Properties

Label 335.2.c
Level 335
Weight 2
Character orbit c
Rep. character \(\chi_{335}(269,\cdot)\)
Character field \(\Q\)
Dimension 32
Newform subspaces 1
Sturm bound 68
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 335 = 5 \cdot 67 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 335.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(68\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(335, [\chi])\).

Total New Old
Modular forms 36 32 4
Cusp forms 32 32 0
Eisenstein series 4 0 4

Trace form

\( 32q - 34q^{4} - 32q^{9} + O(q^{10}) \) \( 32q - 34q^{4} - 32q^{9} + 8q^{10} + 4q^{11} - 4q^{14} + 2q^{15} + 30q^{16} - 4q^{19} - 18q^{20} - 16q^{21} + 28q^{24} - 4q^{25} + 8q^{26} + 12q^{29} - 6q^{30} - 28q^{34} - 2q^{35} + 50q^{36} + 24q^{39} - 2q^{40} + 16q^{41} + 8q^{44} - 16q^{45} - 32q^{46} + 8q^{49} - 12q^{50} + 12q^{51} - 4q^{54} - 52q^{55} + 4q^{56} + 8q^{59} - 6q^{60} - 8q^{61} - 66q^{64} - 14q^{65} + 52q^{66} - 40q^{69} + 34q^{70} - 8q^{71} - 12q^{74} - 18q^{75} + 52q^{76} + 36q^{79} + 44q^{80} + 8q^{81} - 14q^{84} + 18q^{85} + 6q^{86} + 52q^{89} - 4q^{90} + 12q^{91} - 20q^{95} - 86q^{96} - 16q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(335, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
335.2.c.a \(32\) \(2.675\) None \(0\) \(0\) \(0\) \(0\)

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database