta_{2} - \beta_{3} - 2 \beta_{5} + 2 \beta_{8} + 2 \beta_{10} - \beta_{11} + \beta_{14} - \beta_{17} - \beta_{18} ) q^{41} -\beta_{17} q^{42} + ( 1 - \beta_{2} + 2 \beta_{3} + \beta_{5} + \beta_{10} + 2 \beta_{11} - \beta_{15} - 3 \beta_{16} + \beta_{17} - \beta_{18} ) q^{43} + ( \beta_{1} + \beta_{2} - \beta_{3} + 2 \beta_{4} - \beta_{5} - 2 \beta_{6} - 2 \beta_{7} - \beta_{8} - \beta_{10} + 2 \beta_{12} + \beta_{14} + 3 \beta_{17} ) q^{44} + ( -\beta_{3} + \beta_{5} + \beta_{9} - \beta_{10} - \beta_{16} - \beta_{17} + \beta_{18} + \beta_{19} ) q^{45} + ( 1 + 2 \beta_{5} + \beta_{6} - \beta_{7} - \beta_{8} + 2 \beta_{9} + \beta_{11} + 5 \beta_{12} - \beta_{13} + 2 \beta_{14} - \beta_{16} + \beta_{17} ) q^{46} + ( 2 \beta_{2} - \beta_{3} + 4 \beta_{4} - 2 \beta_{5} - 2 \beta_{8} - \beta_{9} - \beta_{11} - 2 \beta_{13} + 2 \beta_{14} - 2 \beta_{15} + 3 \beta_{16} + \beta_{17} - 2 \beta_{18} + \beta_{19} ) q^{47} + ( -\beta_{1} - \beta_{2} + \beta_{3} + \beta_{4} - \beta_{9} + \beta_{11} - 2 \beta_{12} + \beta_{13} - 2 \beta_{14} - \beta_{15} + \beta_{16} - 2 \beta_{17} ) q^{48} - q^{49} + ( 4 - 2 \beta_{1} + 2 \beta_{2} + \beta_{4} + \beta_{5} + 2 \beta_{6} + 4 \beta_{7} - 2 \beta_{8} + \beta_{9} + \beta_{11} - 2 \beta_{13} + \beta_{16} - \beta_{18} + \beta_{19} ) q^{50} + ( -\beta_{1} + \beta_{3} - \beta_{4} + 2 \beta_{6} + \beta_{8} + \beta_{9} - \beta_{10} - \beta_{17} ) q^{51} + ( \beta_{1} + \beta_{2} - \beta_{4} - \beta_{5} + 2 \beta_{7} - \beta_{11} + 2 \beta_{12} - \beta_{13} + \beta_{14} + 3 \beta_{15} + 2 \beta_{16} + \beta_{17} - 2 \beta_{19} ) q^{52} + ( -3 - \beta_{2} - 2 \beta_{3} - \beta_{4} - 4 \beta_{5} + \beta_{6} + 2 \beta_{8} - 4 \beta_{11} - 2 \beta_{12} - \beta_{13} + 2 \beta_{14} + 2 \beta_{15} + \beta_{16} + 2 \beta_{17} ) q^{53} + \beta_{17} q^{54} + ( \beta_{1} + \beta_{2} - \beta_{3} - 3 \beta_{5} - \beta_{6} + 2 \beta_{7} - \beta_{8} + \beta_{9} + 2 \beta_{12} - 2 \beta_{13} + \beta_{14} + 4 \beta_{17} - 2 \beta_{18} - \beta_{19} ) q^{55} + ( -2 + \beta_{1} - \beta_{2} - \beta_{4} - \beta_{9} - \beta_{11} + \beta_{14} + \beta_{17} - \beta_{19} ) q^{56} + ( \beta_{1} - \beta_{3} - \beta_{5} - 2 \beta_{6} + \beta_{10} + \beta_{11} - \beta_{14} + 2 \beta_{15} - \beta_{16} - \beta_{17} + \beta_{18} ) q^{57} + ( 4 - 3 \beta_{1} + 3 \beta_{2} - 3 \beta_{3} + 2 \beta_{4} + 2 \beta_{6} + 2 \beta_{9} - 2 \beta_{10} - 4 \beta_{12} - \beta_{13} - 2 \beta_{14} + \beta_{15} + \beta_{16} - 3 \beta_{17} + 3 \beta_{18} + 3 \beta_{19} ) q^{58} + ( -2 + \beta_{1} + \beta_{2} - 2 \beta_{3} - \beta_{4} - \beta_{5} + 2 \beta_{6} - \beta_{8} - \beta_{10} - 2 \beta_{11} + 4 \beta_{12} - 3 \beta_{13} + 6 \beta_{14} - \beta_{15} + \beta_{16} + 4 \beta_{17} - \beta_{18} - \beta_{19} ) q^{59} + ( -2 + 2 \beta_{1} - 2 \beta_{2} + \beta_{3} - \beta_{4} - 2 \beta_{6} - 2 \beta_{7} - \beta_{8} - 2 \beta_{9} + \beta_{10} + \beta_{11} + 2 \beta_{12} + \beta_{13} - \beta_{15} - 2 \beta_{16} - 2 \beta_{19} ) q^{60} + ( -\beta_{1} - 3 \beta_{2} + 2 \beta_{3} + 2 \beta_{5} + \beta_{6} + 2 \beta_{7} + \beta_{8} + \beta_{16} - 3 \beta_{17} - \beta_{19} ) q^{61} + ( 4 - 4 \beta_{1} - 2 \beta_{3} + 3 \beta_{4} + \beta_{5} + 2 \beta_{7} + 2 \beta_{8} + 3 \beta_{9} - 2 \beta_{10} + \beta_{11} - 2 \beta_{12} - 4 \beta_{14} - 2 \beta_{15} - 6 \beta_{17} + 3 \beta_{18} + 5 \beta_{19} ) q^{62} + q^{63} + ( -2 - 2 \beta_{2} - 2 \beta_{4} + 2 \beta_{6} + 2 \beta_{7} + 2 \beta_{9} - 2 \beta_{12} + 2 \beta_{15} - 2 \beta_{16} - 2 \beta_{17} + 2 \beta_{18} ) q^{64} + ( 4 - 4 \beta_{1} + 2 \beta_{2} + \beta_{3} + 2 \beta_{4} + 2 \beta_{5} + 2 \beta_{6} + 4 \beta_{7} + 3 \beta_{9} + \beta_{11} - 4 \beta_{12} - 4 \beta_{14} + 3 \beta_{16} - 3 \beta_{17} + 3 \beta_{19} ) q^{65} + ( -1 - \beta_{1} + \beta_{2} + \beta_{4} + 2 \beta_{5} + \beta_{6} + \beta_{7} - \beta_{8} + \beta_{9} - 2 \beta_{10} - \beta_{12} - \beta_{15} + \beta_{16} - \beta_{17} + 2 \beta_{19} ) q^{66} + ( -1 - \beta_{1} - \beta_{2} - 2 \beta_{4} + 3 \beta_{5} + 3 \beta_{6} + 4 \beta_{7} + \beta_{8} + 2 \beta_{9} - 2 \beta_{10} - \beta_{13} - 2 \beta_{15} - 2 \beta_{17} - \beta_{18} + \beta_{19} ) q^{67} + ( \beta_{1} - \beta_{2} + 3 \beta_{3} - 3 \beta_{5} + 2 \beta_{7} - \beta_{8} - 2 \beta_{9} + \beta_{10} + 2 \beta_{12} + \beta_{14} + \beta_{17} - 4 \beta_{19} ) q^{68} + ( -2 + \beta_{1} - \beta_{2} + \beta_{3} - \beta_{4} - \beta_{6} - 2 \beta_{8} + \beta_{11} + 2 \beta_{15} + \beta_{16} + \beta_{18} - \beta_{19} ) q^{69} + ( -1 - \beta_{3} - \beta_{5} + \beta_{6} + \beta_{7} + \beta_{8} + \beta_{9} - \beta_{11} + \beta_{12} - \beta_{13} + \beta_{14} ) q^{70} + ( -\beta_{1} + \beta_{2} + 2 \beta_{5} - 2 \beta_{6} - 2 \beta_{8} + 3 \beta_{9} - 2 \beta_{10} + 2 \beta_{11} + \beta_{14} - 2 \beta_{15} - 3 \beta_{16} - 2 \beta_{17} + 3 \beta_{18} + 3 \beta_{19} ) q^{71} + ( 2 - \beta_{1} + \beta_{2} + \beta_{4} + \beta_{9} + \beta_{11} - \beta_{14} - \beta_{17} + \beta_{19} ) q^{72} + ( \beta_{1} + 2 \beta_{3} - 2 \beta_{5} - \beta_{6} + 2 \beta_{7} - \beta_{8} - 2 \beta_{9} + 3 \beta_{10} + 2 \beta_{12} + \beta_{13} - 2 \beta_{14} - \beta_{15} - 3 \beta_{16} - 3 \beta_{17} - \beta_{19} ) q^{73} + ( -2 + 3 \beta_{1} - \beta_{2} + \beta_{3} - 2 \beta_{4} - 4 \beta_{6} - 2 \beta_{8} + 4 \beta_{10} + 4 \beta_{11} + 4 \beta_{12} - \beta_{13} - \beta_{15} - 3 \beta_{16} - \beta_{17} + \beta_{18} - 3 \beta_{19} ) q^{74} + ( -2 + 2 \beta_{1} - \beta_{2} - 2 \beta_{3} - \beta_{4} - 2 \beta_{5} - \beta_{6} + \beta_{12} - \beta_{13} + 2 \beta_{14} + \beta_{15} - \beta_{16} + 2 \beta_{17} - 2 \beta_{19} ) q^{75} + ( -2 + \beta_{1} - \beta_{2} - \beta_{4} - \beta_{5} - 2 \beta_{6} + \beta_{11} - 4 \beta_{12} - \beta_{13} - \beta_{14} + \beta_{15} + \beta_{17} ) q^{76} + ( -1 - \beta_{2} + \beta_{3} - \beta_{6} - 2 \beta_{7} - \beta_{9} + \beta_{10} + \beta_{13} - \beta_{19} ) q^{77} + ( -\beta_{2} - \beta_{4} + \beta_{6} + \beta_{8} - \beta_{9} - \beta_{10} - \beta_{11} + 2 \beta_{12} + 2 \beta_{14} - \beta_{16} + \beta_{17} - \beta_{19} ) q^{78} + ( 2 - \beta_{1} + \beta_{2} - 3 \beta_{3} + 2 \beta_{4} + 2 \beta_{5} - 2 \beta_{6} + 2 \beta_{7} - 2 \beta_{10} - 2 \beta_{12} - \beta_{13} - \beta_{15} - \beta_{16} - 3 \beta_{17} + \beta_{18} + \beta_{19} ) q^{79} + ( -2 + 2 \beta_{1} - 2 \beta_{2} - 2 \beta_{3} + 2 \beta_{8} - 2 \beta_{11} + 2 \beta_{14} + 2 \beta_{15} - 2 \beta_{16} ) q^{80} - q^{81} + ( -5 + \beta_{1} + 2 \beta_{2} - 4 \beta_{3} - \beta_{4} - 2 \beta_{6} + \beta_{7} + 2 \beta_{8} + \beta_{9} - \beta_{10} - 2 \beta_{11} + \beta_{12} + 2 \beta_{14} + \beta_{15} - 2 \beta_{16} - \beta_{17} + 3 \beta_{18} + 2 \beta_{19} ) q^{82} + ( 4 + \beta_{1} + 3 \beta_{2} - 4 \beta_{3} + 5 \beta_{4} - 5 \beta_{5} - 3 \beta_{8} + \beta_{10} - 3 \beta_{13} + \beta_{15} + \beta_{16} + \beta_{18} + \beta_{19} ) q^{83} -\beta_{9} q^{84} + ( \beta_{1} - 3 \beta_{2} + 3 \beta_{3} - \beta_{5} - 2 \beta_{6} + 2 \beta_{10} + 2 \beta_{11} + 2 \beta_{12} + 2 \beta_{13} - 4 \beta_{14} + 2 \beta_{15} - 2 \beta_{16} - \beta_{19} ) q^{85} + ( -4 - \beta_{1} - 3 \beta_{2} + 3 \beta_{3} - \beta_{4} + \beta_{5} - 4 \beta_{6} + \beta_{9} + 2 \beta_{10} + 3 \beta_{11} - 4 \beta_{12} + 3 \beta_{13} - 4 \beta_{14} + 3 \beta_{15} - \beta_{16} - 3 \beta_{17} + 2 \beta_{18} ) q^{86} + ( \beta_{2} - 2 \beta_{3} - \beta_{5} + 2 \beta_{6} + \beta_{7} + 2 \beta_{9} + \beta_{10} - \beta_{11} + \beta_{12} - 3 \beta_{13} + 3 \beta_{14} - \beta_{15} + 2 \beta_{17} - 2 \beta_{18} - \beta_{19} ) q^{87} + ( -2 \beta_{2} + 3 \beta_{3} + \beta_{5} - 4 \beta_{7} - 2 \beta_{8} - \beta_{9} + 2 \beta_{10} + 2 \beta_{12} + 2 \beta_{13} - \beta_{14} + \beta_{16} - \beta_{17} - 2 \beta_{19} ) q^{88} + ( -\beta_{1} + 3 \beta_{2} - \beta_{3} + 6 \beta_{6} + \beta_{8} + \beta_{9} - \beta_{10} - 2 \beta_{11} - 2 \beta_{13} + 3 \beta_{14} - 2 \beta_{15} + 3 \beta_{16} - 2 \beta_{17} - 2 \beta_{18} - \beta_{19} ) q^{89} + ( 1 + \beta_{3} + \beta_{5} - \beta_{6} - \beta_{7} - \beta_{8} - \beta_{9} + \beta_{11} - \beta_{12} + \beta_{13} - \beta_{14} ) q^{90} + ( \beta_{1} + \beta_{3} + \beta_{10} + 2 \beta_{12} - \beta_{16} + \beta_{17} - \beta_{18} - \beta_{19} ) q^{91} + ( -2 \beta_{1} + \beta_{3} + \beta_{4} - 2 \beta_{6} - 2 \beta_{7} + \beta_{8} - \beta_{9} + \beta_{10} - \beta_{11} - 6 \beta_{12} + 3 \beta_{13} - 3 \beta_{14} + 3 \beta_{15} + 2 \beta_{16} - 4 \beta_{17} ) q^{92} + ( 2 - \beta_{1} + 3 \beta_{2} - 4 \beta_{3} + 3 \beta_{4} + 2 \beta_{7} - \beta_{8} + 4 \beta_{9} - \beta_{10} - 2 \beta_{13} - \beta_{17} + 2 \beta_{18} + 3 \beta_{19} ) q^{93} + ( -4 + \beta_{1} - 2 \beta_{2} + 2 \beta_{3} - \beta_{4} - 2 \beta_{5} + \beta_{6} - 2 \beta_{7} - \beta_{8} - 3 \beta_{9} + 3 \beta_{10} - 3 \beta_{11} - \beta_{13} + 2 \beta_{14} + \beta_{15} + \beta_{16} + 2 \beta_{17} - 3 \beta_{18} - 2 \beta_{19} ) q^{94} + ( -2 \beta_{1} + 2 \beta_{2} - 2 \beta_{3} + 2 \beta_{5} + 2 \beta_{6} + 4 \beta_{7} - \beta_{8} + \beta_{9} - \beta_{10} - \beta_{11} - 4 \beta_{12} - 2 \beta_{13} - 2 \beta_{15} + 3 \beta_{16} - \beta_{17} - \beta_{18} + 3 \beta_{19} ) q^{95} + ( \beta_{1} - \beta_{2} + 2 \beta_{3} - \beta_{4} - \beta_{5} - \beta_{9} + 2 \beta_{10} + \beta_{11} - \beta_{13} - \beta_{15} + \beta_{17} - 2 \beta_{19} ) q^{96} + ( -2 - 2 \beta_{3} + 2 \beta_{4} - 2 \beta_{6} - 4 \beta_{7} - 2 \beta_{8} + 2 \beta_{11} + 4 \beta_{12} + 2 \beta_{13} - 2 \beta_{14} + 2 \beta_{15} + 2 \beta_{18} - 2 \beta_{19} ) q^{97} + \beta_{3} q^{98} + ( 1 + \beta_{2} - \beta_{3} + \beta_{6} + 2 \beta_{7} + \beta_{9} - \beta_{10} - \beta_{13} + \beta_{19} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20q + 4q^{4} + O(q^{10}) \) \( 20q + 4q^{4} - 4q^{10} + 12q^{11} - 8q^{12} + 4q^{14} + 8q^{15} - 4q^{18} + 8q^{19} + 28q^{20} - 12q^{22} + 8q^{24} - 20q^{26} - 4q^{28} + 12q^{29} + 8q^{30} - 24q^{33} - 44q^{34} + 4q^{36} + 12q^{37} - 4q^{38} + 16q^{40} + 4q^{42} + 4q^{43} - 4q^{44} + 20q^{46} - 16q^{48} - 20q^{49} + 48q^{50} - 8q^{51} + 16q^{52} - 36q^{53} - 4q^{54} - 16q^{56} + 16q^{58} - 12q^{60} + 8q^{61} + 12q^{62} + 20q^{63} - 32q^{64} + 16q^{65} - 24q^{66} - 12q^{67} + 4q^{68} - 16q^{69} - 20q^{70} + 16q^{72} - 16q^{74} - 16q^{75} - 32q^{76} - 12q^{77} + 12q^{78} + 24q^{79} - 8q^{80} - 20q^{81} - 76q^{82} + 40q^{83} - 16q^{85} - 84q^{86} + 16q^{88} + 20q^{90} - 4q^{92} - 32q^{94} - 72q^{97} + 12q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{20} - 4 x^{19} + 8 x^{18} - 16 x^{17} + 35 x^{16} - 56 x^{15} + 64 x^{14} - 84 x^{13} + 125 x^{12} - 120 x^{11} + 100 x^{10} - 240 x^{9} + 500 x^{8} - 672 x^{7} + 1024 x^{6} - 1792 x^{5} + 2240 x^{4} - 2048 x^{3} + 2048 x^{2} - 2048 x + 1024\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\((\)\(-2 \nu^{19} + 35 \nu^{18} + 12 \nu^{17} - 424 \nu^{16} + 978 \nu^{15} - 1247 \nu^{14} + 2640 \nu^{13} - 4952 \nu^{12} + 4162 \nu^{11} - 1249 \nu^{10} + 4632 \nu^{9} - 8180 \nu^{8} + 1616 \nu^{7} - 8740 \nu^{6} + 47552 \nu^{5} - 70528 \nu^{4} + 63520 \nu^{3} - 101568 \nu^{2} + 142464 \nu - 65792\)\()/8960\)
\(\beta_{2}\)\(=\)\((\)\(\nu^{19} - 4 \nu^{18} - 34 \nu^{17} - 160 \nu^{16} + 519 \nu^{15} - 472 \nu^{14} + 890 \nu^{13} - 2444 \nu^{12} + 2505 \nu^{11} - 32 \nu^{10} + 1258 \nu^{9} - 5448 \nu^{8} + 1856 \nu^{7} - 400 \nu^{6} + 19104 \nu^{5} - 37312 \nu^{4} + 28032 \nu^{3} - 36352 \nu^{2} + 66560 \nu - 38912\)\()/2560\)
\(\beta_{3}\)\(=\)\((\)\(-11 \nu^{19} + 7 \nu^{18} + 500 \nu^{17} - 1786 \nu^{16} + 3055 \nu^{15} - 4867 \nu^{14} + 9760 \nu^{13} - 13586 \nu^{12} + 9213 \nu^{11} - 6845 \nu^{10} + 17244 \nu^{9} - 20406 \nu^{8} + 14796 \nu^{7} - 60600 \nu^{6} + 156816 \nu^{5} - 206016 \nu^{4} + 211264 \nu^{3} - 297216 \nu^{2} + 327936 \nu - 156672\)\()/17920\)
\(\beta_{4}\)\(=\)\((\)\(-3 \nu^{19} + 168 \nu^{18} + 74 \nu^{17} - 692 \nu^{16} + 151 \nu^{15} - 292 \nu^{14} + 3190 \nu^{13} - 3368 \nu^{12} - 2759 \nu^{11} + 972 \nu^{10} + 9230 \nu^{9} + 1156 \nu^{8} - 12724 \nu^{7} - 20320 \nu^{6} + 50888 \nu^{5} - 12720 \nu^{4} + 17216 \nu^{3} - 93440 \nu^{2} + 37632 \nu + 36608\)\()/8960\)
\(\beta_{5}\)\(=\)\((\)\(-11 \nu^{19} + 14 \nu^{18} + 80 \nu^{17} - 176 \nu^{16} + 255 \nu^{15} - 562 \nu^{14} + 1024 \nu^{13} - 1140 \nu^{12} + 729 \nu^{11} - 958 \nu^{10} + 1620 \nu^{9} - 1240 \nu^{8} + 2308 \nu^{7} - 7288 \nu^{6} + 14240 \nu^{5} - 18752 \nu^{4} + 24448 \nu^{3} - 27520 \nu^{2} + 25088 \nu - 20480\)\()/3584\)
\(\beta_{6}\)\(=\)\((\)\(37 \nu^{19} - 588 \nu^{18} + 1962 \nu^{17} - 3440 \nu^{16} + 5483 \nu^{15} - 10464 \nu^{14} + 14510 \nu^{13} - 10588 \nu^{12} + 8165 \nu^{11} - 18344 \nu^{10} + 23046 \nu^{9} - 20296 \nu^{8} + 67992 \nu^{7} - 168080 \nu^{6} + 225728 \nu^{5} - 235904 \nu^{4} + 319744 \nu^{3} - 350464 \nu^{2} + 179200 \nu - 11264\)\()/17920\)
\(\beta_{7}\)\(=\)\((\)\(-269 \nu^{19} + 224 \nu^{18} + 382 \nu^{17} + 1464 \nu^{16} - 4707 \nu^{15} + 2284 \nu^{14} - 3110 \nu^{13} + 19956 \nu^{12} - 22877 \nu^{11} - 3844 \nu^{10} - 8270 \nu^{9} + 63008 \nu^{8} - 25912 \nu^{7} - 34320 \nu^{6} - 129376 \nu^{5} + 296960 \nu^{4} - 171392 \nu^{3} + 202240 \nu^{2} - 523264 \nu + 400384\)\()/35840\)
\(\beta_{8}\)\(=\)\((\)\(-15 \nu^{19} + 84 \nu^{18} - 176 \nu^{17} + 320 \nu^{16} - 589 \nu^{15} + 864 \nu^{14} - 1032 \nu^{13} + 1052 \nu^{12} - 1139 \nu^{11} + 1360 \nu^{10} - 1940 \nu^{9} + 3904 \nu^{8} - 7340 \nu^{7} + 12752 \nu^{6} - 19232 \nu^{5} + 24544 \nu^{4} - 25024 \nu^{3} + 23808 \nu^{2} - 21504 \nu + 5632\)\()/1792\)
\(\beta_{9}\)\(=\)\((\)\(86 \nu^{19} - 84 \nu^{18} - 19 \nu^{17} - 500 \nu^{16} + 884 \nu^{15} + 148 \nu^{14} + 195 \nu^{13} - 2944 \nu^{12} + 1620 \nu^{11} + 3328 \nu^{10} + 3173 \nu^{9} - 12848 \nu^{8} + 1926 \nu^{7} + 3280 \nu^{6} + 28664 \nu^{5} - 35872 \nu^{4} - 10208 \nu^{3} - 12672 \nu^{2} + 53760 \nu - 512\)\()/8960\)
\(\beta_{10}\)\(=\)\((\)\(-179 \nu^{19} + 539 \nu^{18} - 1138 \nu^{17} + 2134 \nu^{16} - 3357 \nu^{15} + 4569 \nu^{14} - 5850 \nu^{13} + 5286 \nu^{12} - 4087 \nu^{11} + 6511 \nu^{10} - 14410 \nu^{9} + 22098 \nu^{8} - 38992 \nu^{7} + 83880 \nu^{6} - 116016 \nu^{5} + 115200 \nu^{4} - 114432 \nu^{3} + 142720 \nu^{2} - 66304 \nu - 34816\)\()/17920\)
\(\beta_{11}\)\(=\)\((\)\(-202 \nu^{19} + 679 \nu^{18} - 1840 \nu^{17} + 4818 \nu^{16} - 8070 \nu^{15} + 11001 \nu^{14} - 17700 \nu^{13} + 24078 \nu^{12} - 18734 \nu^{11} + 14215 \nu^{10} - 36812 \nu^{9} + 60118 \nu^{8} - 71928 \nu^{7} + 154800 \nu^{6} - 325168 \nu^{5} + 415168 \nu^{4} - 394752 \nu^{3} + 496768 \nu^{2} - 517888 \nu + 216576\)\()/17920\)
\(\beta_{12}\)\(=\)\((\)\(-451 \nu^{19} + 1176 \nu^{18} - 822 \nu^{17} + 1576 \nu^{16} - 4973 \nu^{15} + 3516 \nu^{14} + 2910 \nu^{13} + 2764 \nu^{12} - 14323 \nu^{11} + 1084 \nu^{10} + 1110 \nu^{9} + 52032 \nu^{8} - 80008 \nu^{7} + 23920 \nu^{6} - 41344 \nu^{5} + 135680 \nu^{4} - 37888 \nu^{3} - 84480 \nu^{2} - 32256 \nu + 70656\)\()/35840\)
\(\beta_{13}\)\(=\)\((\)\(-237 \nu^{19} + 210 \nu^{18} + 162 \nu^{17} + 576 \nu^{16} - 1987 \nu^{15} + 578 \nu^{14} + 430 \nu^{13} + 7628 \nu^{12} - 11013 \nu^{11} - 394 \nu^{10} - 3618 \nu^{9} + 30480 \nu^{8} - 20744 \nu^{7} - 21320 \nu^{6} - 33968 \nu^{5} + 115232 \nu^{4} - 61440 \nu^{3} + 61312 \nu^{2} - 184576 \nu + 227328\)\()/17920\)
\(\beta_{14}\)\(=\)\((\)\(-121 \nu^{19} + 224 \nu^{18} - 261 \nu^{17} + 1060 \nu^{16} - 2109 \nu^{15} + 1812 \nu^{14} - 2435 \nu^{13} + 5884 \nu^{12} - 5995 \nu^{11} + 872 \nu^{10} - 6673 \nu^{9} + 21248 \nu^{8} - 19426 \nu^{7} + 20240 \nu^{6} - 64504 \nu^{5} + 98592 \nu^{4} - 68192 \nu^{3} + 84352 \nu^{2} - 125440 \nu + 72192\)\()/8960\)
\(\beta_{15}\)\(=\)\((\)\(-260 \nu^{19} + 707 \nu^{18} - 876 \nu^{17} + 2126 \nu^{16} - 4964 \nu^{15} + 5309 \nu^{14} - 4280 \nu^{13} + 9130 \nu^{12} - 13648 \nu^{11} + 5427 \nu^{10} - 7792 \nu^{9} + 41074 \nu^{8} - 61072 \nu^{7} + 59400 \nu^{6} - 118240 \nu^{5} + 202848 \nu^{4} - 163456 \nu^{3} + 122368 \nu^{2} - 175616 \nu + 105984\)\()/17920\)
\(\beta_{16}\)\(=\)\((\)\(-38 \nu^{19} + 151 \nu^{18} - 300 \nu^{17} + 642 \nu^{16} - 1170 \nu^{15} + 1609 \nu^{14} - 1960 \nu^{13} + 2302 \nu^{12} - 2306 \nu^{11} + 2055 \nu^{10} - 3768 \nu^{9} + 7862 \nu^{8} - 13552 \nu^{7} + 23680 \nu^{6} - 38512 \nu^{5} + 48992 \nu^{4} - 47808 \nu^{3} + 49792 \nu^{2} - 41472 \nu + 11264\)\()/2560\)
\(\beta_{17}\)\(=\)\((\)\(-393 \nu^{19} + 1204 \nu^{18} - 1814 \nu^{17} + 3736 \nu^{16} - 7631 \nu^{15} + 9320 \nu^{14} - 8130 \nu^{13} + 12532 \nu^{12} - 17953 \nu^{11} + 11888 \nu^{10} - 17186 \nu^{9} + 59008 \nu^{8} - 99600 \nu^{7} + 122960 \nu^{6} - 200672 \nu^{5} + 293344 \nu^{4} - 258432 \nu^{3} + 217344 \nu^{2} - 220416 \nu + 102400\)\()/17920\)
\(\beta_{18}\)\(=\)\((\)\(-279 \nu^{19} + 938 \nu^{18} - 1595 \nu^{17} + 3236 \nu^{16} - 6495 \nu^{15} + 8362 \nu^{14} - 8285 \nu^{13} + 11436 \nu^{12} - 15073 \nu^{11} + 10890 \nu^{10} - 16239 \nu^{9} + 49296 \nu^{8} - 82666 \nu^{7} + 112520 \nu^{6} - 185056 \nu^{5} + 265536 \nu^{4} - 245344 \nu^{3} + 214976 \nu^{2} - 220416 \nu + 105472\)\()/8960\)
\(\beta_{19}\)\(=\)\((\)\(-610 \nu^{19} + 1799 \nu^{18} - 2892 \nu^{17} + 6522 \nu^{16} - 13238 \nu^{15} + 15753 \nu^{14} - 16040 \nu^{13} + 26070 \nu^{12} - 31806 \nu^{11} + 17159 \nu^{10} - 32264 \nu^{9} + 104718 \nu^{8} - 160304 \nu^{7} + 204160 \nu^{6} - 375280 \nu^{5} + 551616 \nu^{4} - 482432 \nu^{3} + 425216 \nu^{2} - 476672 \nu + 252928\)\()/17920\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(-\beta_{19} + \beta_{15} - \beta_{14} + \beta_{13} + \beta_{10} - \beta_{9} - \beta_{6} - \beta_{5} + \beta_{3} - \beta_{2} + \beta_{1}\)\()/2\)
\(\nu^{2}\)\(=\)\((\)\(-\beta_{18} + \beta_{17} + 2 \beta_{16} - \beta_{15} + \beta_{13} - 2 \beta_{12} - \beta_{11} + \beta_{10} - \beta_{9} - \beta_{5} + \beta_{4} + \beta_{3} - \beta_{1}\)\()/2\)
\(\nu^{3}\)\(=\)\((\)\(-\beta_{19} - \beta_{18} + 3 \beta_{17} + \beta_{14} - \beta_{11} - 2 \beta_{9} - 2 \beta_{7} - 2 \beta_{5} + \beta_{4} - 2 \beta_{3} + 2\)\()/2\)
\(\nu^{4}\)\(=\)\((\)\(-\beta_{19} + \beta_{18} - \beta_{17} + 2 \beta_{16} + 2 \beta_{15} - 3 \beta_{14} + 2 \beta_{13} - 2 \beta_{12} + \beta_{11} - 2 \beta_{9} - \beta_{8} - 2 \beta_{7} + \beta_{6} + \beta_{4}\)\()/2\)
\(\nu^{5}\)\(=\)\((\)\(-3 \beta_{18} + 3 \beta_{17} + 6 \beta_{16} - \beta_{15} + 4 \beta_{14} - 3 \beta_{13} - 3 \beta_{11} + \beta_{10} + 3 \beta_{9} + 2 \beta_{7} + 5 \beta_{6} - 3 \beta_{5} + \beta_{4} - 5 \beta_{3} + 3 \beta_{2} - \beta_{1} - 4\)\()/2\)
\(\nu^{6}\)\(=\)\((\)\(\beta_{19} + 3 \beta_{18} + 2 \beta_{17} - 4 \beta_{16} - \beta_{15} + 5 \beta_{14} - 3 \beta_{13} - 2 \beta_{11} - 2 \beta_{10} + 3 \beta_{9} - 6 \beta_{7} + 4 \beta_{6} + \beta_{5} - 2 \beta_{4} - 6 \beta_{3} - \beta_{2} + \beta_{1} + 4\)\()/2\)
\(\nu^{7}\)\(=\)\((\)\(-7 \beta_{19} + 5 \beta_{18} - 2 \beta_{16} + 9 \beta_{15} - 5 \beta_{14} - 3 \beta_{13} + 2 \beta_{12} + 2 \beta_{11} + 4 \beta_{10} + 3 \beta_{9} - \beta_{8} + 6 \beta_{7} + 2 \beta_{6} - \beta_{5} - 4 \beta_{4} - 2 \beta_{2} + 5 \beta_{1} + 8\)\()/2\)
\(\nu^{8}\)\(=\)\((\)\(-6 \beta_{19} + 4 \beta_{18} + 3 \beta_{17} + 2 \beta_{16} - 7 \beta_{15} + 10 \beta_{14} - 3 \beta_{13} - 11 \beta_{11} + 4 \beta_{10} + \beta_{9} + 3 \beta_{8} + 10 \beta_{7} - \beta_{6} - 5 \beta_{5} - \beta_{4} - 8 \beta_{3} - \beta_{2} + 9 \beta_{1} - 14\)\()/2\)
\(\nu^{9}\)\(=\)\((\)\(5 \beta_{19} - 5 \beta_{18} + 21 \beta_{17} - 2 \beta_{16} - 12 \beta_{15} + 15 \beta_{14} - 10 \beta_{13} - 22 \beta_{12} - 11 \beta_{11} - 2 \beta_{10} - 2 \beta_{9} + 8 \beta_{7} + 2 \beta_{6} + 4 \beta_{5} + 7 \beta_{4} - 14 \beta_{3} + 6 \beta_{2} + 2 \beta_{1} + 16\)\()/2\)
\(\nu^{10}\)\(=\)\((\)\(-17 \beta_{19} + 6 \beta_{18} + 11 \beta_{17} - 12 \beta_{16} + 26 \beta_{15} - 7 \beta_{14} + 14 \beta_{13} - 18 \beta_{12} - 5 \beta_{11} - 7 \beta_{10} - 12 \beta_{9} + 20 \beta_{8} - 10 \beta_{7} - 4 \beta_{6} - 2 \beta_{5} - 7 \beta_{4} + 3 \beta_{3} - 7 \beta_{2} + 8 \beta_{1} + 8\)\()/2\)
\(\nu^{11}\)\(=\)\((\)\(22 \beta_{19} - 10 \beta_{18} - 7 \beta_{17} + 50 \beta_{16} - 27 \beta_{15} - 6 \beta_{14} + 17 \beta_{13} - 42 \beta_{12} - 33 \beta_{11} - 16 \beta_{10} + \beta_{9} + 27 \beta_{8} + 12 \beta_{7} + 26 \beta_{6} + 17 \beta_{5} + 3 \beta_{4} - 18 \beta_{3} + 22 \beta_{2} - 19 \beta_{1} - 10\)\()/2\)
\(\nu^{12}\)\(=\)\((\)\(31 \beta_{19} - 33 \beta_{18} + 60 \beta_{17} - 4 \beta_{16} - 41 \beta_{15} + 21 \beta_{14} - 5 \beta_{13} - 22 \beta_{12} - 40 \beta_{11} - 12 \beta_{10} + 7 \beta_{9} + 32 \beta_{8} - 20 \beta_{7} + 26 \beta_{6} - 9 \beta_{5} - 6 \beta_{4} - 44 \beta_{3} - \beta_{2} + \beta_{1} - 14\)\()/2\)
\(\nu^{13}\)\(=\)\((\)\(\beta_{19} + 42 \beta_{18} + 14 \beta_{17} - 16 \beta_{16} + 13 \beta_{15} - 65 \beta_{14} + 41 \beta_{13} - 54 \beta_{12} + 4 \beta_{11} - 35 \beta_{10} - 5 \beta_{9} + 24 \beta_{8} - 66 \beta_{7} + 37 \beta_{6} + 7 \beta_{5} - 38 \beta_{4} + 47 \beta_{3} - 29 \beta_{2} - 29 \beta_{1} + 36\)\()/2\)
\(\nu^{14}\)\(=\)\((\)\(-30 \beta_{19} + 11 \beta_{18} + 61 \beta_{17} + 64 \beta_{16} - 77 \beta_{15} + 8 \beta_{14} - 55 \beta_{13} + 86 \beta_{12} - 47 \beta_{11} - 25 \beta_{10} + 33 \beta_{9} - 28 \beta_{8} + 84 \beta_{7} + 40 \beta_{6} - 27 \beta_{5} - 17 \beta_{4} - 123 \beta_{3} + 38 \beta_{2} + 31 \beta_{1} - 76\)\()/2\)
\(\nu^{15}\)\(=\)\((\)\(37 \beta_{19} + 49 \beta_{18} + 117 \beta_{17} - 76 \beta_{16} - 240 \beta_{15} + 95 \beta_{14} - 88 \beta_{13} + 28 \beta_{12} + 25 \beta_{11} - 60 \beta_{10} + 26 \beta_{9} - 120 \beta_{8} + 22 \beta_{7} - 8 \beta_{6} + 78 \beta_{5} + 35 \beta_{4} - 154 \beta_{3} + 8 \beta_{2} + 108 \beta_{1} - 138\)\()/2\)
\(\nu^{16}\)\(=\)\((\)\(-95 \beta_{19} + 15 \beta_{18} + 217 \beta_{17} + 2 \beta_{16} + 42 \beta_{15} + 119 \beta_{14} - 182 \beta_{13} - 46 \beta_{12} + 115 \beta_{11} - 120 \beta_{10} + 98 \beta_{9} - 115 \beta_{8} + 98 \beta_{7} + 83 \beta_{6} + 8 \beta_{5} - 5 \beta_{4} - 20 \beta_{3} + 76 \beta_{2} + 36 \beta_{1} + 120\)\()/2\)
\(\nu^{17}\)\(=\)\((\)\(-104 \beta_{19} + 143 \beta_{18} - 87 \beta_{17} + 66 \beta_{16} - 11 \beta_{15} + 164 \beta_{14} - 49 \beta_{13} + 168 \beta_{12} - 17 \beta_{11} - 253 \beta_{10} + 137 \beta_{9} - 24 \beta_{8} + 30 \beta_{7} - \beta_{6} + 207 \beta_{5} - 109 \beta_{4} - 199 \beta_{3} + 25 \beta_{2} + 157 \beta_{1} - 92\)\()/2\)
\(\nu^{18}\)\(=\)\((\)\(235 \beta_{19} - 167 \beta_{18} + 30 \beta_{17} + 180 \beta_{16} - 459 \beta_{15} - 41 \beta_{14} - 49 \beta_{13} - 48 \beta_{12} + 106 \beta_{11} + 2 \beta_{10} + 201 \beta_{9} - 56 \beta_{8} + 286 \beta_{7} + 4 \beta_{6} + 435 \beta_{5} + 66 \beta_{4} + 6 \beta_{3} + 5 \beta_{2} + 99 \beta_{1} + 236\)\()/2\)
\(\nu^{19}\)\(=\)\((\)\(-245 \beta_{19} - 129 \beta_{18} + 376 \beta_{17} - 6 \beta_{16} + 91 \beta_{15} - 31 \beta_{14} + 215 \beta_{13} - 218 \beta_{12} - 26 \beta_{11} - 4 \beta_{10} - 175 \beta_{9} + 365 \beta_{8} - 334 \beta_{7} - 74 \beta_{6} - 475 \beta_{5} - 116 \beta_{4} + 752 \beta_{3} - 470 \beta_{2} + 7 \beta_{1} + 344\)\()/2\)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/336\mathbb{Z}\right)^\times\).

\(n\) \(85\) \(113\) \(127\) \(241\)
\(\chi(n)\) \(-\beta_{15}\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
85.1
1.10050 + 0.888196i
1.07232 0.922026i
−0.603113 1.27916i
0.752388 + 1.19746i
−1.32974 0.481443i
1.35964 0.389081i
−0.545677 1.30470i
−0.423640 + 1.34927i
−0.792380 1.17138i
1.40970 + 0.112864i
1.10050 0.888196i
1.07232 + 0.922026i
−0.603113 + 1.27916i
0.752388 1.19746i
−1.32974 + 0.481443i
1.35964 + 0.389081i
−0.545677 + 1.30470i
−0.423640 1.34927i
−0.792380 + 1.17138i
1.40970 0.112864i
−1.33348 + 0.470984i −0.707107 + 0.707107i 1.55635 1.25610i 2.01011 + 2.01011i 0.609878 1.27595i 1.00000i −1.48376 + 2.40800i 1.00000i −3.62718 1.73372i
85.2 −1.32599 0.491687i −0.707107 + 0.707107i 1.51649 + 1.30394i −1.17321 1.17321i 1.28529 0.589940i 1.00000i −1.36971 2.47465i 1.00000i 0.978808 + 2.13251i
85.3 −1.19435 + 0.757321i 0.707107 0.707107i 0.852931 1.80901i −0.894131 0.894131i −0.309024 + 1.38004i 1.00000i 0.351303 + 2.80653i 1.00000i 1.74505 + 0.390759i
85.4 −0.684092 1.23775i 0.707107 0.707107i −1.06404 + 1.69347i 1.13147 + 1.13147i −1.35895 0.391494i 1.00000i 2.82398 + 0.158525i 1.00000i 0.626447 2.17451i
85.5 −0.244399 1.39294i −0.707107 + 0.707107i −1.88054 + 0.680863i −3.00215 3.00215i 1.15777 + 0.812138i 1.00000i 1.40800 + 2.45307i 1.00000i −3.44808 + 4.91552i
85.6 0.196445 1.40050i 0.707107 0.707107i −1.92282 0.550244i −1.69093 1.69093i −0.851398 1.12921i 1.00000i −1.14835 + 2.58482i 1.00000i −2.70032 + 2.03597i
85.7 0.783676 + 1.17722i −0.707107 + 0.707107i −0.771704 + 1.84512i 0.134119 + 0.134119i −1.38656 0.278279i 1.00000i −2.77688 + 0.537511i 1.00000i −0.0527819 + 0.262993i
85.8 1.13998 + 0.836924i 0.707107 0.707107i 0.599117 + 1.90816i 1.18844 + 1.18844i 1.39788 0.214294i 1.00000i −0.913999 + 2.67668i 1.00000i 0.360165 + 2.34943i
85.9 1.24912 0.663101i 0.707107 0.707107i 1.12060 1.65658i 1.67936 + 1.67936i 0.414377 1.35214i 1.00000i 0.301275 2.81234i 1.00000i 3.21131 + 0.984136i
85.10 1.41309 0.0564773i −0.707107 + 0.707107i 1.99362 0.159615i 0.616911 + 0.616911i −0.959267 + 1.03914i 1.00000i 2.80814 0.338143i 1.00000i 0.906590 + 0.836907i
253.1 −1.33348 0.470984i −0.707107 0.707107i 1.55635 + 1.25610i 2.01011 2.01011i 0.609878 + 1.27595i 1.00000i −1.48376 2.40800i 1.00000i −3.62718 + 1.73372i
253.2 −1.32599 + 0.491687i −0.707107 0.707107i 1.51649 1.30394i −1.17321 + 1.17321i 1.28529 + 0.589940i 1.00000i −1.36971 + 2.47465i 1.00000i 0.978808 2.13251i
253.3 −1.19435 0.757321i 0.707107 + 0.707107i 0.852931 + 1.80901i −0.894131 + 0.894131i −0.309024 1.38004i 1.00000i 0.351303 2.80653i 1.00000i 1.74505 0.390759i
253.4 −0.684092 + 1.23775i 0.707107 + 0.707107i −1.06404 1.69347i 1.13147 1.13147i −1.35895 + 0.391494i 1.00000i 2.82398 0.158525i 1.00000i 0.626447 + 2.17451i
253.5 −0.244399 + 1.39294i −0.707107 0.707107i −1.88054 0.680863i −3.00215 + 3.00215i 1.15777 0.812138i 1.00000i 1.40800 2.45307i 1.00000i −3.44808 4.91552i
253.6 0.196445 + 1.40050i 0.707107 + 0.707107i −1.92282 + 0.550244i −1.69093 + 1.69093i −0.851398 + 1.12921i 1.00000i −1.14835 2.58482i 1.00000i −2.70032 2.03597i
253.7 0.783676 1.17722i −0.707107 0.707107i −0.771704 1.84512i 0.134119 0.134119i −1.38656 + 0.278279i 1.00000i −2.77688 0.537511i 1.00000i −0.0527819 0.262993i
253.8 1.13998 0.836924i 0.707107 + 0.707107i 0.599117 1.90816i 1.18844 1.18844i 1.39788 + 0.214294i 1.00000i −0.913999 2.67668i 1.00000i 0.360165 2.34943i
253.9 1.24912 + 0.663101i 0.707107 + 0.707107i 1.12060 + 1.65658i 1.67936 1.67936i 0.414377 + 1.35214i 1.00000i 0.301275 + 2.81234i 1.00000i 3.21131 0.984136i
253.10 1.41309 + 0.0564773i −0.707107 0.707107i 1.99362 + 0.159615i 0.616911 0.616911i −0.959267 1.03914i 1.00000i 2.80814 + 0.338143i 1.00000i 0.906590 0.836907i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 253.10
Significant digits:
Format:

Inner twists

Char. orbit Parity Mult. Self Twist Proved
1.a Even 1 trivial yes
16.e Even 1 yes

Hecke kernels

This newform can be constructed as the kernel of the linear operator \(T_{5}^{20} - \cdots\) acting on \(S_{2}^{\mathrm{new}}(336, [\chi])\).