Properties

Label 336.2.w
Level $336$
Weight $2$
Character orbit 336.w
Rep. character $\chi_{336}(85,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $48$
Newform subspaces $2$
Sturm bound $128$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 336 = 2^{4} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 336.w (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 16 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 2 \)
Sturm bound: \(128\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(336, [\chi])\).

Total New Old
Modular forms 136 48 88
Cusp forms 120 48 72
Eisenstein series 16 0 16

Trace form

\( 48 q + 4 q^{4} - 8 q^{10} + 8 q^{11} - 16 q^{12} + 4 q^{14} + 16 q^{15} + 4 q^{16} - 4 q^{18} + 16 q^{19} - 20 q^{22} - 8 q^{24} - 40 q^{26} + 16 q^{29} + 16 q^{30} - 32 q^{34} + 8 q^{36} + 16 q^{37} + 56 q^{38}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(336, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
336.2.w.a 336.w 16.e $20$ $2.683$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 336.2.w.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{3}q^{2}-\beta _{7}q^{3}+(\beta _{1}-\beta _{3}-\beta _{6}-\beta _{16}+\cdots)q^{4}+\cdots\)
336.2.w.b 336.w 16.e $28$ $2.683$ None 336.2.w.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$

Decomposition of \(S_{2}^{\mathrm{old}}(336, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(336, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(16, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(112, [\chi])\)\(^{\oplus 2}\)