Properties

Label 336.2.bc.f.257.1
Level $336$
Weight $2$
Character 336.257
Analytic conductor $2.683$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [336,2,Mod(17,336)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(336, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("336.17");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 336 = 2^{4} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 336.bc (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.68297350792\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 6 x^{15} + 19 x^{14} - 42 x^{13} + 65 x^{12} - 48 x^{11} - 94 x^{10} + 444 x^{9} - 962 x^{8} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 257.1
Root \(0.247636 - 1.71426i\) of defining polynomial
Character \(\chi\) \(=\) 336.257
Dual form 336.2.bc.f.17.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.71426 - 0.247636i) q^{3} +(-1.28955 + 2.23357i) q^{5} +(0.203402 - 2.63792i) q^{7} +(2.87735 + 0.849022i) q^{9} +O(q^{10})\) \(q+(-1.71426 - 0.247636i) q^{3} +(-1.28955 + 2.23357i) q^{5} +(0.203402 - 2.63792i) q^{7} +(2.87735 + 0.849022i) q^{9} +(-1.43199 + 0.826762i) q^{11} -5.71177i q^{13} +(2.76373 - 3.50957i) q^{15} +(-3.79313 - 6.56990i) q^{17} +(-2.58961 - 1.49511i) q^{19} +(-1.00193 + 4.47170i) q^{21} +(-0.249340 - 0.143957i) q^{23} +(-0.825879 - 1.43046i) q^{25} +(-4.72227 - 2.16798i) q^{27} -2.05856i q^{29} +(5.21209 - 3.00920i) q^{31} +(2.65954 - 1.06267i) q^{33} +(5.62967 + 3.85604i) q^{35} +(-0.877523 + 1.51991i) q^{37} +(-1.41444 + 9.79144i) q^{39} -4.28635 q^{41} -2.46537 q^{43} +(-5.60684 + 5.33190i) q^{45} +(-0.186586 + 0.323176i) q^{47} +(-6.91726 - 1.07312i) q^{49} +(4.87546 + 12.2018i) q^{51} +(6.73264 - 3.88709i) q^{53} -4.26461i q^{55} +(4.06901 + 3.20429i) q^{57} +(4.89610 + 8.48029i) q^{59} +(0.889794 + 0.513723i) q^{61} +(2.82491 - 7.41754i) q^{63} +(12.7576 + 7.36561i) q^{65} +(1.18281 + 2.04868i) q^{67} +(0.391784 + 0.308524i) q^{69} -15.6655i q^{71} +(-3.30170 + 1.90624i) q^{73} +(1.06153 + 2.65670i) q^{75} +(1.88966 + 3.94565i) q^{77} +(-4.56033 + 7.89872i) q^{79} +(7.55832 + 4.88587i) q^{81} -6.65166 q^{83} +19.5657 q^{85} +(-0.509773 + 3.52890i) q^{87} +(-7.25723 + 12.5699i) q^{89} +(-15.0672 - 1.16179i) q^{91} +(-9.68004 + 3.86784i) q^{93} +(6.67886 - 3.85604i) q^{95} +4.43739i q^{97} +(-4.82229 + 1.16309i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{7} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 4 q^{7} + 2 q^{9} - 8 q^{15} + 6 q^{19} + 14 q^{21} - 18 q^{25} + 48 q^{31} - 12 q^{33} - 2 q^{37} + 22 q^{39} - 20 q^{43} - 42 q^{45} - 28 q^{49} - 6 q^{51} - 8 q^{57} + 36 q^{61} + 32 q^{63} - 14 q^{67} + 30 q^{73} - 54 q^{75} - 28 q^{79} + 30 q^{81} + 16 q^{85} - 78 q^{87} - 66 q^{91} + 16 q^{93} - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/336\mathbb{Z}\right)^\times\).

\(n\) \(85\) \(113\) \(127\) \(241\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.71426 0.247636i −0.989727 0.142972i
\(4\) 0 0
\(5\) −1.28955 + 2.23357i −0.576704 + 0.998881i 0.419150 + 0.907917i \(0.362328\pi\)
−0.995854 + 0.0909641i \(0.971005\pi\)
\(6\) 0 0
\(7\) 0.203402 2.63792i 0.0768787 0.997040i
\(8\) 0 0
\(9\) 2.87735 + 0.849022i 0.959118 + 0.283007i
\(10\) 0 0
\(11\) −1.43199 + 0.826762i −0.431763 + 0.249278i −0.700097 0.714048i \(-0.746860\pi\)
0.268335 + 0.963326i \(0.413527\pi\)
\(12\) 0 0
\(13\) 5.71177i 1.58416i −0.610418 0.792080i \(-0.708998\pi\)
0.610418 0.792080i \(-0.291002\pi\)
\(14\) 0 0
\(15\) 2.76373 3.50957i 0.713592 0.906167i
\(16\) 0 0
\(17\) −3.79313 6.56990i −0.919970 1.59343i −0.799458 0.600722i \(-0.794880\pi\)
−0.120512 0.992712i \(-0.538453\pi\)
\(18\) 0 0
\(19\) −2.58961 1.49511i −0.594097 0.343002i 0.172619 0.984989i \(-0.444777\pi\)
−0.766716 + 0.641987i \(0.778110\pi\)
\(20\) 0 0
\(21\) −1.00193 + 4.47170i −0.218638 + 0.975806i
\(22\) 0 0
\(23\) −0.249340 0.143957i −0.0519910 0.0300170i 0.473779 0.880644i \(-0.342889\pi\)
−0.525770 + 0.850627i \(0.676223\pi\)
\(24\) 0 0
\(25\) −0.825879 1.43046i −0.165176 0.286093i
\(26\) 0 0
\(27\) −4.72227 2.16798i −0.908802 0.417227i
\(28\) 0 0
\(29\) 2.05856i 0.382265i −0.981564 0.191133i \(-0.938784\pi\)
0.981564 0.191133i \(-0.0612161\pi\)
\(30\) 0 0
\(31\) 5.21209 3.00920i 0.936118 0.540468i 0.0473770 0.998877i \(-0.484914\pi\)
0.888741 + 0.458409i \(0.151580\pi\)
\(32\) 0 0
\(33\) 2.65954 1.06267i 0.462967 0.184987i
\(34\) 0 0
\(35\) 5.62967 + 3.85604i 0.951589 + 0.651790i
\(36\) 0 0
\(37\) −0.877523 + 1.51991i −0.144264 + 0.249872i −0.929098 0.369833i \(-0.879415\pi\)
0.784834 + 0.619706i \(0.212748\pi\)
\(38\) 0 0
\(39\) −1.41444 + 9.79144i −0.226491 + 1.56788i
\(40\) 0 0
\(41\) −4.28635 −0.669415 −0.334708 0.942322i \(-0.608638\pi\)
−0.334708 + 0.942322i \(0.608638\pi\)
\(42\) 0 0
\(43\) −2.46537 −0.375965 −0.187982 0.982172i \(-0.560195\pi\)
−0.187982 + 0.982172i \(0.560195\pi\)
\(44\) 0 0
\(45\) −5.60684 + 5.33190i −0.835818 + 0.794833i
\(46\) 0 0
\(47\) −0.186586 + 0.323176i −0.0272163 + 0.0471401i −0.879313 0.476245i \(-0.841998\pi\)
0.852096 + 0.523385i \(0.175331\pi\)
\(48\) 0 0
\(49\) −6.91726 1.07312i −0.988179 0.153302i
\(50\) 0 0
\(51\) 4.87546 + 12.2018i 0.682701 + 1.70859i
\(52\) 0 0
\(53\) 6.73264 3.88709i 0.924799 0.533933i 0.0396361 0.999214i \(-0.487380\pi\)
0.885163 + 0.465281i \(0.154047\pi\)
\(54\) 0 0
\(55\) 4.26461i 0.575039i
\(56\) 0 0
\(57\) 4.06901 + 3.20429i 0.538954 + 0.424418i
\(58\) 0 0
\(59\) 4.89610 + 8.48029i 0.637417 + 1.10404i 0.985997 + 0.166760i \(0.0533306\pi\)
−0.348580 + 0.937279i \(0.613336\pi\)
\(60\) 0 0
\(61\) 0.889794 + 0.513723i 0.113926 + 0.0657755i 0.555880 0.831262i \(-0.312381\pi\)
−0.441954 + 0.897038i \(0.645715\pi\)
\(62\) 0 0
\(63\) 2.82491 7.41754i 0.355906 0.934522i
\(64\) 0 0
\(65\) 12.7576 + 7.36561i 1.58239 + 0.913592i
\(66\) 0 0
\(67\) 1.18281 + 2.04868i 0.144503 + 0.250286i 0.929187 0.369609i \(-0.120508\pi\)
−0.784685 + 0.619895i \(0.787175\pi\)
\(68\) 0 0
\(69\) 0.391784 + 0.308524i 0.0471653 + 0.0371419i
\(70\) 0 0
\(71\) 15.6655i 1.85915i −0.368631 0.929576i \(-0.620174\pi\)
0.368631 0.929576i \(-0.379826\pi\)
\(72\) 0 0
\(73\) −3.30170 + 1.90624i −0.386434 + 0.223108i −0.680614 0.732642i \(-0.738287\pi\)
0.294180 + 0.955750i \(0.404954\pi\)
\(74\) 0 0
\(75\) 1.06153 + 2.65670i 0.122575 + 0.306769i
\(76\) 0 0
\(77\) 1.88966 + 3.94565i 0.215347 + 0.449649i
\(78\) 0 0
\(79\) −4.56033 + 7.89872i −0.513077 + 0.888676i 0.486808 + 0.873509i \(0.338161\pi\)
−0.999885 + 0.0151665i \(0.995172\pi\)
\(80\) 0 0
\(81\) 7.55832 + 4.88587i 0.839814 + 0.542875i
\(82\) 0 0
\(83\) −6.65166 −0.730114 −0.365057 0.930985i \(-0.618951\pi\)
−0.365057 + 0.930985i \(0.618951\pi\)
\(84\) 0 0
\(85\) 19.5657 2.12220
\(86\) 0 0
\(87\) −0.509773 + 3.52890i −0.0546534 + 0.378338i
\(88\) 0 0
\(89\) −7.25723 + 12.5699i −0.769265 + 1.33241i 0.168697 + 0.985668i \(0.446044\pi\)
−0.937962 + 0.346738i \(0.887289\pi\)
\(90\) 0 0
\(91\) −15.0672 1.16179i −1.57947 0.121788i
\(92\) 0 0
\(93\) −9.68004 + 3.86784i −1.00377 + 0.401077i
\(94\) 0 0
\(95\) 6.67886 3.85604i 0.685237 0.395622i
\(96\) 0 0
\(97\) 4.43739i 0.450548i 0.974295 + 0.225274i \(0.0723278\pi\)
−0.974295 + 0.225274i \(0.927672\pi\)
\(98\) 0 0
\(99\) −4.82229 + 1.16309i −0.484659 + 0.116895i
\(100\) 0 0
\(101\) 2.03628 + 3.52694i 0.202617 + 0.350943i 0.949371 0.314157i \(-0.101722\pi\)
−0.746754 + 0.665101i \(0.768389\pi\)
\(102\) 0 0
\(103\) 7.30346 + 4.21666i 0.719632 + 0.415479i 0.814617 0.579999i \(-0.196947\pi\)
−0.0949855 + 0.995479i \(0.530280\pi\)
\(104\) 0 0
\(105\) −8.69581 8.00436i −0.848625 0.781145i
\(106\) 0 0
\(107\) −12.6334 7.29389i −1.22132 0.705127i −0.256118 0.966646i \(-0.582444\pi\)
−0.965199 + 0.261518i \(0.915777\pi\)
\(108\) 0 0
\(109\) −8.64994 14.9821i −0.828514 1.43503i −0.899204 0.437530i \(-0.855853\pi\)
0.0706901 0.997498i \(-0.477480\pi\)
\(110\) 0 0
\(111\) 1.88068 2.38822i 0.178507 0.226680i
\(112\) 0 0
\(113\) 4.00000i 0.376288i −0.982141 0.188144i \(-0.939753\pi\)
0.982141 0.188144i \(-0.0602472\pi\)
\(114\) 0 0
\(115\) 0.643073 0.371279i 0.0599669 0.0346219i
\(116\) 0 0
\(117\) 4.84942 16.4348i 0.448329 1.51940i
\(118\) 0 0
\(119\) −18.1024 + 8.66965i −1.65944 + 0.794746i
\(120\) 0 0
\(121\) −4.13293 + 7.15844i −0.375721 + 0.650767i
\(122\) 0 0
\(123\) 7.34790 + 1.06145i 0.662538 + 0.0957079i
\(124\) 0 0
\(125\) −8.63545 −0.772378
\(126\) 0 0
\(127\) 16.6481 1.47728 0.738641 0.674099i \(-0.235468\pi\)
0.738641 + 0.674099i \(0.235468\pi\)
\(128\) 0 0
\(129\) 4.22627 + 0.610512i 0.372102 + 0.0537526i
\(130\) 0 0
\(131\) 8.29744 14.3716i 0.724951 1.25565i −0.234043 0.972226i \(-0.575196\pi\)
0.958994 0.283426i \(-0.0914709\pi\)
\(132\) 0 0
\(133\) −4.47072 + 6.52708i −0.387660 + 0.565969i
\(134\) 0 0
\(135\) 10.9319 7.75180i 0.940871 0.667169i
\(136\) 0 0
\(137\) 8.61684 4.97493i 0.736186 0.425037i −0.0844948 0.996424i \(-0.526928\pi\)
0.820681 + 0.571387i \(0.193594\pi\)
\(138\) 0 0
\(139\) 3.11952i 0.264594i −0.991210 0.132297i \(-0.957765\pi\)
0.991210 0.132297i \(-0.0422353\pi\)
\(140\) 0 0
\(141\) 0.399886 0.507801i 0.0336765 0.0427646i
\(142\) 0 0
\(143\) 4.72227 + 8.17922i 0.394896 + 0.683981i
\(144\) 0 0
\(145\) 4.59794 + 2.65462i 0.381838 + 0.220454i
\(146\) 0 0
\(147\) 11.5922 + 3.55256i 0.956109 + 0.293010i
\(148\) 0 0
\(149\) −0.987090 0.569897i −0.0808655 0.0466877i 0.459022 0.888425i \(-0.348200\pi\)
−0.539888 + 0.841737i \(0.681533\pi\)
\(150\) 0 0
\(151\) −6.38621 11.0612i −0.519702 0.900151i −0.999738 0.0229016i \(-0.992710\pi\)
0.480036 0.877249i \(-0.340624\pi\)
\(152\) 0 0
\(153\) −5.33619 22.1244i −0.431406 1.78865i
\(154\) 0 0
\(155\) 15.5221i 1.24676i
\(156\) 0 0
\(157\) 7.82053 4.51518i 0.624146 0.360351i −0.154335 0.988019i \(-0.549324\pi\)
0.778481 + 0.627668i \(0.215990\pi\)
\(158\) 0 0
\(159\) −12.5041 + 4.99623i −0.991636 + 0.396227i
\(160\) 0 0
\(161\) −0.430463 + 0.628459i −0.0339252 + 0.0495295i
\(162\) 0 0
\(163\) 0.0498774 0.0863903i 0.00390670 0.00676661i −0.864065 0.503379i \(-0.832090\pi\)
0.867972 + 0.496613i \(0.165423\pi\)
\(164\) 0 0
\(165\) −1.05607 + 7.31063i −0.0822148 + 0.569132i
\(166\) 0 0
\(167\) 3.08612 0.238811 0.119406 0.992846i \(-0.461901\pi\)
0.119406 + 0.992846i \(0.461901\pi\)
\(168\) 0 0
\(169\) −19.6243 −1.50956
\(170\) 0 0
\(171\) −6.18184 6.50060i −0.472737 0.497113i
\(172\) 0 0
\(173\) 3.73038 6.46120i 0.283615 0.491236i −0.688657 0.725087i \(-0.741799\pi\)
0.972272 + 0.233851i \(0.0751328\pi\)
\(174\) 0 0
\(175\) −3.94144 + 1.88764i −0.297945 + 0.142693i
\(176\) 0 0
\(177\) −6.29315 15.7498i −0.473022 1.18383i
\(178\) 0 0
\(179\) 2.61465 1.50957i 0.195428 0.112830i −0.399093 0.916910i \(-0.630675\pi\)
0.594521 + 0.804080i \(0.297342\pi\)
\(180\) 0 0
\(181\) 0.762552i 0.0566801i −0.999598 0.0283400i \(-0.990978\pi\)
0.999598 0.0283400i \(-0.00902212\pi\)
\(182\) 0 0
\(183\) −1.39812 1.10100i −0.103352 0.0813881i
\(184\) 0 0
\(185\) −2.26322 3.92001i −0.166395 0.288205i
\(186\) 0 0
\(187\) 10.8635 + 6.27204i 0.794417 + 0.458657i
\(188\) 0 0
\(189\) −6.67947 + 12.0160i −0.485860 + 0.874037i
\(190\) 0 0
\(191\) 1.05844 + 0.611089i 0.0765859 + 0.0442169i 0.537804 0.843070i \(-0.319254\pi\)
−0.461218 + 0.887287i \(0.652587\pi\)
\(192\) 0 0
\(193\) 11.7587 + 20.3666i 0.846409 + 1.46602i 0.884392 + 0.466744i \(0.154573\pi\)
−0.0379837 + 0.999278i \(0.512093\pi\)
\(194\) 0 0
\(195\) −20.0458 15.7858i −1.43551 1.13044i
\(196\) 0 0
\(197\) 14.7312i 1.04956i −0.851239 0.524778i \(-0.824148\pi\)
0.851239 0.524778i \(-0.175852\pi\)
\(198\) 0 0
\(199\) −5.96032 + 3.44119i −0.422516 + 0.243940i −0.696153 0.717893i \(-0.745107\pi\)
0.273637 + 0.961833i \(0.411773\pi\)
\(200\) 0 0
\(201\) −1.52031 3.80487i −0.107234 0.268375i
\(202\) 0 0
\(203\) −5.43032 0.418716i −0.381134 0.0293881i
\(204\) 0 0
\(205\) 5.52746 9.57384i 0.386055 0.668666i
\(206\) 0 0
\(207\) −0.595218 0.625909i −0.0413705 0.0435037i
\(208\) 0 0
\(209\) 4.94441 0.342012
\(210\) 0 0
\(211\) 19.0897 1.31419 0.657093 0.753809i \(-0.271786\pi\)
0.657093 + 0.753809i \(0.271786\pi\)
\(212\) 0 0
\(213\) −3.87933 + 26.8547i −0.265807 + 1.84005i
\(214\) 0 0
\(215\) 3.17921 5.50656i 0.216821 0.375544i
\(216\) 0 0
\(217\) −6.87788 14.3612i −0.466901 0.974898i
\(218\) 0 0
\(219\) 6.13201 2.45016i 0.414363 0.165566i
\(220\) 0 0
\(221\) −37.5257 + 21.6655i −2.52425 + 1.45738i
\(222\) 0 0
\(223\) 10.9876i 0.735785i 0.929868 + 0.367892i \(0.119921\pi\)
−0.929868 + 0.367892i \(0.880079\pi\)
\(224\) 0 0
\(225\) −1.16185 4.81714i −0.0774567 0.321143i
\(226\) 0 0
\(227\) −9.45418 16.3751i −0.627496 1.08686i −0.988052 0.154118i \(-0.950746\pi\)
0.360556 0.932737i \(-0.382587\pi\)
\(228\) 0 0
\(229\) 14.9744 + 8.64545i 0.989533 + 0.571307i 0.905135 0.425125i \(-0.139770\pi\)
0.0843986 + 0.996432i \(0.473103\pi\)
\(230\) 0 0
\(231\) −2.26228 7.23181i −0.148847 0.475818i
\(232\) 0 0
\(233\) −4.45119 2.56990i −0.291607 0.168360i 0.347059 0.937843i \(-0.387180\pi\)
−0.638666 + 0.769484i \(0.720514\pi\)
\(234\) 0 0
\(235\) −0.481223 0.833503i −0.0313916 0.0543718i
\(236\) 0 0
\(237\) 9.77358 12.4111i 0.634862 0.806190i
\(238\) 0 0
\(239\) 5.67983i 0.367398i 0.982983 + 0.183699i \(0.0588071\pi\)
−0.982983 + 0.183699i \(0.941193\pi\)
\(240\) 0 0
\(241\) 20.1604 11.6396i 1.29864 0.749773i 0.318475 0.947931i \(-0.396829\pi\)
0.980170 + 0.198158i \(0.0634960\pi\)
\(242\) 0 0
\(243\) −11.7470 10.2473i −0.753570 0.657368i
\(244\) 0 0
\(245\) 11.3170 14.0663i 0.723018 0.898664i
\(246\) 0 0
\(247\) −8.53973 + 14.7913i −0.543370 + 0.941145i
\(248\) 0 0
\(249\) 11.4026 + 1.64719i 0.722613 + 0.104386i
\(250\) 0 0
\(251\) 21.3799 1.34949 0.674744 0.738052i \(-0.264254\pi\)
0.674744 + 0.738052i \(0.264254\pi\)
\(252\) 0 0
\(253\) 0.476072 0.0299304
\(254\) 0 0
\(255\) −33.5407 4.84517i −2.10040 0.303416i
\(256\) 0 0
\(257\) 7.09305 12.2855i 0.442452 0.766349i −0.555419 0.831571i \(-0.687442\pi\)
0.997871 + 0.0652214i \(0.0207753\pi\)
\(258\) 0 0
\(259\) 3.83092 + 2.62399i 0.238042 + 0.163047i
\(260\) 0 0
\(261\) 1.74776 5.92321i 0.108184 0.366638i
\(262\) 0 0
\(263\) −1.90698 + 1.10100i −0.117590 + 0.0678904i −0.557641 0.830082i \(-0.688293\pi\)
0.440052 + 0.897973i \(0.354960\pi\)
\(264\) 0 0
\(265\) 20.0504i 1.23169i
\(266\) 0 0
\(267\) 15.5535 19.7509i 0.951860 1.20873i
\(268\) 0 0
\(269\) 7.33275 + 12.7007i 0.447086 + 0.774375i 0.998195 0.0600579i \(-0.0191285\pi\)
−0.551109 + 0.834433i \(0.685795\pi\)
\(270\) 0 0
\(271\) −17.6687 10.2010i −1.07330 0.619669i −0.144217 0.989546i \(-0.546066\pi\)
−0.929081 + 0.369877i \(0.879400\pi\)
\(272\) 0 0
\(273\) 25.5413 + 5.72277i 1.54583 + 0.346358i
\(274\) 0 0
\(275\) 2.36531 + 1.36561i 0.142633 + 0.0823495i
\(276\) 0 0
\(277\) −0.00535275 0.00927123i −0.000321615 0.000557054i 0.865865 0.500279i \(-0.166769\pi\)
−0.866186 + 0.499721i \(0.833436\pi\)
\(278\) 0 0
\(279\) 17.5519 4.23335i 1.05080 0.253444i
\(280\) 0 0
\(281\) 8.11712i 0.484227i 0.970248 + 0.242114i \(0.0778406\pi\)
−0.970248 + 0.242114i \(0.922159\pi\)
\(282\) 0 0
\(283\) 3.34466 1.93104i 0.198819 0.114788i −0.397285 0.917695i \(-0.630048\pi\)
0.596105 + 0.802907i \(0.296714\pi\)
\(284\) 0 0
\(285\) −12.4042 + 4.95632i −0.734760 + 0.293587i
\(286\) 0 0
\(287\) −0.871852 + 11.3070i −0.0514638 + 0.667434i
\(288\) 0 0
\(289\) −20.2757 + 35.1185i −1.19269 + 2.06580i
\(290\) 0 0
\(291\) 1.09885 7.60682i 0.0644160 0.445920i
\(292\) 0 0
\(293\) −5.75351 −0.336123 −0.168062 0.985776i \(-0.553751\pi\)
−0.168062 + 0.985776i \(0.553751\pi\)
\(294\) 0 0
\(295\) −25.2550 −1.47041
\(296\) 0 0
\(297\) 8.55467 0.799668i 0.496392 0.0464015i
\(298\) 0 0
\(299\) −0.822247 + 1.42417i −0.0475518 + 0.0823621i
\(300\) 0 0
\(301\) −0.501460 + 6.50344i −0.0289037 + 0.374852i
\(302\) 0 0
\(303\) −2.61731 6.55033i −0.150360 0.376307i
\(304\) 0 0
\(305\) −2.29487 + 1.32494i −0.131404 + 0.0758660i
\(306\) 0 0
\(307\) 23.9041i 1.36428i 0.731221 + 0.682140i \(0.238951\pi\)
−0.731221 + 0.682140i \(0.761049\pi\)
\(308\) 0 0
\(309\) −11.4758 9.03703i −0.652836 0.514099i
\(310\) 0 0
\(311\) 10.5789 + 18.3232i 0.599874 + 1.03901i 0.992839 + 0.119459i \(0.0381159\pi\)
−0.392965 + 0.919553i \(0.628551\pi\)
\(312\) 0 0
\(313\) −18.2861 10.5575i −1.03359 0.596746i −0.115582 0.993298i \(-0.536873\pi\)
−0.918012 + 0.396552i \(0.870207\pi\)
\(314\) 0 0
\(315\) 12.9247 + 15.8749i 0.728224 + 0.894450i
\(316\) 0 0
\(317\) 13.8698 + 8.00775i 0.779007 + 0.449760i 0.836078 0.548610i \(-0.184843\pi\)
−0.0570712 + 0.998370i \(0.518176\pi\)
\(318\) 0 0
\(319\) 1.70194 + 2.94785i 0.0952904 + 0.165048i
\(320\) 0 0
\(321\) 19.8507 + 15.6321i 1.10796 + 0.872498i
\(322\) 0 0
\(323\) 22.6846i 1.26221i
\(324\) 0 0
\(325\) −8.17048 + 4.71723i −0.453217 + 0.261665i
\(326\) 0 0
\(327\) 11.1181 + 27.8253i 0.614833 + 1.53874i
\(328\) 0 0
\(329\) 0.814561 + 0.557933i 0.0449082 + 0.0307599i
\(330\) 0 0
\(331\) 9.48985 16.4369i 0.521610 0.903454i −0.478074 0.878319i \(-0.658665\pi\)
0.999684 0.0251350i \(-0.00800157\pi\)
\(332\) 0 0
\(333\) −3.81538 + 3.62829i −0.209082 + 0.198829i
\(334\) 0 0
\(335\) −6.10115 −0.333341
\(336\) 0 0
\(337\) 0.151144 0.00823337 0.00411668 0.999992i \(-0.498690\pi\)
0.00411668 + 0.999992i \(0.498690\pi\)
\(338\) 0 0
\(339\) −0.990542 + 6.85703i −0.0537989 + 0.372423i
\(340\) 0 0
\(341\) −4.97579 + 8.61831i −0.269454 + 0.466708i
\(342\) 0 0
\(343\) −4.23778 + 18.0289i −0.228819 + 0.973469i
\(344\) 0 0
\(345\) −1.19433 + 0.477219i −0.0643008 + 0.0256926i
\(346\) 0 0
\(347\) 11.5977 6.69596i 0.622599 0.359458i −0.155281 0.987870i \(-0.549628\pi\)
0.777880 + 0.628412i \(0.216295\pi\)
\(348\) 0 0
\(349\) 13.4025i 0.717421i 0.933449 + 0.358710i \(0.116783\pi\)
−0.933449 + 0.358710i \(0.883217\pi\)
\(350\) 0 0
\(351\) −12.3830 + 26.9725i −0.660955 + 1.43969i
\(352\) 0 0
\(353\) −10.7469 18.6141i −0.571998 0.990729i −0.996361 0.0852371i \(-0.972835\pi\)
0.424363 0.905492i \(-0.360498\pi\)
\(354\) 0 0
\(355\) 34.9899 + 20.2014i 1.85707 + 1.07218i
\(356\) 0 0
\(357\) 33.1791 10.3792i 1.75602 0.549326i
\(358\) 0 0
\(359\) 24.4173 + 14.0974i 1.28870 + 0.744030i 0.978422 0.206616i \(-0.0662452\pi\)
0.310276 + 0.950647i \(0.399579\pi\)
\(360\) 0 0
\(361\) −5.02928 8.71097i −0.264699 0.458472i
\(362\) 0 0
\(363\) 8.85759 11.2479i 0.464903 0.590364i
\(364\) 0 0
\(365\) 9.83274i 0.514669i
\(366\) 0 0
\(367\) 19.6810 11.3628i 1.02734 0.593135i 0.111118 0.993807i \(-0.464557\pi\)
0.916221 + 0.400673i \(0.131224\pi\)
\(368\) 0 0
\(369\) −12.3333 3.63920i −0.642048 0.189449i
\(370\) 0 0
\(371\) −8.88441 18.5508i −0.461255 0.963110i
\(372\) 0 0
\(373\) 6.95699 12.0499i 0.360219 0.623918i −0.627778 0.778393i \(-0.716035\pi\)
0.987997 + 0.154475i \(0.0493686\pi\)
\(374\) 0 0
\(375\) 14.8034 + 2.13845i 0.764443 + 0.110429i
\(376\) 0 0
\(377\) −11.7580 −0.605569
\(378\) 0 0
\(379\) −20.8656 −1.07179 −0.535897 0.844283i \(-0.680027\pi\)
−0.535897 + 0.844283i \(0.680027\pi\)
\(380\) 0 0
\(381\) −28.5392 4.12267i −1.46211 0.211211i
\(382\) 0 0
\(383\) −1.23577 + 2.14042i −0.0631451 + 0.109371i −0.895870 0.444317i \(-0.853446\pi\)
0.832725 + 0.553687i \(0.186780\pi\)
\(384\) 0 0
\(385\) −11.2497 0.867429i −0.573337 0.0442083i
\(386\) 0 0
\(387\) −7.09373 2.09315i −0.360595 0.106401i
\(388\) 0 0
\(389\) 20.4245 11.7921i 1.03556 0.597882i 0.116989 0.993133i \(-0.462676\pi\)
0.918573 + 0.395251i \(0.129342\pi\)
\(390\) 0 0
\(391\) 2.18419i 0.110459i
\(392\) 0 0
\(393\) −17.7829 + 22.5819i −0.897027 + 1.13910i
\(394\) 0 0
\(395\) −11.7615 20.3716i −0.591788 1.02501i
\(396\) 0 0
\(397\) −1.79160 1.03438i −0.0899181 0.0519142i 0.454367 0.890815i \(-0.349866\pi\)
−0.544285 + 0.838901i \(0.683199\pi\)
\(398\) 0 0
\(399\) 9.28030 10.0820i 0.464596 0.504730i
\(400\) 0 0
\(401\) 6.46052 + 3.72998i 0.322623 + 0.186266i 0.652561 0.757736i \(-0.273695\pi\)
−0.329938 + 0.944003i \(0.607028\pi\)
\(402\) 0 0
\(403\) −17.1879 29.7702i −0.856188 1.48296i
\(404\) 0 0
\(405\) −20.6598 + 10.5814i −1.02659 + 0.525796i
\(406\) 0 0
\(407\) 2.90201i 0.143847i
\(408\) 0 0
\(409\) 29.2897 16.9104i 1.44828 0.836166i 0.449902 0.893078i \(-0.351459\pi\)
0.998379 + 0.0569122i \(0.0181255\pi\)
\(410\) 0 0
\(411\) −16.0034 + 6.39448i −0.789392 + 0.315416i
\(412\) 0 0
\(413\) 23.3662 11.1906i 1.14978 0.550654i
\(414\) 0 0
\(415\) 8.57764 14.8569i 0.421060 0.729297i
\(416\) 0 0
\(417\) −0.772504 + 5.34766i −0.0378297 + 0.261876i
\(418\) 0 0
\(419\) −15.2980 −0.747358 −0.373679 0.927558i \(-0.621904\pi\)
−0.373679 + 0.927558i \(0.621904\pi\)
\(420\) 0 0
\(421\) 11.8931 0.579633 0.289816 0.957082i \(-0.406406\pi\)
0.289816 + 0.957082i \(0.406406\pi\)
\(422\) 0 0
\(423\) −0.811257 + 0.771476i −0.0394447 + 0.0375105i
\(424\) 0 0
\(425\) −6.26534 + 10.8519i −0.303913 + 0.526393i
\(426\) 0 0
\(427\) 1.53615 2.24271i 0.0743393 0.108533i
\(428\) 0 0
\(429\) −6.06973 15.1907i −0.293049 0.733413i
\(430\) 0 0
\(431\) −14.9148 + 8.61109i −0.718423 + 0.414782i −0.814172 0.580624i \(-0.802809\pi\)
0.0957491 + 0.995405i \(0.469475\pi\)
\(432\) 0 0
\(433\) 1.55093i 0.0745329i 0.999305 + 0.0372664i \(0.0118650\pi\)
−0.999305 + 0.0372664i \(0.988135\pi\)
\(434\) 0 0
\(435\) −7.22466 5.68931i −0.346396 0.272782i
\(436\) 0 0
\(437\) 0.430463 + 0.745583i 0.0205918 + 0.0356661i
\(438\) 0 0
\(439\) −16.8278 9.71551i −0.803145 0.463696i 0.0414249 0.999142i \(-0.486810\pi\)
−0.844570 + 0.535446i \(0.820144\pi\)
\(440\) 0 0
\(441\) −18.9923 8.96064i −0.904395 0.426697i
\(442\) 0 0
\(443\) −3.08964 1.78380i −0.146793 0.0847510i 0.424805 0.905285i \(-0.360343\pi\)
−0.571598 + 0.820534i \(0.693676\pi\)
\(444\) 0 0
\(445\) −18.7171 32.4190i −0.887277 1.53681i
\(446\) 0 0
\(447\) 1.55100 + 1.22139i 0.0733597 + 0.0577697i
\(448\) 0 0
\(449\) 29.5796i 1.39595i 0.716124 + 0.697973i \(0.245915\pi\)
−0.716124 + 0.697973i \(0.754085\pi\)
\(450\) 0 0
\(451\) 6.13803 3.54379i 0.289028 0.166871i
\(452\) 0 0
\(453\) 8.20844 + 20.5433i 0.385666 + 0.965206i
\(454\) 0 0
\(455\) 22.0248 32.1554i 1.03254 1.50747i
\(456\) 0 0
\(457\) 11.2312 19.4530i 0.525374 0.909975i −0.474189 0.880423i \(-0.657259\pi\)
0.999563 0.0295520i \(-0.00940807\pi\)
\(458\) 0 0
\(459\) 3.66883 + 39.2483i 0.171246 + 1.83195i
\(460\) 0 0
\(461\) 9.31904 0.434031 0.217015 0.976168i \(-0.430368\pi\)
0.217015 + 0.976168i \(0.430368\pi\)
\(462\) 0 0
\(463\) 16.6243 0.772597 0.386298 0.922374i \(-0.373754\pi\)
0.386298 + 0.922374i \(0.373754\pi\)
\(464\) 0 0
\(465\) 3.84381 26.6088i 0.178253 1.23395i
\(466\) 0 0
\(467\) −6.06560 + 10.5059i −0.280683 + 0.486156i −0.971553 0.236822i \(-0.923894\pi\)
0.690871 + 0.722979i \(0.257227\pi\)
\(468\) 0 0
\(469\) 5.64484 2.70344i 0.260654 0.124833i
\(470\) 0 0
\(471\) −14.5245 + 5.80354i −0.669254 + 0.267413i
\(472\) 0 0
\(473\) 3.53039 2.03827i 0.162328 0.0937198i
\(474\) 0 0
\(475\) 4.93913i 0.226623i
\(476\) 0 0
\(477\) 22.6724 5.46838i 1.03810 0.250380i
\(478\) 0 0
\(479\) −13.2594 22.9660i −0.605839 1.04934i −0.991918 0.126878i \(-0.959504\pi\)
0.386080 0.922465i \(-0.373829\pi\)
\(480\) 0 0
\(481\) 8.68140 + 5.01221i 0.395838 + 0.228537i
\(482\) 0 0
\(483\) 0.893552 0.970742i 0.0406580 0.0441703i
\(484\) 0 0
\(485\) −9.91120 5.72223i −0.450044 0.259833i
\(486\) 0 0
\(487\) −17.5986 30.4817i −0.797469 1.38126i −0.921260 0.388948i \(-0.872839\pi\)
0.123791 0.992308i \(-0.460495\pi\)
\(488\) 0 0
\(489\) −0.106896 + 0.135744i −0.00483401 + 0.00613854i
\(490\) 0 0
\(491\) 32.5795i 1.47029i −0.677910 0.735145i \(-0.737114\pi\)
0.677910 0.735145i \(-0.262886\pi\)
\(492\) 0 0
\(493\) −13.5245 + 7.80840i −0.609115 + 0.351673i
\(494\) 0 0
\(495\) 3.62074 12.2708i 0.162740 0.551530i
\(496\) 0 0
\(497\) −41.3243 3.18639i −1.85365 0.142929i
\(498\) 0 0
\(499\) 2.46895 4.27635i 0.110525 0.191436i −0.805457 0.592655i \(-0.798080\pi\)
0.915982 + 0.401219i \(0.131413\pi\)
\(500\) 0 0
\(501\) −5.29041 0.764234i −0.236358 0.0341434i
\(502\) 0 0
\(503\) −16.7907 −0.748661 −0.374331 0.927295i \(-0.622127\pi\)
−0.374331 + 0.927295i \(0.622127\pi\)
\(504\) 0 0
\(505\) −10.5035 −0.467401
\(506\) 0 0
\(507\) 33.6411 + 4.85967i 1.49405 + 0.215826i
\(508\) 0 0
\(509\) 0.631490 1.09377i 0.0279903 0.0484806i −0.851691 0.524044i \(-0.824423\pi\)
0.879681 + 0.475564i \(0.157756\pi\)
\(510\) 0 0
\(511\) 4.35693 + 9.09735i 0.192739 + 0.402443i
\(512\) 0 0
\(513\) 8.98748 + 12.6745i 0.396807 + 0.559595i
\(514\) 0 0
\(515\) −18.8364 + 10.8752i −0.830029 + 0.479218i
\(516\) 0 0
\(517\) 0.617048i 0.0271378i
\(518\) 0 0
\(519\) −7.99485 + 10.1524i −0.350935 + 0.445640i
\(520\) 0 0
\(521\) 14.9945 + 25.9713i 0.656922 + 1.13782i 0.981408 + 0.191932i \(0.0614755\pi\)
−0.324486 + 0.945891i \(0.605191\pi\)
\(522\) 0 0
\(523\) −30.7587 17.7586i −1.34499 0.776528i −0.357451 0.933932i \(-0.616354\pi\)
−0.987534 + 0.157404i \(0.949688\pi\)
\(524\) 0 0
\(525\) 7.22408 2.25987i 0.315285 0.0986287i
\(526\) 0 0
\(527\) −39.5403 22.8286i −1.72240 0.994429i
\(528\) 0 0
\(529\) −11.4586 19.8468i −0.498198 0.862904i
\(530\) 0 0
\(531\) 6.88785 + 28.5577i 0.298907 + 1.23930i
\(532\) 0 0
\(533\) 24.4826i 1.06046i
\(534\) 0 0
\(535\) 32.5828 18.8117i 1.40868 0.813300i
\(536\) 0 0
\(537\) −4.85600 + 1.94031i −0.209552 + 0.0837304i
\(538\) 0 0
\(539\) 10.7927 4.18223i 0.464874 0.180141i
\(540\) 0 0
\(541\) 11.9158 20.6388i 0.512300 0.887330i −0.487598 0.873068i \(-0.662127\pi\)
0.999898 0.0142616i \(-0.00453975\pi\)
\(542\) 0 0
\(543\) −0.188835 + 1.30721i −0.00810369 + 0.0560978i
\(544\) 0 0
\(545\) 44.6181 1.91123
\(546\) 0 0
\(547\) −21.1040 −0.902342 −0.451171 0.892437i \(-0.648994\pi\)
−0.451171 + 0.892437i \(0.648994\pi\)
\(548\) 0 0
\(549\) 2.12409 + 2.23362i 0.0906539 + 0.0953284i
\(550\) 0 0
\(551\) −3.07778 + 5.33087i −0.131118 + 0.227103i
\(552\) 0 0
\(553\) 19.9086 + 13.6364i 0.846601 + 0.579879i
\(554\) 0 0
\(555\) 2.90901 + 7.28036i 0.123480 + 0.309034i
\(556\) 0 0
\(557\) −19.3020 + 11.1440i −0.817852 + 0.472187i −0.849675 0.527307i \(-0.823202\pi\)
0.0318235 + 0.999494i \(0.489869\pi\)
\(558\) 0 0
\(559\) 14.0816i 0.595588i
\(560\) 0 0
\(561\) −17.0696 13.4421i −0.720680 0.567525i
\(562\) 0 0
\(563\) 20.2197 + 35.0215i 0.852157 + 1.47598i 0.879258 + 0.476347i \(0.158039\pi\)
−0.0271005 + 0.999633i \(0.508627\pi\)
\(564\) 0 0
\(565\) 8.93427 + 5.15820i 0.375867 + 0.217007i
\(566\) 0 0
\(567\) 14.4259 18.9445i 0.605832 0.795593i
\(568\) 0 0
\(569\) −21.7717 12.5699i −0.912717 0.526957i −0.0314127 0.999506i \(-0.510001\pi\)
−0.881304 + 0.472549i \(0.843334\pi\)
\(570\) 0 0
\(571\) 0.655344 + 1.13509i 0.0274253 + 0.0475020i 0.879412 0.476061i \(-0.157936\pi\)
−0.851987 + 0.523563i \(0.824602\pi\)
\(572\) 0 0
\(573\) −1.66311 1.30967i −0.0694773 0.0547123i
\(574\) 0 0
\(575\) 0.475563i 0.0198324i
\(576\) 0 0
\(577\) 5.21739 3.01226i 0.217203 0.125402i −0.387452 0.921890i \(-0.626645\pi\)
0.604654 + 0.796488i \(0.293311\pi\)
\(578\) 0 0
\(579\) −15.1139 37.8255i −0.628112 1.57197i
\(580\) 0 0
\(581\) −1.35296 + 17.5465i −0.0561303 + 0.727953i
\(582\) 0 0
\(583\) −6.42740 + 11.1326i −0.266196 + 0.461065i
\(584\) 0 0
\(585\) 30.4546 + 32.0250i 1.25914 + 1.32407i
\(586\) 0 0
\(587\) 39.5131 1.63088 0.815439 0.578843i \(-0.196496\pi\)
0.815439 + 0.578843i \(0.196496\pi\)
\(588\) 0 0
\(589\) −17.9964 −0.741527
\(590\) 0 0
\(591\) −3.64797 + 25.2531i −0.150058 + 1.03877i
\(592\) 0 0
\(593\) 6.75855 11.7062i 0.277540 0.480714i −0.693232 0.720714i \(-0.743814\pi\)
0.970773 + 0.240000i \(0.0771474\pi\)
\(594\) 0 0
\(595\) 3.97971 51.6129i 0.163152 2.11592i
\(596\) 0 0
\(597\) 11.0697 4.42310i 0.453052 0.181025i
\(598\) 0 0
\(599\) −5.68762 + 3.28375i −0.232390 + 0.134170i −0.611674 0.791110i \(-0.709504\pi\)
0.379284 + 0.925280i \(0.376170\pi\)
\(600\) 0 0
\(601\) 10.0499i 0.409946i −0.978768 0.204973i \(-0.934289\pi\)
0.978768 0.204973i \(-0.0657106\pi\)
\(602\) 0 0
\(603\) 1.66398 + 6.89900i 0.0677623 + 0.280949i
\(604\) 0 0
\(605\) −10.6592 18.4623i −0.433360 0.750601i
\(606\) 0 0
\(607\) 0.673920 + 0.389088i 0.0273536 + 0.0157926i 0.513614 0.858021i \(-0.328306\pi\)
−0.486261 + 0.873814i \(0.661640\pi\)
\(608\) 0 0
\(609\) 9.20528 + 2.06253i 0.373017 + 0.0835778i
\(610\) 0 0
\(611\) 1.84591 + 1.06573i 0.0746774 + 0.0431150i
\(612\) 0 0
\(613\) −19.3349 33.4890i −0.780928 1.35261i −0.931402 0.363993i \(-0.881413\pi\)
0.150474 0.988614i \(-0.451920\pi\)
\(614\) 0 0
\(615\) −11.8463 + 15.0432i −0.477689 + 0.606602i
\(616\) 0 0
\(617\) 7.83523i 0.315434i 0.987484 + 0.157717i \(0.0504134\pi\)
−0.987484 + 0.157717i \(0.949587\pi\)
\(618\) 0 0
\(619\) −17.9235 + 10.3481i −0.720407 + 0.415927i −0.814902 0.579598i \(-0.803209\pi\)
0.0944957 + 0.995525i \(0.469876\pi\)
\(620\) 0 0
\(621\) 0.865358 + 1.22037i 0.0347256 + 0.0489716i
\(622\) 0 0
\(623\) 31.6823 + 21.7008i 1.26932 + 0.869422i
\(624\) 0 0
\(625\) 15.2652 26.4402i 0.610610 1.05761i
\(626\) 0 0
\(627\) −8.47599 1.22441i −0.338498 0.0488983i
\(628\) 0 0
\(629\) 13.3142 0.530874
\(630\) 0 0
\(631\) 7.21022 0.287034 0.143517 0.989648i \(-0.454159\pi\)
0.143517 + 0.989648i \(0.454159\pi\)
\(632\) 0 0
\(633\) −32.7246 4.72728i −1.30069 0.187892i
\(634\) 0 0
\(635\) −21.4686 + 37.1847i −0.851955 + 1.47563i
\(636\) 0 0
\(637\) −6.12940 + 39.5098i −0.242855 + 1.56543i
\(638\) 0 0
\(639\) 13.3003 45.0751i 0.526153 1.78315i
\(640\) 0 0
\(641\) 31.9156 18.4265i 1.26059 0.727802i 0.287401 0.957810i \(-0.407209\pi\)
0.973189 + 0.230009i \(0.0738755\pi\)
\(642\) 0 0
\(643\) 10.5183i 0.414801i 0.978256 + 0.207400i \(0.0665003\pi\)
−0.978256 + 0.207400i \(0.933500\pi\)
\(644\) 0 0
\(645\) −6.81361 + 8.65237i −0.268286 + 0.340687i
\(646\) 0 0
\(647\) −10.2057 17.6768i −0.401228 0.694948i 0.592646 0.805463i \(-0.298083\pi\)
−0.993874 + 0.110515i \(0.964750\pi\)
\(648\) 0 0
\(649\) −14.0224 8.09581i −0.550426 0.317789i
\(650\) 0 0
\(651\) 8.23413 + 26.3219i 0.322721 + 1.03164i
\(652\) 0 0
\(653\) −28.7382 16.5920i −1.12461 0.649295i −0.182038 0.983291i \(-0.558269\pi\)
−0.942574 + 0.333996i \(0.891603\pi\)
\(654\) 0 0
\(655\) 21.3999 + 37.0658i 0.836165 + 1.44828i
\(656\) 0 0
\(657\) −11.1186 + 2.68170i −0.433777 + 0.104623i
\(658\) 0 0
\(659\) 7.18286i 0.279804i 0.990165 + 0.139902i \(0.0446788\pi\)
−0.990165 + 0.139902i \(0.955321\pi\)
\(660\) 0 0
\(661\) −18.2360 + 10.5285i −0.709297 + 0.409513i −0.810801 0.585323i \(-0.800968\pi\)
0.101504 + 0.994835i \(0.467635\pi\)
\(662\) 0 0
\(663\) 69.6939 27.8475i 2.70669 1.08151i
\(664\) 0 0
\(665\) −8.81344 18.4026i −0.341771 0.713624i
\(666\) 0 0
\(667\) −0.296344 + 0.513282i −0.0114745 + 0.0198744i
\(668\) 0 0
\(669\) 2.72092 18.8356i 0.105197 0.728226i
\(670\) 0 0
\(671\) −1.69891 −0.0655856
\(672\) 0 0
\(673\) −21.5441 −0.830464 −0.415232 0.909715i \(-0.636300\pi\)
−0.415232 + 0.909715i \(0.636300\pi\)
\(674\) 0 0
\(675\) 0.798814 + 8.54553i 0.0307464 + 0.328918i
\(676\) 0 0
\(677\) −2.69876 + 4.67439i −0.103722 + 0.179651i −0.913215 0.407477i \(-0.866408\pi\)
0.809493 + 0.587129i \(0.199742\pi\)
\(678\) 0 0
\(679\) 11.7055 + 0.902573i 0.449215 + 0.0346376i
\(680\) 0 0
\(681\) 12.1518 + 30.4124i 0.465659 + 1.16540i
\(682\) 0 0
\(683\) −28.9007 + 16.6858i −1.10585 + 0.638465i −0.937752 0.347305i \(-0.887097\pi\)
−0.168101 + 0.985770i \(0.553764\pi\)
\(684\) 0 0
\(685\) 25.6617i 0.980483i
\(686\) 0 0
\(687\) −23.5290 18.5287i −0.897686 0.706914i
\(688\) 0 0
\(689\) −22.2022 38.4553i −0.845835 1.46503i
\(690\) 0 0
\(691\) 34.4696 + 19.9010i 1.31128 + 0.757070i 0.982309 0.187268i \(-0.0599634\pi\)
0.328975 + 0.944339i \(0.393297\pi\)
\(692\) 0 0
\(693\) 2.08728 + 12.9574i 0.0792893 + 0.492211i
\(694\) 0 0
\(695\) 6.96765 + 4.02278i 0.264298 + 0.152593i
\(696\) 0 0
\(697\) 16.2587 + 28.1609i 0.615842 + 1.06667i
\(698\) 0 0
\(699\) 6.99409 + 5.50774i 0.264541 + 0.208322i
\(700\) 0 0
\(701\) 10.6583i 0.402559i −0.979534 0.201280i \(-0.935490\pi\)
0.979534 0.201280i \(-0.0645100\pi\)
\(702\) 0 0
\(703\) 4.54488 2.62399i 0.171414 0.0989657i
\(704\) 0 0
\(705\) 0.618535 + 1.54801i 0.0232954 + 0.0583013i
\(706\) 0 0
\(707\) 9.71797 4.65416i 0.365482 0.175038i
\(708\) 0 0
\(709\) −17.5727 + 30.4367i −0.659955 + 1.14308i 0.320672 + 0.947190i \(0.396091\pi\)
−0.980627 + 0.195885i \(0.937242\pi\)
\(710\) 0 0
\(711\) −19.8279 + 18.8556i −0.743603 + 0.707140i
\(712\) 0 0
\(713\) −1.73278 −0.0648930
\(714\) 0 0
\(715\) −24.3584 −0.910954
\(716\) 0 0
\(717\) 1.40653 9.73669i 0.0525278 0.363623i
\(718\) 0 0
\(719\) 15.6309 27.0734i 0.582932 1.00967i −0.412197 0.911095i \(-0.635239\pi\)
0.995130 0.0985739i \(-0.0314281\pi\)
\(720\) 0 0
\(721\) 12.6087 18.4083i 0.469574 0.685560i
\(722\) 0 0
\(723\) −37.4425 + 14.9608i −1.39250 + 0.556400i
\(724\) 0 0
\(725\) −2.94470 + 1.70012i −0.109363 + 0.0631410i
\(726\) 0 0
\(727\) 39.7975i 1.47601i −0.674797 0.738003i \(-0.735769\pi\)
0.674797 0.738003i \(-0.264231\pi\)
\(728\) 0 0
\(729\) 17.5998 + 20.4756i 0.651843 + 0.758354i
\(730\) 0 0
\(731\) 9.35146 + 16.1972i 0.345876 + 0.599075i
\(732\) 0 0
\(733\) 10.5878 + 6.11289i 0.391071 + 0.225785i 0.682624 0.730770i \(-0.260839\pi\)
−0.291553 + 0.956555i \(0.594172\pi\)
\(734\) 0 0
\(735\) −22.8836 + 21.3108i −0.844075 + 0.786060i
\(736\) 0 0
\(737\) −3.38754 1.95580i −0.124782 0.0720428i
\(738\) 0 0
\(739\) 14.5001 + 25.1148i 0.533393 + 0.923864i 0.999239 + 0.0389981i \(0.0124166\pi\)
−0.465846 + 0.884866i \(0.654250\pi\)
\(740\) 0 0
\(741\) 18.3021 23.2413i 0.672346 0.853789i
\(742\) 0 0
\(743\) 33.4864i 1.22850i 0.789113 + 0.614248i \(0.210541\pi\)
−0.789113 + 0.614248i \(0.789459\pi\)
\(744\) 0 0
\(745\) 2.54580 1.46982i 0.0932710 0.0538501i
\(746\) 0 0
\(747\) −19.1392 5.64740i −0.700265 0.206628i
\(748\) 0 0
\(749\) −21.8104 + 31.8423i −0.796934 + 1.16349i
\(750\) 0 0
\(751\) 5.86021 10.1502i 0.213842 0.370385i −0.739072 0.673627i \(-0.764736\pi\)
0.952914 + 0.303242i \(0.0980689\pi\)
\(752\) 0 0
\(753\) −36.6507 5.29443i −1.33562 0.192940i
\(754\) 0 0
\(755\) 32.9413 1.19886
\(756\) 0 0
\(757\) 11.2688 0.409571 0.204785 0.978807i \(-0.434350\pi\)
0.204785 + 0.978807i \(0.434350\pi\)
\(758\) 0 0
\(759\) −0.816109 0.117892i −0.0296229 0.00427922i
\(760\) 0 0
\(761\) 10.0633 17.4301i 0.364793 0.631841i −0.623950 0.781465i \(-0.714473\pi\)
0.988743 + 0.149624i \(0.0478063\pi\)
\(762\) 0 0
\(763\) −41.2811 + 19.7705i −1.49448 + 0.715739i
\(764\) 0 0
\(765\) 56.2975 + 16.6117i 2.03544 + 0.600599i
\(766\) 0 0
\(767\) 48.4374 27.9654i 1.74897 1.00977i
\(768\) 0 0
\(769\) 7.95157i 0.286741i 0.989669 + 0.143370i \(0.0457940\pi\)
−0.989669 + 0.143370i \(0.954206\pi\)
\(770\) 0 0
\(771\) −15.2016 + 19.3040i −0.547473 + 0.695218i
\(772\) 0 0
\(773\) 15.8927 + 27.5269i 0.571620 + 0.990075i 0.996400 + 0.0847784i \(0.0270182\pi\)
−0.424780 + 0.905297i \(0.639648\pi\)
\(774\) 0 0
\(775\) −8.60911 4.97047i −0.309248 0.178545i
\(776\) 0 0
\(777\) −5.91739 5.44687i −0.212285 0.195405i
\(778\) 0 0
\(779\) 11.1000 + 6.40857i 0.397698 + 0.229611i
\(780\) 0 0
\(781\) 12.9516 + 22.4329i 0.463446 + 0.802712i
\(782\) 0 0
\(783\) −4.46291 + 9.72110i −0.159492 + 0.347404i
\(784\) 0 0
\(785\) 23.2902i 0.831264i
\(786\) 0 0
\(787\) −26.3569 + 15.2172i −0.939523 + 0.542434i −0.889811 0.456330i \(-0.849164\pi\)
−0.0497122 + 0.998764i \(0.515830\pi\)
\(788\) 0 0
\(789\) 3.54171 1.41516i 0.126088 0.0503809i
\(790\) 0 0
\(791\) −10.5517 0.813608i −0.375175 0.0289286i
\(792\) 0 0
\(793\) 2.93427 5.08230i 0.104199 0.180478i
\(794\) 0 0
\(795\) 4.96519 34.3715i 0.176097 1.21903i
\(796\) 0 0
\(797\) 40.0924 1.42015 0.710074 0.704127i \(-0.248662\pi\)
0.710074 + 0.704127i \(0.248662\pi\)
\(798\) 0 0
\(799\) 2.83098 0.100153
\(800\) 0 0
\(801\) −31.5537 + 30.0065i −1.11490 + 1.06023i
\(802\) 0 0
\(803\) 3.15201 5.45944i 0.111232 0.192659i
\(804\) 0 0
\(805\) −0.848601 1.77190i −0.0299093 0.0624511i
\(806\) 0 0
\(807\) −9.42508 23.5881i −0.331778 0.830341i
\(808\) 0 0
\(809\) 34.0306 19.6476i 1.19645 0.690773i 0.236691 0.971585i \(-0.423937\pi\)
0.959763 + 0.280812i \(0.0906039\pi\)
\(810\) 0 0
\(811\) 23.6789i 0.831480i 0.909484 + 0.415740i \(0.136477\pi\)
−0.909484 + 0.415740i \(0.863523\pi\)
\(812\) 0 0
\(813\) 27.7626 + 21.8626i 0.973676 + 0.766755i
\(814\) 0 0
\(815\) 0.128639 + 0.222809i 0.00450602 + 0.00780466i
\(816\) 0 0
\(817\) 6.38434 + 3.68600i 0.223360 + 0.128957i
\(818\) 0 0
\(819\) −42.3673 16.1352i −1.48043 0.563811i
\(820\) 0 0
\(821\) −37.4772 21.6374i −1.30796 0.755152i −0.326206 0.945299i \(-0.605770\pi\)
−0.981756 + 0.190146i \(0.939104\pi\)
\(822\) 0 0
\(823\) −0.484756 0.839623i −0.0168975 0.0292674i 0.857453 0.514562i \(-0.172046\pi\)
−0.874351 + 0.485295i \(0.838712\pi\)
\(824\) 0 0
\(825\) −3.71657 2.92674i −0.129394 0.101896i
\(826\) 0 0
\(827\) 43.9510i 1.52833i −0.645023 0.764163i \(-0.723152\pi\)
0.645023 0.764163i \(-0.276848\pi\)
\(828\) 0 0
\(829\) −6.57119 + 3.79388i −0.228227 + 0.131767i −0.609754 0.792591i \(-0.708732\pi\)
0.381527 + 0.924358i \(0.375398\pi\)
\(830\) 0 0
\(831\) 0.00688009 + 0.0172188i 0.000238668 + 0.000597313i
\(832\) 0 0
\(833\) 19.1878 + 49.5161i 0.664818 + 1.71563i
\(834\) 0 0
\(835\) −3.97971 + 6.89306i −0.137724 + 0.238544i
\(836\) 0 0
\(837\) −31.1368 + 2.91058i −1.07624 + 0.100604i
\(838\) 0 0
\(839\) 8.87477 0.306391 0.153196 0.988196i \(-0.451044\pi\)
0.153196 + 0.988196i \(0.451044\pi\)
\(840\) 0 0
\(841\) 24.7623 0.853873
\(842\) 0 0
\(843\) 2.01009 13.9148i 0.0692311 0.479252i
\(844\) 0 0
\(845\) 25.3065 43.8322i 0.870570 1.50787i
\(846\) 0 0
\(847\) 18.0428 + 12.3584i 0.619957 + 0.424639i
\(848\) 0 0
\(849\) −6.21179 + 2.48204i −0.213188 + 0.0851834i
\(850\) 0 0
\(851\) 0.437604 0.252651i 0.0150009 0.00866075i
\(852\) 0 0
\(853\) 0.208510i 0.00713924i −0.999994 0.00356962i \(-0.998864\pi\)
0.999994 0.00356962i \(-0.00113625\pi\)
\(854\) 0 0
\(855\) 22.4913 5.42470i 0.769187 0.185521i
\(856\) 0 0
\(857\) 14.9945 + 25.9713i 0.512204 + 0.887163i 0.999900 + 0.0141492i \(0.00450398\pi\)
−0.487696 + 0.873013i \(0.662163\pi\)
\(858\) 0 0
\(859\) −17.9227 10.3477i −0.611513 0.353057i 0.162044 0.986783i \(-0.448191\pi\)
−0.773557 + 0.633726i \(0.781525\pi\)
\(860\) 0 0
\(861\) 4.29461 19.1673i 0.146360 0.653219i
\(862\) 0 0
\(863\) 14.8134 + 8.55253i 0.504254 + 0.291131i 0.730469 0.682946i \(-0.239302\pi\)
−0.226214 + 0.974078i \(0.572635\pi\)
\(864\) 0 0
\(865\) 9.62102 + 16.6641i 0.327124 + 0.566596i
\(866\) 0 0
\(867\) 43.4543 55.1812i 1.47579 1.87405i
\(868\) 0 0
\(869\) 15.0812i 0.511596i
\(870\) 0 0
\(871\) 11.7016 6.75591i 0.396493 0.228915i
\(872\) 0 0
\(873\) −3.76744 + 12.7679i −0.127508 + 0.432129i
\(874\) 0 0
\(875\) −1.75647 + 22.7796i −0.0593795 + 0.770092i
\(876\) 0 0
\(877\) −9.71713 + 16.8306i −0.328124 + 0.568328i −0.982140 0.188153i \(-0.939750\pi\)
0.654015 + 0.756481i \(0.273083\pi\)
\(878\) 0 0
\(879\) 9.86299 + 1.42477i 0.332670 + 0.0480564i
\(880\) 0 0
\(881\) −30.0526 −1.01250 −0.506249 0.862387i \(-0.668968\pi\)
−0.506249 + 0.862387i \(0.668968\pi\)
\(882\) 0 0
\(883\) 16.8382 0.566649 0.283324 0.959024i \(-0.408563\pi\)
0.283324 + 0.959024i \(0.408563\pi\)
\(884\) 0 0
\(885\) 43.2936 + 6.25405i 1.45530 + 0.210228i
\(886\) 0 0
\(887\) −13.3283 + 23.0853i −0.447520 + 0.775128i −0.998224 0.0595728i \(-0.981026\pi\)
0.550704 + 0.834701i \(0.314359\pi\)
\(888\) 0 0
\(889\) 3.38626 43.9164i 0.113572 1.47291i
\(890\) 0 0
\(891\) −14.8629 0.747604i −0.497927 0.0250457i
\(892\) 0 0
\(893\) 0.966369 0.557933i 0.0323383 0.0186705i
\(894\) 0 0
\(895\) 7.78665i 0.260279i
\(896\) 0 0
\(897\) 1.76222 2.23778i 0.0588388 0.0747174i
\(898\) 0 0
\(899\) −6.19462 10.7294i −0.206602 0.357846i
\(900\) 0 0
\(901\) −51.0756 29.4885i −1.70157 0.982404i
\(902\) 0 0
\(903\) 2.47012 11.0244i 0.0822003 0.366869i
\(904\) 0 0
\(905\) 1.70321 + 0.983349i 0.0566166 + 0.0326876i
\(906\) 0 0
\(907\) 4.22753 + 7.32230i 0.140373 + 0.243133i 0.927637 0.373483i \(-0.121837\pi\)
−0.787264 + 0.616616i \(0.788503\pi\)
\(908\) 0 0
\(909\) 2.86464 + 11.8771i 0.0950143 + 0.393938i
\(910\) 0 0
\(911\) 15.4171i 0.510792i −0.966837 0.255396i \(-0.917794\pi\)
0.966837 0.255396i \(-0.0822058\pi\)
\(912\) 0 0
\(913\) 9.52513 5.49934i 0.315236 0.182002i
\(914\) 0 0
\(915\) 4.26210 1.70300i 0.140901 0.0562995i
\(916\) 0 0
\(917\) −36.2234 24.8112i −1.19620 0.819338i
\(918\) 0 0
\(919\) −28.7933 + 49.8714i −0.949802 + 1.64511i −0.203964 + 0.978978i \(0.565383\pi\)
−0.745838 + 0.666127i \(0.767951\pi\)
\(920\) 0 0
\(921\) 5.91951 40.9778i 0.195055 1.35026i
\(922\) 0 0
\(923\) −89.4776 −2.94519
\(924\) 0 0
\(925\) 2.89891 0.0953156
\(926\) 0 0
\(927\) 17.4346 + 18.3336i 0.572628 + 0.602155i
\(928\) 0 0
\(929\) −23.6879 + 41.0287i −0.777176 + 1.34611i 0.156388 + 0.987696i \(0.450015\pi\)
−0.933563 + 0.358412i \(0.883318\pi\)
\(930\) 0 0
\(931\) 16.3086 + 13.1210i 0.534492 + 0.430024i
\(932\) 0 0
\(933\) −13.5975 34.0303i −0.445161 1.11410i
\(934\) 0 0
\(935\) −28.0180 + 16.1762i −0.916287 + 0.529019i
\(936\) 0 0
\(937\) 40.6136i 1.32679i 0.748270 + 0.663394i \(0.230885\pi\)
−0.748270 + 0.663394i \(0.769115\pi\)
\(938\) 0 0
\(939\) 28.7327 + 22.6266i 0.937657 + 0.738391i
\(940\) 0 0
\(941\) 14.9142 + 25.8322i 0.486189 + 0.842105i 0.999874 0.0158745i \(-0.00505322\pi\)
−0.513685 + 0.857979i \(0.671720\pi\)
\(942\) 0 0
\(943\) 1.06876 + 0.617048i 0.0348036 + 0.0200939i
\(944\) 0 0
\(945\) −18.2251 30.4143i −0.592861 0.989377i
\(946\) 0 0
\(947\) 35.1139 + 20.2730i 1.14105 + 0.658785i 0.946690 0.322145i \(-0.104404\pi\)
0.194359 + 0.980930i \(0.437737\pi\)
\(948\) 0 0
\(949\) 10.8880 + 18.8585i 0.353439 + 0.612174i
\(950\) 0 0
\(951\) −21.7934 17.1620i −0.706701 0.556516i
\(952\) 0 0
\(953\) 36.7169i 1.18938i −0.803956 0.594688i \(-0.797276\pi\)
0.803956 0.594688i \(-0.202724\pi\)
\(954\) 0 0
\(955\) −2.72982 + 1.57606i −0.0883348 + 0.0510001i
\(956\) 0 0
\(957\) −2.18757 5.47483i −0.0707142 0.176976i
\(958\) 0 0
\(959\) −11.3708 23.7425i −0.367182 0.766684i
\(960\) 0 0
\(961\) 2.61057 4.52163i 0.0842118 0.145859i
\(962\) 0 0
\(963\) −30.1581 31.7131i −0.971830 1.02194i
\(964\) 0 0
\(965\) −60.6536 −1.95251
\(966\) 0 0
\(967\) −30.1106 −0.968290 −0.484145 0.874988i \(-0.660869\pi\)
−0.484145 + 0.874988i \(0.660869\pi\)
\(968\) 0 0
\(969\) 5.61752 38.8873i 0.180461 1.24924i
\(970\) 0 0
\(971\) −11.1290 + 19.2760i −0.357147 + 0.618597i −0.987483 0.157726i \(-0.949584\pi\)
0.630336 + 0.776322i \(0.282917\pi\)
\(972\) 0 0
\(973\) −8.22904 0.634516i −0.263811 0.0203417i
\(974\) 0 0
\(975\) 15.1745 6.06324i 0.485972 0.194179i
\(976\) 0 0
\(977\) −48.3918 + 27.9390i −1.54819 + 0.893849i −0.549912 + 0.835223i \(0.685339\pi\)
−0.998280 + 0.0586266i \(0.981328\pi\)
\(978\) 0 0
\(979\) 24.0000i 0.767044i
\(980\) 0 0
\(981\) −12.1688 50.4529i −0.388519 1.61084i
\(982\) 0 0
\(983\) −21.8878 37.9109i −0.698114 1.20917i −0.969120 0.246591i \(-0.920690\pi\)
0.271006 0.962578i \(-0.412644\pi\)
\(984\) 0 0
\(985\) 32.9032 + 18.9966i 1.04838 + 0.605284i
\(986\) 0 0
\(987\) −1.25820 1.15816i −0.0400490 0.0368645i
\(988\) 0 0
\(989\) 0.614715 + 0.354906i 0.0195468 + 0.0112853i
\(990\) 0 0
\(991\) −11.7736 20.3924i −0.374000 0.647787i 0.616177 0.787608i \(-0.288681\pi\)
−0.990177 + 0.139821i \(0.955347\pi\)
\(992\) 0 0
\(993\) −20.3384 + 25.8271i −0.645420 + 0.819597i
\(994\) 0 0
\(995\) 17.7504i 0.562724i
\(996\) 0 0
\(997\) −16.4923 + 9.52186i −0.522318 + 0.301560i −0.737882 0.674929i \(-0.764174\pi\)
0.215565 + 0.976490i \(0.430841\pi\)
\(998\) 0 0
\(999\) 7.43904 5.27500i 0.235361 0.166894i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 336.2.bc.f.257.1 16
3.2 odd 2 inner 336.2.bc.f.257.3 16
4.3 odd 2 168.2.u.a.89.8 yes 16
7.2 even 3 2352.2.k.i.881.11 16
7.3 odd 6 inner 336.2.bc.f.17.3 16
7.5 odd 6 2352.2.k.i.881.6 16
12.11 even 2 168.2.u.a.89.6 yes 16
21.2 odd 6 2352.2.k.i.881.5 16
21.5 even 6 2352.2.k.i.881.12 16
21.17 even 6 inner 336.2.bc.f.17.1 16
28.3 even 6 168.2.u.a.17.6 16
28.11 odd 6 1176.2.u.b.521.3 16
28.19 even 6 1176.2.k.a.881.11 16
28.23 odd 6 1176.2.k.a.881.6 16
28.27 even 2 1176.2.u.b.1097.1 16
84.11 even 6 1176.2.u.b.521.1 16
84.23 even 6 1176.2.k.a.881.12 16
84.47 odd 6 1176.2.k.a.881.5 16
84.59 odd 6 168.2.u.a.17.8 yes 16
84.83 odd 2 1176.2.u.b.1097.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.2.u.a.17.6 16 28.3 even 6
168.2.u.a.17.8 yes 16 84.59 odd 6
168.2.u.a.89.6 yes 16 12.11 even 2
168.2.u.a.89.8 yes 16 4.3 odd 2
336.2.bc.f.17.1 16 21.17 even 6 inner
336.2.bc.f.17.3 16 7.3 odd 6 inner
336.2.bc.f.257.1 16 1.1 even 1 trivial
336.2.bc.f.257.3 16 3.2 odd 2 inner
1176.2.k.a.881.5 16 84.47 odd 6
1176.2.k.a.881.6 16 28.23 odd 6
1176.2.k.a.881.11 16 28.19 even 6
1176.2.k.a.881.12 16 84.23 even 6
1176.2.u.b.521.1 16 84.11 even 6
1176.2.u.b.521.3 16 28.11 odd 6
1176.2.u.b.1097.1 16 28.27 even 2
1176.2.u.b.1097.3 16 84.83 odd 2
2352.2.k.i.881.5 16 21.2 odd 6
2352.2.k.i.881.6 16 7.5 odd 6
2352.2.k.i.881.11 16 7.2 even 3
2352.2.k.i.881.12 16 21.5 even 6