Properties

Label 336.2.bj.g
Level 336
Weight 2
Character orbit 336.bj
Analytic conductor 2.683
Analytic rank 0
Dimension 8
CM No
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 336 = 2^{4} \cdot 3 \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 336.bj (of order \(6\) and degree \(2\))

Newform invariants

Self dual: No
Analytic conductor: \(2.68297350792\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.8275904784.2
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{1} q^{3} + ( -\beta_{1} - \beta_{4} - \beta_{7} ) q^{5} + ( 3 - \beta_{1} + \beta_{3} - \beta_{5} + 2 \beta_{6} ) q^{7} + ( -1 + \beta_{1} + \beta_{3} + \beta_{4} - \beta_{6} - \beta_{7} ) q^{9} +O(q^{10})\) \( q + \beta_{1} q^{3} + ( -\beta_{1} - \beta_{4} - \beta_{7} ) q^{5} + ( 3 - \beta_{1} + \beta_{3} - \beta_{5} + 2 \beta_{6} ) q^{7} + ( -1 + \beta_{1} + \beta_{3} + \beta_{4} - \beta_{6} - \beta_{7} ) q^{9} + ( 1 - \beta_{2} - \beta_{3} - 2 \beta_{4} - \beta_{5} + \beta_{6} ) q^{11} + 2 q^{13} + ( 1 - \beta_{1} + \beta_{2} + \beta_{3} - \beta_{4} + 2 \beta_{6} - \beta_{7} ) q^{15} + ( \beta_{1} - 2 \beta_{2} - \beta_{7} ) q^{17} + ( 1 - \beta_{1} + \beta_{3} - \beta_{5} + \beta_{6} ) q^{19} + ( -\beta_{2} - \beta_{4} - 2 \beta_{5} + 2 \beta_{6} ) q^{21} + ( -1 + \beta_{1} + \beta_{3} + \beta_{5} - \beta_{6} ) q^{23} + ( -4 + 2 \beta_{1} - 4 \beta_{3} + 4 \beta_{5} - 4 \beta_{6} + 2 \beta_{7} ) q^{25} + ( 1 + \beta_{1} - \beta_{2} - \beta_{3} + \beta_{4} + \beta_{5} + 3 \beta_{6} + \beta_{7} ) q^{27} + ( -2 + 3 \beta_{1} + \beta_{2} + 2 \beta_{3} + \beta_{4} + 2 \beta_{5} - 2 \beta_{6} + 2 \beta_{7} ) q^{29} + ( 2 + \beta_{6} ) q^{31} + ( -4 + 2 \beta_{3} - \beta_{4} - \beta_{5} - 4 \beta_{6} - 5 \beta_{7} ) q^{33} + ( -3 + 2 \beta_{1} + 3 \beta_{2} + 3 \beta_{3} + 3 \beta_{4} + 3 \beta_{5} - 3 \beta_{6} + 2 \beta_{7} ) q^{35} + ( 3 - \beta_{1} - \beta_{3} + \beta_{5} + 3 \beta_{6} + 2 \beta_{7} ) q^{37} + 2 \beta_{1} q^{39} + ( -2 \beta_{1} + 2 \beta_{2} + 2 \beta_{4} ) q^{41} + ( -2 + 2 \beta_{3} - 2 \beta_{5} - 6 \beta_{6} - 2 \beta_{7} ) q^{43} + ( 2 - 2 \beta_{1} + 2 \beta_{2} + 4 \beta_{3} - 2 \beta_{5} + 4 \beta_{6} - \beta_{7} ) q^{45} + ( 3 - 3 \beta_{1} - 3 \beta_{3} - 3 \beta_{5} + 3 \beta_{6} ) q^{47} + ( 3 - 3 \beta_{1} - \beta_{6} + 3 \beta_{7} ) q^{49} + ( -2 + \beta_{1} - 2 \beta_{2} - 5 \beta_{3} - \beta_{4} + 2 \beta_{6} - \beta_{7} ) q^{51} + ( 5 - 2 \beta_{1} - \beta_{2} - 5 \beta_{3} - 5 \beta_{5} + 5 \beta_{6} + 2 \beta_{7} ) q^{53} + ( -5 - 4 \beta_{3} + 4 \beta_{5} - 6 \beta_{6} + 4 \beta_{7} ) q^{55} + ( -1 - \beta_{1} - \beta_{2} - \beta_{4} - \beta_{5} + \beta_{6} ) q^{57} + ( 1 - 4 \beta_{1} - \beta_{2} - \beta_{3} - 2 \beta_{4} - \beta_{5} + \beta_{6} - 4 \beta_{7} ) q^{59} + ( 7 + \beta_{1} + \beta_{3} - \beta_{5} + 7 \beta_{6} - 2 \beta_{7} ) q^{61} + ( -3 - 2 \beta_{1} - 2 \beta_{2} + \beta_{3} - \beta_{4} - 2 \beta_{5} - 2 \beta_{6} - 4 \beta_{7} ) q^{63} + ( -2 \beta_{1} - 2 \beta_{4} - 2 \beta_{7} ) q^{65} + ( -8 - 3 \beta_{1} - 4 \beta_{6} + 3 \beta_{7} ) q^{67} + ( -5 + \beta_{1} + \beta_{2} + \beta_{4} + \beta_{5} - \beta_{6} ) q^{69} + ( 2 \beta_{1} - 2 \beta_{2} + 2 \beta_{4} ) q^{71} + ( -2 + \beta_{1} - 2 \beta_{3} + 2 \beta_{5} - 4 \beta_{6} + \beta_{7} ) q^{73} + ( 2 \beta_{1} + 4 \beta_{2} - 2 \beta_{3} + 2 \beta_{4} + 4 \beta_{5} - 8 \beta_{6} + 2 \beta_{7} ) q^{75} + ( -1 + 3 \beta_{1} + 2 \beta_{2} + \beta_{3} - \beta_{4} + \beta_{5} - \beta_{6} + 4 \beta_{7} ) q^{77} + ( 3 - 3 \beta_{6} ) q^{79} + ( 3 - \beta_{1} - \beta_{2} - 5 \beta_{3} - 3 \beta_{5} + 2 \beta_{6} + 2 \beta_{7} ) q^{81} + ( \beta_{1} - \beta_{2} + \beta_{4} ) q^{83} + ( -1 - 6 \beta_{1} + 3 \beta_{3} - 3 \beta_{5} + 3 \beta_{6} + 3 \beta_{7} ) q^{85} + ( -12 + 3 \beta_{1} + 2 \beta_{2} + 2 \beta_{3} + 4 \beta_{4} + 2 \beta_{5} - 7 \beta_{6} + \beta_{7} ) q^{87} + ( -3 + \beta_{1} + 3 \beta_{3} + 4 \beta_{4} + 3 \beta_{5} - 3 \beta_{6} - 2 \beta_{7} ) q^{89} + ( 6 - 2 \beta_{1} + 2 \beta_{3} - 2 \beta_{5} + 4 \beta_{6} ) q^{91} + ( 1 + \beta_{1} - \beta_{5} + \beta_{6} ) q^{93} + ( -2 + 3 \beta_{1} + 2 \beta_{2} + 2 \beta_{3} + 4 \beta_{4} + 2 \beta_{5} - 2 \beta_{6} + 3 \beta_{7} ) q^{95} + ( -2 + 2 \beta_{1} - \beta_{3} + \beta_{5} - \beta_{6} - \beta_{7} ) q^{97} + ( 2 + 3 \beta_{3} + 4 \beta_{5} + 8 \beta_{6} - 3 \beta_{7} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q + 3q^{3} + 6q^{7} - q^{9} + O(q^{10}) \) \( 8q + 3q^{3} + 6q^{7} - q^{9} + 16q^{13} - 6q^{19} - 19q^{21} + 12q^{25} + 12q^{31} - 11q^{33} + 10q^{37} + 6q^{39} - 17q^{45} + 10q^{49} - 9q^{51} - 22q^{57} + 30q^{61} - 27q^{63} - 66q^{67} - 26q^{69} + 14q^{73} + 66q^{75} + 36q^{79} + 7q^{81} - 68q^{85} - 54q^{87} + 12q^{91} + 3q^{93} + 4q^{97} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{8} - 3 x^{7} + 5 x^{6} - 6 x^{5} + 4 x^{4} - 18 x^{3} + 45 x^{2} - 81 x + 81\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\((\)\( -\nu^{7} + 3 \nu^{6} - 14 \nu^{5} + 6 \nu^{4} - 22 \nu^{3} + 18 \nu^{2} - 27 \nu + 189 \)\()/54\)
\(\beta_{3}\)\(=\)\((\)\( \nu^{7} - 3 \nu^{6} + 5 \nu^{5} - 6 \nu^{4} + 4 \nu^{3} - 18 \nu^{2} + 45 \nu - 81 \)\()/27\)
\(\beta_{4}\)\(=\)\((\)\( -5 \nu^{7} + 6 \nu^{6} - 16 \nu^{5} + 12 \nu^{4} - 2 \nu^{3} + 108 \nu^{2} - 135 \nu + 270 \)\()/54\)
\(\beta_{5}\)\(=\)\((\)\( -5 \nu^{7} + 9 \nu^{6} - 16 \nu^{5} - 2 \nu^{3} + 66 \nu^{2} - 153 \nu + 297 \)\()/54\)
\(\beta_{6}\)\(=\)\((\)\( 7 \nu^{7} - 9 \nu^{6} + 17 \nu^{5} - 9 \nu^{4} + 19 \nu^{3} - 105 \nu^{2} + 144 \nu - 324 \)\()/54\)
\(\beta_{7}\)\(=\)\((\)\( -10 \nu^{7} + 9 \nu^{6} - 23 \nu^{5} + 9 \nu^{4} - 13 \nu^{3} + 123 \nu^{2} - 135 \nu + 378 \)\()/54\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(-\beta_{7} - \beta_{6} + \beta_{4} + \beta_{3} + \beta_{1} - 1\)
\(\nu^{3}\)\(=\)\(\beta_{7} + 3 \beta_{6} + \beta_{5} + \beta_{4} - \beta_{3} - \beta_{2} + \beta_{1} + 1\)
\(\nu^{4}\)\(=\)\(2 \beta_{7} + 2 \beta_{6} - 3 \beta_{5} - 5 \beta_{3} - \beta_{2} - \beta_{1} + 3\)
\(\nu^{5}\)\(=\)\(-2 \beta_{7} - 6 \beta_{6} - 2 \beta_{5} - 2 \beta_{4} - \beta_{3} - 4 \beta_{2} + 10\)
\(\nu^{6}\)\(=\)\(-6 \beta_{7} - 6 \beta_{6} + 6 \beta_{5} - 4 \beta_{4} - 6 \beta_{3} - 4 \beta_{2} + 16 \beta_{1} - 11\)
\(\nu^{7}\)\(=\)\(-18 \beta_{7} - 6 \beta_{6} + 6 \beta_{5} + 12 \beta_{4} + 6 \beta_{3} + 6 \beta_{2} + 11 \beta_{1} - 6\)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/336\mathbb{Z}\right)^\times\).

\(n\) \(85\) \(113\) \(127\) \(241\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(-1 - \beta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
95.1
−1.37009 + 1.05965i
0.232633 1.71636i
0.906034 + 1.47618i
1.73142 + 0.0465589i
−1.37009 1.05965i
0.232633 + 1.71636i
0.906034 1.47618i
1.73142 0.0465589i
0 −1.37009 + 1.05965i 0 0.581054 0.335472i 0 2.63746 + 0.209313i 0 0.754305 2.90362i 0
95.2 0 0.232633 1.71636i 0 −0.581054 + 0.335472i 0 2.63746 + 0.209313i 0 −2.89176 0.798564i 0
95.3 0 0.906034 + 1.47618i 0 3.41502 1.97166i 0 −1.13746 + 2.38876i 0 −1.35821 + 2.67493i 0
95.4 0 1.73142 + 0.0465589i 0 −3.41502 + 1.97166i 0 −1.13746 + 2.38876i 0 2.99566 + 0.161227i 0
191.1 0 −1.37009 1.05965i 0 0.581054 + 0.335472i 0 2.63746 0.209313i 0 0.754305 + 2.90362i 0
191.2 0 0.232633 + 1.71636i 0 −0.581054 0.335472i 0 2.63746 0.209313i 0 −2.89176 + 0.798564i 0
191.3 0 0.906034 1.47618i 0 3.41502 + 1.97166i 0 −1.13746 2.38876i 0 −1.35821 2.67493i 0
191.4 0 1.73142 0.0465589i 0 −3.41502 1.97166i 0 −1.13746 2.38876i 0 2.99566 0.161227i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 191.4
Significant digits:
Format:

Inner twists

Char. orbit Parity Mult. Self Twist Proved
1.a Even 1 trivial yes
3.b Odd 1 yes
28.g Odd 1 yes
84.n Even 1 yes

Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(336, [\chi])\):

\( T_{5}^{8} - 16 T_{5}^{6} + 249 T_{5}^{4} - 112 T_{5}^{2} + 49 \)
\( T_{13} - 2 \)
\( T_{19}^{4} + 3 T_{19}^{3} - T_{19}^{2} - 12 T_{19} + 16 \)