Properties

Label 336.2.c
Level 336
Weight 2
Character orbit c
Rep. character \(\chi_{336}(169,\cdot)\)
Character field \(\Q\)
Dimension 0
Newform subspaces 0
Sturm bound 128
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 336 = 2^{4} \cdot 3 \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 336.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 8 \)
Character field: \(\Q\)
Newform subspaces: \( 0 \)
Sturm bound: \(128\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(336, [\chi])\).

Total New Old
Modular forms 72 0 72
Cusp forms 56 0 56
Eisenstein series 16 0 16

Decomposition of \(S_{2}^{\mathrm{old}}(336, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(336, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(56, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(168, [\chi])\)\(^{\oplus 2}\)

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database