Properties

Label 336.2.h.b
Level 336
Weight 2
Character orbit 336.h
Analytic conductor 2.683
Analytic rank 0
Dimension 8
CM No
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 336 = 2^{4} \cdot 3 \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 336.h (of order \(2\) and degree \(1\))

Newform invariants

Self dual: No
Analytic conductor: \(2.68297350792\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.56070144.2
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{6} q^{3} + ( \beta_{3} + \beta_{5} ) q^{5} + \beta_{4} q^{7} + ( 2 + \beta_{3} - \beta_{5} + \beta_{7} ) q^{9} +O(q^{10})\) \( q + \beta_{6} q^{3} + ( \beta_{3} + \beta_{5} ) q^{5} + \beta_{4} q^{7} + ( 2 + \beta_{3} - \beta_{5} + \beta_{7} ) q^{9} + 2 \beta_{1} q^{11} + ( -4 - 3 \beta_{3} + 3 \beta_{5} ) q^{13} + ( \beta_{1} + \beta_{2} + 5 \beta_{4} - \beta_{6} ) q^{15} -2 \beta_{7} q^{17} + ( -\beta_{2} + \beta_{6} ) q^{19} + \beta_{3} q^{21} + ( 2 \beta_{2} + 2 \beta_{6} ) q^{23} + ( -5 - 2 \beta_{3} + 2 \beta_{5} ) q^{25} + ( 2 \beta_{1} - \beta_{2} - 2 \beta_{4} + 2 \beta_{6} ) q^{27} + 2 \beta_{7} q^{29} + ( -2 \beta_{2} - 8 \beta_{4} + 2 \beta_{6} ) q^{31} + ( 2 + 2 \beta_{3} - 4 \beta_{5} - 2 \beta_{7} ) q^{33} + ( -\beta_{2} - \beta_{6} ) q^{35} + ( 6 - 2 \beta_{3} + 2 \beta_{5} ) q^{37} + ( -3 \beta_{1} - 3 \beta_{2} + 3 \beta_{4} - \beta_{6} ) q^{39} + ( -2 \beta_{3} - 2 \beta_{5} + 2 \beta_{7} ) q^{41} -2 \beta_{4} q^{43} + ( 2 + 5 \beta_{3} - \beta_{5} - 2 \beta_{7} ) q^{45} - q^{49} + ( -2 \beta_{1} + 4 \beta_{2} + 2 \beta_{4} - 2 \beta_{6} ) q^{51} + ( 2 \beta_{3} + 2 \beta_{5} - 2 \beta_{7} ) q^{53} + ( 6 \beta_{2} + 4 \beta_{4} - 6 \beta_{6} ) q^{55} + ( -1 + \beta_{3} - \beta_{5} + \beta_{7} ) q^{57} + ( -4 \beta_{1} - \beta_{2} - \beta_{6} ) q^{59} + ( -4 - \beta_{3} + \beta_{5} ) q^{61} + ( \beta_{1} + \beta_{2} + 2 \beta_{4} - \beta_{6} ) q^{63} + ( -4 \beta_{3} - 4 \beta_{5} + 6 \beta_{7} ) q^{65} + ( 2 \beta_{2} + 2 \beta_{4} - 2 \beta_{6} ) q^{67} + ( 10 + 2 \beta_{3} - 2 \beta_{5} + 2 \beta_{7} ) q^{69} + ( -2 \beta_{1} - 2 \beta_{2} - 2 \beta_{6} ) q^{71} + ( -6 + 2 \beta_{3} - 2 \beta_{5} ) q^{73} + ( -2 \beta_{1} - 2 \beta_{2} + 2 \beta_{4} - 3 \beta_{6} ) q^{75} -2 \beta_{7} q^{77} -12 \beta_{4} q^{79} + ( 3 + 2 \beta_{3} - 6 \beta_{5} ) q^{81} + ( -4 \beta_{1} - \beta_{2} - \beta_{6} ) q^{83} + ( -4 - 6 \beta_{3} + 6 \beta_{5} ) q^{85} + ( 2 \beta_{1} - 4 \beta_{2} - 2 \beta_{4} + 2 \beta_{6} ) q^{87} + ( 2 \beta_{3} + 2 \beta_{5} - 6 \beta_{7} ) q^{89} + ( -3 \beta_{2} - 4 \beta_{4} + 3 \beta_{6} ) q^{91} + ( -2 - 6 \beta_{3} - 2 \beta_{5} + 2 \beta_{7} ) q^{93} + 2 \beta_{1} q^{95} + ( 6 + 4 \beta_{3} - 4 \beta_{5} ) q^{97} + ( 6 \beta_{2} - 6 \beta_{4} - 2 \beta_{6} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q + 8q^{9} + O(q^{10}) \) \( 8q + 8q^{9} - 8q^{13} - 4q^{21} - 24q^{25} - 8q^{33} + 64q^{37} - 8q^{45} - 8q^{49} - 16q^{57} - 24q^{61} + 64q^{69} - 64q^{73} - 8q^{81} + 16q^{85} + 16q^{97} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{8} - 4 x^{7} + 16 x^{6} - 34 x^{5} + 63 x^{4} - 74 x^{3} + 70 x^{2} - 38 x + 13\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( -\nu^{4} + 2 \nu^{3} - 7 \nu^{2} + 6 \nu - 6 \)
\(\beta_{2}\)\(=\)\((\)\( -5 \nu^{7} - \nu^{6} - 25 \nu^{5} - 46 \nu^{4} - 5 \nu^{3} - 95 \nu^{2} - 9 \nu + 19 \)\()/37\)
\(\beta_{3}\)\(=\)\((\)\( -3 \nu^{7} - 8 \nu^{6} + 22 \nu^{5} - 146 \nu^{4} + 256 \nu^{3} - 427 \nu^{2} + 372 \nu - 218 \)\()/37\)
\(\beta_{4}\)\(=\)\((\)\( -6 \nu^{7} + 21 \nu^{6} - 67 \nu^{5} + 115 \nu^{4} - 117 \nu^{3} + 71 \nu^{2} + 41 \nu - 29 \)\()/37\)
\(\beta_{5}\)\(=\)\((\)\( -3 \nu^{7} + 29 \nu^{6} - 89 \nu^{5} + 261 \nu^{4} - 373 \nu^{3} + 498 \nu^{2} - 257 \nu + 152 \)\()/37\)
\(\beta_{6}\)\(=\)\((\)\( 5 \nu^{7} - 36 \nu^{6} + 136 \nu^{5} - 361 \nu^{4} + 634 \nu^{3} - 756 \nu^{2} + 564 \nu - 167 \)\()/37\)
\(\beta_{7}\)\(=\)\((\)\( 42 \nu^{7} - 147 \nu^{6} + 543 \nu^{5} - 990 \nu^{4} + 1559 \nu^{3} - 1422 \nu^{2} + 971 \nu - 278 \)\()/37\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(\beta_{5} - \beta_{4} + \beta_{3} + 1\)\()/2\)
\(\nu^{2}\)\(=\)\((\)\(\beta_{6} + 2 \beta_{5} - \beta_{4} + \beta_{2} - 5\)\()/2\)
\(\nu^{3}\)\(=\)\((\)\(\beta_{7} - \beta_{5} + 7 \beta_{4} - 4 \beta_{3} + 3 \beta_{2} - 8\)\()/2\)
\(\nu^{4}\)\(=\)\((\)\(2 \beta_{7} - 7 \beta_{6} - 10 \beta_{5} + 15 \beta_{4} - 2 \beta_{3} - \beta_{2} - 2 \beta_{1} + 13\)\()/2\)
\(\nu^{5}\)\(=\)\((\)\(-4 \beta_{7} - 5 \beta_{6} - 7 \beta_{5} - 21 \beta_{4} + 18 \beta_{3} - 20 \beta_{2} - 5 \beta_{1} + 46\)\()/2\)
\(\nu^{6}\)\(=\)\((\)\(-17 \beta_{7} + 37 \beta_{6} + 41 \beta_{5} - 101 \beta_{4} + 23 \beta_{3} - 23 \beta_{2} + 7 \beta_{1} - 19\)\()/2\)
\(\nu^{7}\)\(=\)\((\)\(4 \beta_{7} + 63 \beta_{6} + 80 \beta_{5} + \beta_{4} - 74 \beta_{3} + 77 \beta_{2} + 42 \beta_{1} - 237\)\()/2\)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/336\mathbb{Z}\right)^\times\).

\(n\) \(85\) \(113\) \(127\) \(241\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
239.1
0.500000 2.19293i
0.500000 + 2.19293i
0.500000 + 1.56488i
0.500000 1.56488i
0.500000 0.564882i
0.500000 + 0.564882i
0.500000 + 1.19293i
0.500000 1.19293i
0 −1.69293 0.366025i 0 3.38587i 0 1.00000i 0 2.73205 + 1.23931i 0
239.2 0 −1.69293 + 0.366025i 0 3.38587i 0 1.00000i 0 2.73205 1.23931i 0
239.3 0 −1.06488 1.36603i 0 2.12976i 0 1.00000i 0 −0.732051 + 2.90931i 0
239.4 0 −1.06488 + 1.36603i 0 2.12976i 0 1.00000i 0 −0.732051 2.90931i 0
239.5 0 1.06488 1.36603i 0 2.12976i 0 1.00000i 0 −0.732051 2.90931i 0
239.6 0 1.06488 + 1.36603i 0 2.12976i 0 1.00000i 0 −0.732051 + 2.90931i 0
239.7 0 1.69293 0.366025i 0 3.38587i 0 1.00000i 0 2.73205 1.23931i 0
239.8 0 1.69293 + 0.366025i 0 3.38587i 0 1.00000i 0 2.73205 + 1.23931i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 239.8
Significant digits:
Format:

Inner twists

Char. orbit Parity Mult. Self Twist Proved
1.a Even 1 trivial yes
3.b Odd 1 yes
4.b Odd 1 yes
12.b Even 1 yes

Hecke kernels

This newform can be constructed as the kernel of the linear operator \( T_{5}^{4} + 16 T_{5}^{2} + 52 \) acting on \(S_{2}^{\mathrm{new}}(336, [\chi])\).