Properties

Label 3344.2.a.x.1.1
Level $3344$
Weight $2$
Character 3344.1
Self dual yes
Analytic conductor $26.702$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3344,2,Mod(1,3344)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3344, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3344.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3344 = 2^{4} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3344.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.7019744359\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 12x^{4} + 28x^{3} + 16x^{2} - 60x + 27 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 836)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-3.25580\) of defining polynomial
Character \(\chi\) \(=\) 3344.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.25580 q^{3} -2.84405 q^{5} +1.37411 q^{7} +7.60023 q^{9} +O(q^{10})\) \(q-3.25580 q^{3} -2.84405 q^{5} +1.37411 q^{7} +7.60023 q^{9} -1.00000 q^{11} +4.50348 q^{13} +9.25967 q^{15} +8.04165 q^{17} -1.00000 q^{19} -4.47381 q^{21} +1.93269 q^{23} +3.08863 q^{25} -14.9774 q^{27} -6.01198 q^{29} +2.25270 q^{31} +3.25580 q^{33} -3.90803 q^{35} +6.40263 q^{37} -14.6624 q^{39} -4.47806 q^{41} -2.91137 q^{43} -21.6155 q^{45} -11.0070 q^{47} -5.11183 q^{49} -26.1820 q^{51} -2.68887 q^{53} +2.84405 q^{55} +3.25580 q^{57} +13.7377 q^{59} +0.975342 q^{61} +10.4435 q^{63} -12.8081 q^{65} +6.49551 q^{67} -6.29244 q^{69} +15.7674 q^{71} +4.99924 q^{73} -10.0560 q^{75} -1.37411 q^{77} +4.33532 q^{79} +25.9629 q^{81} -4.62489 q^{83} -22.8709 q^{85} +19.5738 q^{87} -15.6624 q^{89} +6.18826 q^{91} -7.33433 q^{93} +2.84405 q^{95} -0.0256605 q^{97} -7.60023 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{3} - 2 q^{7} + 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 2 q^{3} - 2 q^{7} + 10 q^{9} - 6 q^{11} + 2 q^{13} + 12 q^{15} + 12 q^{17} - 6 q^{19} + 2 q^{21} + 2 q^{23} + 26 q^{25} - 16 q^{27} + 4 q^{29} + 20 q^{31} - 2 q^{33} - 20 q^{35} + 22 q^{37} - 8 q^{39} - 2 q^{41} - 10 q^{43} - 6 q^{45} - 16 q^{47} + 48 q^{49} - 36 q^{51} + 12 q^{53} - 2 q^{57} + 14 q^{59} + 12 q^{61} + 4 q^{63} + 10 q^{65} + 12 q^{67} + 30 q^{69} + 30 q^{71} + 24 q^{73} + 50 q^{75} + 2 q^{77} + 10 q^{81} + 14 q^{83} + 12 q^{85} + 30 q^{87} - 14 q^{89} - 20 q^{91} + 14 q^{93} - 46 q^{97} - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.25580 −1.87974 −0.939869 0.341536i \(-0.889053\pi\)
−0.939869 + 0.341536i \(0.889053\pi\)
\(4\) 0 0
\(5\) −2.84405 −1.27190 −0.635949 0.771731i \(-0.719391\pi\)
−0.635949 + 0.771731i \(0.719391\pi\)
\(6\) 0 0
\(7\) 1.37411 0.519363 0.259682 0.965694i \(-0.416382\pi\)
0.259682 + 0.965694i \(0.416382\pi\)
\(8\) 0 0
\(9\) 7.60023 2.53341
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) 4.50348 1.24904 0.624521 0.781008i \(-0.285294\pi\)
0.624521 + 0.781008i \(0.285294\pi\)
\(14\) 0 0
\(15\) 9.25967 2.39084
\(16\) 0 0
\(17\) 8.04165 1.95039 0.975194 0.221353i \(-0.0710474\pi\)
0.975194 + 0.221353i \(0.0710474\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) −4.47381 −0.976266
\(22\) 0 0
\(23\) 1.93269 0.402993 0.201496 0.979489i \(-0.435420\pi\)
0.201496 + 0.979489i \(0.435420\pi\)
\(24\) 0 0
\(25\) 3.08863 0.617727
\(26\) 0 0
\(27\) −14.9774 −2.88241
\(28\) 0 0
\(29\) −6.01198 −1.11640 −0.558198 0.829707i \(-0.688507\pi\)
−0.558198 + 0.829707i \(0.688507\pi\)
\(30\) 0 0
\(31\) 2.25270 0.404596 0.202298 0.979324i \(-0.435159\pi\)
0.202298 + 0.979324i \(0.435159\pi\)
\(32\) 0 0
\(33\) 3.25580 0.566762
\(34\) 0 0
\(35\) −3.90803 −0.660577
\(36\) 0 0
\(37\) 6.40263 1.05259 0.526293 0.850303i \(-0.323581\pi\)
0.526293 + 0.850303i \(0.323581\pi\)
\(38\) 0 0
\(39\) −14.6624 −2.34787
\(40\) 0 0
\(41\) −4.47806 −0.699356 −0.349678 0.936870i \(-0.613709\pi\)
−0.349678 + 0.936870i \(0.613709\pi\)
\(42\) 0 0
\(43\) −2.91137 −0.443979 −0.221990 0.975049i \(-0.571255\pi\)
−0.221990 + 0.975049i \(0.571255\pi\)
\(44\) 0 0
\(45\) −21.6155 −3.22224
\(46\) 0 0
\(47\) −11.0070 −1.60553 −0.802766 0.596295i \(-0.796639\pi\)
−0.802766 + 0.596295i \(0.796639\pi\)
\(48\) 0 0
\(49\) −5.11183 −0.730262
\(50\) 0 0
\(51\) −26.1820 −3.66622
\(52\) 0 0
\(53\) −2.68887 −0.369344 −0.184672 0.982800i \(-0.559122\pi\)
−0.184672 + 0.982800i \(0.559122\pi\)
\(54\) 0 0
\(55\) 2.84405 0.383492
\(56\) 0 0
\(57\) 3.25580 0.431241
\(58\) 0 0
\(59\) 13.7377 1.78850 0.894250 0.447568i \(-0.147710\pi\)
0.894250 + 0.447568i \(0.147710\pi\)
\(60\) 0 0
\(61\) 0.975342 0.124880 0.0624399 0.998049i \(-0.480112\pi\)
0.0624399 + 0.998049i \(0.480112\pi\)
\(62\) 0 0
\(63\) 10.4435 1.31576
\(64\) 0 0
\(65\) −12.8081 −1.58865
\(66\) 0 0
\(67\) 6.49551 0.793553 0.396777 0.917915i \(-0.370129\pi\)
0.396777 + 0.917915i \(0.370129\pi\)
\(68\) 0 0
\(69\) −6.29244 −0.757521
\(70\) 0 0
\(71\) 15.7674 1.87125 0.935623 0.353001i \(-0.114839\pi\)
0.935623 + 0.353001i \(0.114839\pi\)
\(72\) 0 0
\(73\) 4.99924 0.585116 0.292558 0.956248i \(-0.405493\pi\)
0.292558 + 0.956248i \(0.405493\pi\)
\(74\) 0 0
\(75\) −10.0560 −1.16116
\(76\) 0 0
\(77\) −1.37411 −0.156594
\(78\) 0 0
\(79\) 4.33532 0.487762 0.243881 0.969805i \(-0.421579\pi\)
0.243881 + 0.969805i \(0.421579\pi\)
\(80\) 0 0
\(81\) 25.9629 2.88476
\(82\) 0 0
\(83\) −4.62489 −0.507648 −0.253824 0.967250i \(-0.581688\pi\)
−0.253824 + 0.967250i \(0.581688\pi\)
\(84\) 0 0
\(85\) −22.8709 −2.48070
\(86\) 0 0
\(87\) 19.5738 2.09853
\(88\) 0 0
\(89\) −15.6624 −1.66022 −0.830108 0.557603i \(-0.811721\pi\)
−0.830108 + 0.557603i \(0.811721\pi\)
\(90\) 0 0
\(91\) 6.18826 0.648706
\(92\) 0 0
\(93\) −7.33433 −0.760535
\(94\) 0 0
\(95\) 2.84405 0.291794
\(96\) 0 0
\(97\) −0.0256605 −0.00260543 −0.00130271 0.999999i \(-0.500415\pi\)
−0.00130271 + 0.999999i \(0.500415\pi\)
\(98\) 0 0
\(99\) −7.60023 −0.763852
\(100\) 0 0
\(101\) −8.15805 −0.811756 −0.405878 0.913927i \(-0.633034\pi\)
−0.405878 + 0.913927i \(0.633034\pi\)
\(102\) 0 0
\(103\) −0.718539 −0.0707998 −0.0353999 0.999373i \(-0.511270\pi\)
−0.0353999 + 0.999373i \(0.511270\pi\)
\(104\) 0 0
\(105\) 12.7238 1.24171
\(106\) 0 0
\(107\) 8.00621 0.773989 0.386995 0.922082i \(-0.373513\pi\)
0.386995 + 0.922082i \(0.373513\pi\)
\(108\) 0 0
\(109\) 14.1835 1.35853 0.679265 0.733893i \(-0.262299\pi\)
0.679265 + 0.733893i \(0.262299\pi\)
\(110\) 0 0
\(111\) −20.8457 −1.97859
\(112\) 0 0
\(113\) −2.09274 −0.196868 −0.0984340 0.995144i \(-0.531383\pi\)
−0.0984340 + 0.995144i \(0.531383\pi\)
\(114\) 0 0
\(115\) −5.49666 −0.512566
\(116\) 0 0
\(117\) 34.2275 3.16434
\(118\) 0 0
\(119\) 11.0501 1.01296
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 14.5797 1.31461
\(124\) 0 0
\(125\) 5.43603 0.486213
\(126\) 0 0
\(127\) −11.1750 −0.991625 −0.495813 0.868430i \(-0.665130\pi\)
−0.495813 + 0.868430i \(0.665130\pi\)
\(128\) 0 0
\(129\) 9.47883 0.834564
\(130\) 0 0
\(131\) −16.4227 −1.43486 −0.717430 0.696630i \(-0.754682\pi\)
−0.717430 + 0.696630i \(0.754682\pi\)
\(132\) 0 0
\(133\) −1.37411 −0.119150
\(134\) 0 0
\(135\) 42.5966 3.66613
\(136\) 0 0
\(137\) −15.2891 −1.30624 −0.653118 0.757256i \(-0.726539\pi\)
−0.653118 + 0.757256i \(0.726539\pi\)
\(138\) 0 0
\(139\) 8.58178 0.727897 0.363949 0.931419i \(-0.381428\pi\)
0.363949 + 0.931419i \(0.381428\pi\)
\(140\) 0 0
\(141\) 35.8365 3.01798
\(142\) 0 0
\(143\) −4.50348 −0.376600
\(144\) 0 0
\(145\) 17.0984 1.41994
\(146\) 0 0
\(147\) 16.6431 1.37270
\(148\) 0 0
\(149\) 3.94686 0.323340 0.161670 0.986845i \(-0.448312\pi\)
0.161670 + 0.986845i \(0.448312\pi\)
\(150\) 0 0
\(151\) −11.8893 −0.967540 −0.483770 0.875195i \(-0.660733\pi\)
−0.483770 + 0.875195i \(0.660733\pi\)
\(152\) 0 0
\(153\) 61.1184 4.94113
\(154\) 0 0
\(155\) −6.40679 −0.514606
\(156\) 0 0
\(157\) −8.17294 −0.652272 −0.326136 0.945323i \(-0.605747\pi\)
−0.326136 + 0.945323i \(0.605747\pi\)
\(158\) 0 0
\(159\) 8.75442 0.694270
\(160\) 0 0
\(161\) 2.65571 0.209300
\(162\) 0 0
\(163\) 14.2668 1.11746 0.558730 0.829349i \(-0.311289\pi\)
0.558730 + 0.829349i \(0.311289\pi\)
\(164\) 0 0
\(165\) −9.25967 −0.720864
\(166\) 0 0
\(167\) 10.5470 0.816155 0.408078 0.912947i \(-0.366199\pi\)
0.408078 + 0.912947i \(0.366199\pi\)
\(168\) 0 0
\(169\) 7.28137 0.560105
\(170\) 0 0
\(171\) −7.60023 −0.581204
\(172\) 0 0
\(173\) 21.0352 1.59928 0.799638 0.600483i \(-0.205025\pi\)
0.799638 + 0.600483i \(0.205025\pi\)
\(174\) 0 0
\(175\) 4.24411 0.320824
\(176\) 0 0
\(177\) −44.7273 −3.36191
\(178\) 0 0
\(179\) 20.0241 1.49667 0.748336 0.663320i \(-0.230853\pi\)
0.748336 + 0.663320i \(0.230853\pi\)
\(180\) 0 0
\(181\) 21.9906 1.63455 0.817273 0.576250i \(-0.195485\pi\)
0.817273 + 0.576250i \(0.195485\pi\)
\(182\) 0 0
\(183\) −3.17552 −0.234741
\(184\) 0 0
\(185\) −18.2094 −1.33878
\(186\) 0 0
\(187\) −8.04165 −0.588064
\(188\) 0 0
\(189\) −20.5806 −1.49702
\(190\) 0 0
\(191\) 11.2007 0.810455 0.405227 0.914216i \(-0.367192\pi\)
0.405227 + 0.914216i \(0.367192\pi\)
\(192\) 0 0
\(193\) −6.21314 −0.447232 −0.223616 0.974677i \(-0.571786\pi\)
−0.223616 + 0.974677i \(0.571786\pi\)
\(194\) 0 0
\(195\) 41.7008 2.98625
\(196\) 0 0
\(197\) −27.4256 −1.95399 −0.976996 0.213256i \(-0.931593\pi\)
−0.976996 + 0.213256i \(0.931593\pi\)
\(198\) 0 0
\(199\) −6.61358 −0.468825 −0.234412 0.972137i \(-0.575317\pi\)
−0.234412 + 0.972137i \(0.575317\pi\)
\(200\) 0 0
\(201\) −21.1481 −1.49167
\(202\) 0 0
\(203\) −8.26110 −0.579815
\(204\) 0 0
\(205\) 12.7358 0.889510
\(206\) 0 0
\(207\) 14.6889 1.02095
\(208\) 0 0
\(209\) 1.00000 0.0691714
\(210\) 0 0
\(211\) 1.89929 0.130753 0.0653764 0.997861i \(-0.479175\pi\)
0.0653764 + 0.997861i \(0.479175\pi\)
\(212\) 0 0
\(213\) −51.3355 −3.51745
\(214\) 0 0
\(215\) 8.28008 0.564697
\(216\) 0 0
\(217\) 3.09544 0.210132
\(218\) 0 0
\(219\) −16.2765 −1.09986
\(220\) 0 0
\(221\) 36.2155 2.43612
\(222\) 0 0
\(223\) −2.22689 −0.149124 −0.0745618 0.997216i \(-0.523756\pi\)
−0.0745618 + 0.997216i \(0.523756\pi\)
\(224\) 0 0
\(225\) 23.4743 1.56496
\(226\) 0 0
\(227\) −23.5602 −1.56375 −0.781873 0.623437i \(-0.785736\pi\)
−0.781873 + 0.623437i \(0.785736\pi\)
\(228\) 0 0
\(229\) 3.66034 0.241882 0.120941 0.992660i \(-0.461409\pi\)
0.120941 + 0.992660i \(0.461409\pi\)
\(230\) 0 0
\(231\) 4.47381 0.294355
\(232\) 0 0
\(233\) 20.4349 1.33873 0.669366 0.742933i \(-0.266566\pi\)
0.669366 + 0.742933i \(0.266566\pi\)
\(234\) 0 0
\(235\) 31.3044 2.04207
\(236\) 0 0
\(237\) −14.1149 −0.916863
\(238\) 0 0
\(239\) 10.9516 0.708398 0.354199 0.935170i \(-0.384754\pi\)
0.354199 + 0.935170i \(0.384754\pi\)
\(240\) 0 0
\(241\) −14.6061 −0.940859 −0.470429 0.882438i \(-0.655901\pi\)
−0.470429 + 0.882438i \(0.655901\pi\)
\(242\) 0 0
\(243\) −39.5975 −2.54018
\(244\) 0 0
\(245\) 14.5383 0.928819
\(246\) 0 0
\(247\) −4.50348 −0.286550
\(248\) 0 0
\(249\) 15.0577 0.954245
\(250\) 0 0
\(251\) −19.0800 −1.20432 −0.602160 0.798375i \(-0.705693\pi\)
−0.602160 + 0.798375i \(0.705693\pi\)
\(252\) 0 0
\(253\) −1.93269 −0.121507
\(254\) 0 0
\(255\) 74.4630 4.66306
\(256\) 0 0
\(257\) 5.21670 0.325409 0.162704 0.986675i \(-0.447978\pi\)
0.162704 + 0.986675i \(0.447978\pi\)
\(258\) 0 0
\(259\) 8.79789 0.546674
\(260\) 0 0
\(261\) −45.6925 −2.82829
\(262\) 0 0
\(263\) 7.85899 0.484606 0.242303 0.970201i \(-0.422097\pi\)
0.242303 + 0.970201i \(0.422097\pi\)
\(264\) 0 0
\(265\) 7.64728 0.469769
\(266\) 0 0
\(267\) 50.9938 3.12077
\(268\) 0 0
\(269\) −20.0890 −1.22485 −0.612425 0.790529i \(-0.709806\pi\)
−0.612425 + 0.790529i \(0.709806\pi\)
\(270\) 0 0
\(271\) 14.8510 0.902135 0.451068 0.892490i \(-0.351043\pi\)
0.451068 + 0.892490i \(0.351043\pi\)
\(272\) 0 0
\(273\) −20.1477 −1.21940
\(274\) 0 0
\(275\) −3.08863 −0.186252
\(276\) 0 0
\(277\) 26.1259 1.56976 0.784878 0.619650i \(-0.212726\pi\)
0.784878 + 0.619650i \(0.212726\pi\)
\(278\) 0 0
\(279\) 17.1210 1.02501
\(280\) 0 0
\(281\) 29.6886 1.77107 0.885537 0.464569i \(-0.153791\pi\)
0.885537 + 0.464569i \(0.153791\pi\)
\(282\) 0 0
\(283\) 16.9597 1.00815 0.504076 0.863659i \(-0.331833\pi\)
0.504076 + 0.863659i \(0.331833\pi\)
\(284\) 0 0
\(285\) −9.25967 −0.548495
\(286\) 0 0
\(287\) −6.15333 −0.363220
\(288\) 0 0
\(289\) 47.6682 2.80401
\(290\) 0 0
\(291\) 0.0835455 0.00489752
\(292\) 0 0
\(293\) −20.6438 −1.20603 −0.603013 0.797731i \(-0.706033\pi\)
−0.603013 + 0.797731i \(0.706033\pi\)
\(294\) 0 0
\(295\) −39.0708 −2.27479
\(296\) 0 0
\(297\) 14.9774 0.869079
\(298\) 0 0
\(299\) 8.70382 0.503355
\(300\) 0 0
\(301\) −4.00052 −0.230586
\(302\) 0 0
\(303\) 26.5610 1.52589
\(304\) 0 0
\(305\) −2.77392 −0.158834
\(306\) 0 0
\(307\) 19.6211 1.11983 0.559917 0.828548i \(-0.310833\pi\)
0.559917 + 0.828548i \(0.310833\pi\)
\(308\) 0 0
\(309\) 2.33942 0.133085
\(310\) 0 0
\(311\) −1.11898 −0.0634514 −0.0317257 0.999497i \(-0.510100\pi\)
−0.0317257 + 0.999497i \(0.510100\pi\)
\(312\) 0 0
\(313\) 27.1699 1.53573 0.767866 0.640610i \(-0.221318\pi\)
0.767866 + 0.640610i \(0.221318\pi\)
\(314\) 0 0
\(315\) −29.7019 −1.67351
\(316\) 0 0
\(317\) −1.34452 −0.0755160 −0.0377580 0.999287i \(-0.512022\pi\)
−0.0377580 + 0.999287i \(0.512022\pi\)
\(318\) 0 0
\(319\) 6.01198 0.336606
\(320\) 0 0
\(321\) −26.0666 −1.45490
\(322\) 0 0
\(323\) −8.04165 −0.447450
\(324\) 0 0
\(325\) 13.9096 0.771567
\(326\) 0 0
\(327\) −46.1786 −2.55368
\(328\) 0 0
\(329\) −15.1247 −0.833854
\(330\) 0 0
\(331\) 27.4981 1.51143 0.755717 0.654898i \(-0.227288\pi\)
0.755717 + 0.654898i \(0.227288\pi\)
\(332\) 0 0
\(333\) 48.6615 2.66663
\(334\) 0 0
\(335\) −18.4736 −1.00932
\(336\) 0 0
\(337\) −6.19159 −0.337277 −0.168639 0.985678i \(-0.553937\pi\)
−0.168639 + 0.985678i \(0.553937\pi\)
\(338\) 0 0
\(339\) 6.81353 0.370060
\(340\) 0 0
\(341\) −2.25270 −0.121990
\(342\) 0 0
\(343\) −16.6429 −0.898634
\(344\) 0 0
\(345\) 17.8960 0.963490
\(346\) 0 0
\(347\) −17.7460 −0.952655 −0.476327 0.879268i \(-0.658032\pi\)
−0.476327 + 0.879268i \(0.658032\pi\)
\(348\) 0 0
\(349\) −4.41289 −0.236217 −0.118108 0.993001i \(-0.537683\pi\)
−0.118108 + 0.993001i \(0.537683\pi\)
\(350\) 0 0
\(351\) −67.4507 −3.60025
\(352\) 0 0
\(353\) −17.1553 −0.913085 −0.456542 0.889702i \(-0.650912\pi\)
−0.456542 + 0.889702i \(0.650912\pi\)
\(354\) 0 0
\(355\) −44.8433 −2.38004
\(356\) 0 0
\(357\) −35.9769 −1.90410
\(358\) 0 0
\(359\) 25.5639 1.34921 0.674604 0.738180i \(-0.264314\pi\)
0.674604 + 0.738180i \(0.264314\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) −3.25580 −0.170885
\(364\) 0 0
\(365\) −14.2181 −0.744209
\(366\) 0 0
\(367\) −10.8295 −0.565293 −0.282647 0.959224i \(-0.591212\pi\)
−0.282647 + 0.959224i \(0.591212\pi\)
\(368\) 0 0
\(369\) −34.0343 −1.77176
\(370\) 0 0
\(371\) −3.69479 −0.191824
\(372\) 0 0
\(373\) 14.1638 0.733375 0.366688 0.930344i \(-0.380492\pi\)
0.366688 + 0.930344i \(0.380492\pi\)
\(374\) 0 0
\(375\) −17.6986 −0.913952
\(376\) 0 0
\(377\) −27.0749 −1.39443
\(378\) 0 0
\(379\) −20.2669 −1.04104 −0.520521 0.853849i \(-0.674262\pi\)
−0.520521 + 0.853849i \(0.674262\pi\)
\(380\) 0 0
\(381\) 36.3837 1.86399
\(382\) 0 0
\(383\) 7.05175 0.360328 0.180164 0.983637i \(-0.442337\pi\)
0.180164 + 0.983637i \(0.442337\pi\)
\(384\) 0 0
\(385\) 3.90803 0.199172
\(386\) 0 0
\(387\) −22.1271 −1.12478
\(388\) 0 0
\(389\) −16.5312 −0.838167 −0.419084 0.907948i \(-0.637649\pi\)
−0.419084 + 0.907948i \(0.637649\pi\)
\(390\) 0 0
\(391\) 15.5420 0.785992
\(392\) 0 0
\(393\) 53.4691 2.69716
\(394\) 0 0
\(395\) −12.3299 −0.620383
\(396\) 0 0
\(397\) −5.46890 −0.274476 −0.137238 0.990538i \(-0.543823\pi\)
−0.137238 + 0.990538i \(0.543823\pi\)
\(398\) 0 0
\(399\) 4.47381 0.223971
\(400\) 0 0
\(401\) 24.9701 1.24695 0.623473 0.781845i \(-0.285721\pi\)
0.623473 + 0.781845i \(0.285721\pi\)
\(402\) 0 0
\(403\) 10.1450 0.505358
\(404\) 0 0
\(405\) −73.8397 −3.66913
\(406\) 0 0
\(407\) −6.40263 −0.317367
\(408\) 0 0
\(409\) −10.5729 −0.522796 −0.261398 0.965231i \(-0.584184\pi\)
−0.261398 + 0.965231i \(0.584184\pi\)
\(410\) 0 0
\(411\) 49.7783 2.45538
\(412\) 0 0
\(413\) 18.8771 0.928881
\(414\) 0 0
\(415\) 13.1534 0.645677
\(416\) 0 0
\(417\) −27.9406 −1.36826
\(418\) 0 0
\(419\) −14.1571 −0.691618 −0.345809 0.938305i \(-0.612395\pi\)
−0.345809 + 0.938305i \(0.612395\pi\)
\(420\) 0 0
\(421\) 8.26726 0.402921 0.201461 0.979497i \(-0.435431\pi\)
0.201461 + 0.979497i \(0.435431\pi\)
\(422\) 0 0
\(423\) −83.6555 −4.06747
\(424\) 0 0
\(425\) 24.8377 1.20481
\(426\) 0 0
\(427\) 1.34022 0.0648579
\(428\) 0 0
\(429\) 14.6624 0.707909
\(430\) 0 0
\(431\) 21.7714 1.04869 0.524346 0.851505i \(-0.324310\pi\)
0.524346 + 0.851505i \(0.324310\pi\)
\(432\) 0 0
\(433\) 24.8734 1.19534 0.597670 0.801742i \(-0.296093\pi\)
0.597670 + 0.801742i \(0.296093\pi\)
\(434\) 0 0
\(435\) −55.6689 −2.66912
\(436\) 0 0
\(437\) −1.93269 −0.0924529
\(438\) 0 0
\(439\) 39.4333 1.88205 0.941025 0.338337i \(-0.109864\pi\)
0.941025 + 0.338337i \(0.109864\pi\)
\(440\) 0 0
\(441\) −38.8511 −1.85005
\(442\) 0 0
\(443\) −1.69836 −0.0806917 −0.0403458 0.999186i \(-0.512846\pi\)
−0.0403458 + 0.999186i \(0.512846\pi\)
\(444\) 0 0
\(445\) 44.5448 2.11163
\(446\) 0 0
\(447\) −12.8502 −0.607793
\(448\) 0 0
\(449\) −9.77645 −0.461379 −0.230690 0.973027i \(-0.574098\pi\)
−0.230690 + 0.973027i \(0.574098\pi\)
\(450\) 0 0
\(451\) 4.47806 0.210864
\(452\) 0 0
\(453\) 38.7093 1.81872
\(454\) 0 0
\(455\) −17.5997 −0.825089
\(456\) 0 0
\(457\) −8.68741 −0.406380 −0.203190 0.979139i \(-0.565131\pi\)
−0.203190 + 0.979139i \(0.565131\pi\)
\(458\) 0 0
\(459\) −120.443 −5.62182
\(460\) 0 0
\(461\) 11.0150 0.513019 0.256510 0.966542i \(-0.417427\pi\)
0.256510 + 0.966542i \(0.417427\pi\)
\(462\) 0 0
\(463\) 13.1676 0.611951 0.305975 0.952039i \(-0.401017\pi\)
0.305975 + 0.952039i \(0.401017\pi\)
\(464\) 0 0
\(465\) 20.8592 0.967323
\(466\) 0 0
\(467\) −27.7203 −1.28274 −0.641372 0.767230i \(-0.721634\pi\)
−0.641372 + 0.767230i \(0.721634\pi\)
\(468\) 0 0
\(469\) 8.92552 0.412142
\(470\) 0 0
\(471\) 26.6095 1.22610
\(472\) 0 0
\(473\) 2.91137 0.133865
\(474\) 0 0
\(475\) −3.08863 −0.141716
\(476\) 0 0
\(477\) −20.4360 −0.935701
\(478\) 0 0
\(479\) −15.0478 −0.687551 −0.343776 0.939052i \(-0.611706\pi\)
−0.343776 + 0.939052i \(0.611706\pi\)
\(480\) 0 0
\(481\) 28.8342 1.31472
\(482\) 0 0
\(483\) −8.64648 −0.393428
\(484\) 0 0
\(485\) 0.0729798 0.00331384
\(486\) 0 0
\(487\) −27.6712 −1.25390 −0.626950 0.779060i \(-0.715697\pi\)
−0.626950 + 0.779060i \(0.715697\pi\)
\(488\) 0 0
\(489\) −46.4498 −2.10053
\(490\) 0 0
\(491\) 16.6990 0.753615 0.376808 0.926292i \(-0.377022\pi\)
0.376808 + 0.926292i \(0.377022\pi\)
\(492\) 0 0
\(493\) −48.3463 −2.17741
\(494\) 0 0
\(495\) 21.6155 0.971543
\(496\) 0 0
\(497\) 21.6661 0.971856
\(498\) 0 0
\(499\) 0.367424 0.0164482 0.00822408 0.999966i \(-0.497382\pi\)
0.00822408 + 0.999966i \(0.497382\pi\)
\(500\) 0 0
\(501\) −34.3391 −1.53416
\(502\) 0 0
\(503\) −9.17194 −0.408957 −0.204478 0.978871i \(-0.565550\pi\)
−0.204478 + 0.978871i \(0.565550\pi\)
\(504\) 0 0
\(505\) 23.2019 1.03247
\(506\) 0 0
\(507\) −23.7067 −1.05285
\(508\) 0 0
\(509\) 7.17681 0.318107 0.159053 0.987270i \(-0.449156\pi\)
0.159053 + 0.987270i \(0.449156\pi\)
\(510\) 0 0
\(511\) 6.86948 0.303888
\(512\) 0 0
\(513\) 14.9774 0.661270
\(514\) 0 0
\(515\) 2.04356 0.0900502
\(516\) 0 0
\(517\) 11.0070 0.484086
\(518\) 0 0
\(519\) −68.4863 −3.00622
\(520\) 0 0
\(521\) −31.7113 −1.38930 −0.694648 0.719349i \(-0.744440\pi\)
−0.694648 + 0.719349i \(0.744440\pi\)
\(522\) 0 0
\(523\) 36.1546 1.58093 0.790465 0.612507i \(-0.209839\pi\)
0.790465 + 0.612507i \(0.209839\pi\)
\(524\) 0 0
\(525\) −13.8180 −0.603066
\(526\) 0 0
\(527\) 18.1154 0.789120
\(528\) 0 0
\(529\) −19.2647 −0.837597
\(530\) 0 0
\(531\) 104.410 4.53101
\(532\) 0 0
\(533\) −20.1669 −0.873525
\(534\) 0 0
\(535\) −22.7701 −0.984436
\(536\) 0 0
\(537\) −65.1945 −2.81335
\(538\) 0 0
\(539\) 5.11183 0.220182
\(540\) 0 0
\(541\) 42.3309 1.81995 0.909973 0.414667i \(-0.136102\pi\)
0.909973 + 0.414667i \(0.136102\pi\)
\(542\) 0 0
\(543\) −71.5969 −3.07252
\(544\) 0 0
\(545\) −40.3385 −1.72791
\(546\) 0 0
\(547\) −30.3262 −1.29665 −0.648327 0.761362i \(-0.724531\pi\)
−0.648327 + 0.761362i \(0.724531\pi\)
\(548\) 0 0
\(549\) 7.41283 0.316372
\(550\) 0 0
\(551\) 6.01198 0.256119
\(552\) 0 0
\(553\) 5.95719 0.253325
\(554\) 0 0
\(555\) 59.2862 2.51656
\(556\) 0 0
\(557\) −19.1989 −0.813485 −0.406743 0.913543i \(-0.633335\pi\)
−0.406743 + 0.913543i \(0.633335\pi\)
\(558\) 0 0
\(559\) −13.1113 −0.554549
\(560\) 0 0
\(561\) 26.1820 1.10541
\(562\) 0 0
\(563\) −15.1018 −0.636463 −0.318232 0.948013i \(-0.603089\pi\)
−0.318232 + 0.948013i \(0.603089\pi\)
\(564\) 0 0
\(565\) 5.95185 0.250396
\(566\) 0 0
\(567\) 35.6757 1.49824
\(568\) 0 0
\(569\) 14.1342 0.592538 0.296269 0.955104i \(-0.404257\pi\)
0.296269 + 0.955104i \(0.404257\pi\)
\(570\) 0 0
\(571\) 29.9321 1.25262 0.626310 0.779574i \(-0.284565\pi\)
0.626310 + 0.779574i \(0.284565\pi\)
\(572\) 0 0
\(573\) −36.4673 −1.52344
\(574\) 0 0
\(575\) 5.96936 0.248940
\(576\) 0 0
\(577\) −32.6995 −1.36130 −0.680649 0.732610i \(-0.738302\pi\)
−0.680649 + 0.732610i \(0.738302\pi\)
\(578\) 0 0
\(579\) 20.2288 0.840678
\(580\) 0 0
\(581\) −6.35509 −0.263654
\(582\) 0 0
\(583\) 2.68887 0.111362
\(584\) 0 0
\(585\) −97.3449 −4.02472
\(586\) 0 0
\(587\) 30.9045 1.27557 0.637783 0.770216i \(-0.279852\pi\)
0.637783 + 0.770216i \(0.279852\pi\)
\(588\) 0 0
\(589\) −2.25270 −0.0928208
\(590\) 0 0
\(591\) 89.2923 3.67299
\(592\) 0 0
\(593\) 17.0980 0.702131 0.351065 0.936351i \(-0.385819\pi\)
0.351065 + 0.936351i \(0.385819\pi\)
\(594\) 0 0
\(595\) −31.4270 −1.28838
\(596\) 0 0
\(597\) 21.5325 0.881267
\(598\) 0 0
\(599\) −1.28146 −0.0523591 −0.0261795 0.999657i \(-0.508334\pi\)
−0.0261795 + 0.999657i \(0.508334\pi\)
\(600\) 0 0
\(601\) −6.62399 −0.270198 −0.135099 0.990832i \(-0.543135\pi\)
−0.135099 + 0.990832i \(0.543135\pi\)
\(602\) 0 0
\(603\) 49.3674 2.01040
\(604\) 0 0
\(605\) −2.84405 −0.115627
\(606\) 0 0
\(607\) 29.1755 1.18420 0.592099 0.805865i \(-0.298299\pi\)
0.592099 + 0.805865i \(0.298299\pi\)
\(608\) 0 0
\(609\) 26.8965 1.08990
\(610\) 0 0
\(611\) −49.5697 −2.00538
\(612\) 0 0
\(613\) 14.9815 0.605099 0.302549 0.953134i \(-0.402162\pi\)
0.302549 + 0.953134i \(0.402162\pi\)
\(614\) 0 0
\(615\) −41.4654 −1.67204
\(616\) 0 0
\(617\) 13.8278 0.556687 0.278344 0.960482i \(-0.410215\pi\)
0.278344 + 0.960482i \(0.410215\pi\)
\(618\) 0 0
\(619\) 21.0469 0.845947 0.422974 0.906142i \(-0.360986\pi\)
0.422974 + 0.906142i \(0.360986\pi\)
\(620\) 0 0
\(621\) −28.9467 −1.16159
\(622\) 0 0
\(623\) −21.5219 −0.862255
\(624\) 0 0
\(625\) −30.9035 −1.23614
\(626\) 0 0
\(627\) −3.25580 −0.130024
\(628\) 0 0
\(629\) 51.4878 2.05295
\(630\) 0 0
\(631\) −38.2872 −1.52419 −0.762094 0.647466i \(-0.775829\pi\)
−0.762094 + 0.647466i \(0.775829\pi\)
\(632\) 0 0
\(633\) −6.18372 −0.245781
\(634\) 0 0
\(635\) 31.7824 1.26125
\(636\) 0 0
\(637\) −23.0211 −0.912128
\(638\) 0 0
\(639\) 119.836 4.74064
\(640\) 0 0
\(641\) 14.3840 0.568132 0.284066 0.958805i \(-0.408316\pi\)
0.284066 + 0.958805i \(0.408316\pi\)
\(642\) 0 0
\(643\) −38.6271 −1.52331 −0.761653 0.647985i \(-0.775612\pi\)
−0.761653 + 0.647985i \(0.775612\pi\)
\(644\) 0 0
\(645\) −26.9583 −1.06148
\(646\) 0 0
\(647\) 17.6026 0.692028 0.346014 0.938229i \(-0.387535\pi\)
0.346014 + 0.938229i \(0.387535\pi\)
\(648\) 0 0
\(649\) −13.7377 −0.539253
\(650\) 0 0
\(651\) −10.0781 −0.394994
\(652\) 0 0
\(653\) 5.96203 0.233312 0.116656 0.993172i \(-0.462782\pi\)
0.116656 + 0.993172i \(0.462782\pi\)
\(654\) 0 0
\(655\) 46.7071 1.82500
\(656\) 0 0
\(657\) 37.9954 1.48234
\(658\) 0 0
\(659\) −6.15239 −0.239663 −0.119831 0.992794i \(-0.538235\pi\)
−0.119831 + 0.992794i \(0.538235\pi\)
\(660\) 0 0
\(661\) 38.0127 1.47852 0.739262 0.673418i \(-0.235175\pi\)
0.739262 + 0.673418i \(0.235175\pi\)
\(662\) 0 0
\(663\) −117.910 −4.57926
\(664\) 0 0
\(665\) 3.90803 0.151547
\(666\) 0 0
\(667\) −11.6193 −0.449900
\(668\) 0 0
\(669\) 7.25031 0.280313
\(670\) 0 0
\(671\) −0.975342 −0.0376526
\(672\) 0 0
\(673\) 15.2077 0.586216 0.293108 0.956079i \(-0.405311\pi\)
0.293108 + 0.956079i \(0.405311\pi\)
\(674\) 0 0
\(675\) −46.2598 −1.78054
\(676\) 0 0
\(677\) −0.280407 −0.0107769 −0.00538846 0.999985i \(-0.501715\pi\)
−0.00538846 + 0.999985i \(0.501715\pi\)
\(678\) 0 0
\(679\) −0.0352602 −0.00135316
\(680\) 0 0
\(681\) 76.7074 2.93943
\(682\) 0 0
\(683\) 7.60480 0.290990 0.145495 0.989359i \(-0.453523\pi\)
0.145495 + 0.989359i \(0.453523\pi\)
\(684\) 0 0
\(685\) 43.4830 1.66140
\(686\) 0 0
\(687\) −11.9173 −0.454675
\(688\) 0 0
\(689\) −12.1093 −0.461327
\(690\) 0 0
\(691\) −19.5795 −0.744839 −0.372420 0.928064i \(-0.621472\pi\)
−0.372420 + 0.928064i \(0.621472\pi\)
\(692\) 0 0
\(693\) −10.4435 −0.396717
\(694\) 0 0
\(695\) −24.4070 −0.925812
\(696\) 0 0
\(697\) −36.0110 −1.36401
\(698\) 0 0
\(699\) −66.5318 −2.51646
\(700\) 0 0
\(701\) 40.5251 1.53061 0.765305 0.643667i \(-0.222588\pi\)
0.765305 + 0.643667i \(0.222588\pi\)
\(702\) 0 0
\(703\) −6.40263 −0.241480
\(704\) 0 0
\(705\) −101.921 −3.83856
\(706\) 0 0
\(707\) −11.2100 −0.421596
\(708\) 0 0
\(709\) 22.9931 0.863526 0.431763 0.901987i \(-0.357892\pi\)
0.431763 + 0.901987i \(0.357892\pi\)
\(710\) 0 0
\(711\) 32.9494 1.23570
\(712\) 0 0
\(713\) 4.35376 0.163049
\(714\) 0 0
\(715\) 12.8081 0.478997
\(716\) 0 0
\(717\) −35.6561 −1.33160
\(718\) 0 0
\(719\) 23.9307 0.892464 0.446232 0.894917i \(-0.352766\pi\)
0.446232 + 0.894917i \(0.352766\pi\)
\(720\) 0 0
\(721\) −0.987349 −0.0367708
\(722\) 0 0
\(723\) 47.5544 1.76857
\(724\) 0 0
\(725\) −18.5688 −0.689628
\(726\) 0 0
\(727\) −10.0644 −0.373268 −0.186634 0.982430i \(-0.559758\pi\)
−0.186634 + 0.982430i \(0.559758\pi\)
\(728\) 0 0
\(729\) 51.0331 1.89011
\(730\) 0 0
\(731\) −23.4122 −0.865931
\(732\) 0 0
\(733\) −25.8983 −0.956577 −0.478289 0.878203i \(-0.658743\pi\)
−0.478289 + 0.878203i \(0.658743\pi\)
\(734\) 0 0
\(735\) −47.3339 −1.74594
\(736\) 0 0
\(737\) −6.49551 −0.239265
\(738\) 0 0
\(739\) 30.5526 1.12390 0.561948 0.827173i \(-0.310052\pi\)
0.561948 + 0.827173i \(0.310052\pi\)
\(740\) 0 0
\(741\) 14.6624 0.538638
\(742\) 0 0
\(743\) 16.0916 0.590343 0.295171 0.955444i \(-0.404623\pi\)
0.295171 + 0.955444i \(0.404623\pi\)
\(744\) 0 0
\(745\) −11.2251 −0.411255
\(746\) 0 0
\(747\) −35.1503 −1.28608
\(748\) 0 0
\(749\) 11.0014 0.401981
\(750\) 0 0
\(751\) 31.4829 1.14883 0.574413 0.818565i \(-0.305230\pi\)
0.574413 + 0.818565i \(0.305230\pi\)
\(752\) 0 0
\(753\) 62.1207 2.26380
\(754\) 0 0
\(755\) 33.8139 1.23061
\(756\) 0 0
\(757\) 7.80967 0.283847 0.141924 0.989878i \(-0.454671\pi\)
0.141924 + 0.989878i \(0.454671\pi\)
\(758\) 0 0
\(759\) 6.29244 0.228401
\(760\) 0 0
\(761\) −24.1930 −0.876996 −0.438498 0.898732i \(-0.644489\pi\)
−0.438498 + 0.898732i \(0.644489\pi\)
\(762\) 0 0
\(763\) 19.4896 0.705570
\(764\) 0 0
\(765\) −173.824 −6.28462
\(766\) 0 0
\(767\) 61.8676 2.23391
\(768\) 0 0
\(769\) 43.9975 1.58659 0.793296 0.608837i \(-0.208363\pi\)
0.793296 + 0.608837i \(0.208363\pi\)
\(770\) 0 0
\(771\) −16.9845 −0.611683
\(772\) 0 0
\(773\) 3.76339 0.135360 0.0676798 0.997707i \(-0.478440\pi\)
0.0676798 + 0.997707i \(0.478440\pi\)
\(774\) 0 0
\(775\) 6.95776 0.249930
\(776\) 0 0
\(777\) −28.6442 −1.02760
\(778\) 0 0
\(779\) 4.47806 0.160443
\(780\) 0 0
\(781\) −15.7674 −0.564202
\(782\) 0 0
\(783\) 90.0441 3.21791
\(784\) 0 0
\(785\) 23.2443 0.829624
\(786\) 0 0
\(787\) 6.12260 0.218247 0.109124 0.994028i \(-0.465196\pi\)
0.109124 + 0.994028i \(0.465196\pi\)
\(788\) 0 0
\(789\) −25.5873 −0.910932
\(790\) 0 0
\(791\) −2.87564 −0.102246
\(792\) 0 0
\(793\) 4.39244 0.155980
\(794\) 0 0
\(795\) −24.8980 −0.883042
\(796\) 0 0
\(797\) 26.2100 0.928407 0.464203 0.885729i \(-0.346341\pi\)
0.464203 + 0.885729i \(0.346341\pi\)
\(798\) 0 0
\(799\) −88.5142 −3.13141
\(800\) 0 0
\(801\) −119.038 −4.20601
\(802\) 0 0
\(803\) −4.99924 −0.176419
\(804\) 0 0
\(805\) −7.55299 −0.266208
\(806\) 0 0
\(807\) 65.4059 2.30240
\(808\) 0 0
\(809\) −0.682663 −0.0240011 −0.0120006 0.999928i \(-0.503820\pi\)
−0.0120006 + 0.999928i \(0.503820\pi\)
\(810\) 0 0
\(811\) −41.0850 −1.44269 −0.721345 0.692576i \(-0.756476\pi\)
−0.721345 + 0.692576i \(0.756476\pi\)
\(812\) 0 0
\(813\) −48.3520 −1.69578
\(814\) 0 0
\(815\) −40.5755 −1.42130
\(816\) 0 0
\(817\) 2.91137 0.101856
\(818\) 0 0
\(819\) 47.0322 1.64344
\(820\) 0 0
\(821\) 41.8409 1.46026 0.730130 0.683309i \(-0.239460\pi\)
0.730130 + 0.683309i \(0.239460\pi\)
\(822\) 0 0
\(823\) 27.5677 0.960948 0.480474 0.877009i \(-0.340465\pi\)
0.480474 + 0.877009i \(0.340465\pi\)
\(824\) 0 0
\(825\) 10.0560 0.350104
\(826\) 0 0
\(827\) 22.3995 0.778906 0.389453 0.921046i \(-0.372664\pi\)
0.389453 + 0.921046i \(0.372664\pi\)
\(828\) 0 0
\(829\) 18.8022 0.653028 0.326514 0.945192i \(-0.394126\pi\)
0.326514 + 0.945192i \(0.394126\pi\)
\(830\) 0 0
\(831\) −85.0609 −2.95073
\(832\) 0 0
\(833\) −41.1076 −1.42429
\(834\) 0 0
\(835\) −29.9964 −1.03807
\(836\) 0 0
\(837\) −33.7396 −1.16621
\(838\) 0 0
\(839\) 30.3399 1.04745 0.523724 0.851888i \(-0.324542\pi\)
0.523724 + 0.851888i \(0.324542\pi\)
\(840\) 0 0
\(841\) 7.14392 0.246342
\(842\) 0 0
\(843\) −96.6602 −3.32915
\(844\) 0 0
\(845\) −20.7086 −0.712397
\(846\) 0 0
\(847\) 1.37411 0.0472148
\(848\) 0 0
\(849\) −55.2176 −1.89506
\(850\) 0 0
\(851\) 12.3743 0.424185
\(852\) 0 0
\(853\) 22.5600 0.772440 0.386220 0.922407i \(-0.373781\pi\)
0.386220 + 0.922407i \(0.373781\pi\)
\(854\) 0 0
\(855\) 21.6155 0.739233
\(856\) 0 0
\(857\) 9.70243 0.331429 0.165714 0.986174i \(-0.447007\pi\)
0.165714 + 0.986174i \(0.447007\pi\)
\(858\) 0 0
\(859\) −27.7185 −0.945743 −0.472872 0.881131i \(-0.656783\pi\)
−0.472872 + 0.881131i \(0.656783\pi\)
\(860\) 0 0
\(861\) 20.0340 0.682757
\(862\) 0 0
\(863\) −11.2399 −0.382611 −0.191306 0.981531i \(-0.561272\pi\)
−0.191306 + 0.981531i \(0.561272\pi\)
\(864\) 0 0
\(865\) −59.8252 −2.03412
\(866\) 0 0
\(867\) −155.198 −5.27080
\(868\) 0 0
\(869\) −4.33532 −0.147066
\(870\) 0 0
\(871\) 29.2524 0.991181
\(872\) 0 0
\(873\) −0.195026 −0.00660063
\(874\) 0 0
\(875\) 7.46967 0.252521
\(876\) 0 0
\(877\) 33.2559 1.12297 0.561486 0.827486i \(-0.310230\pi\)
0.561486 + 0.827486i \(0.310230\pi\)
\(878\) 0 0
\(879\) 67.2122 2.26701
\(880\) 0 0
\(881\) 30.9264 1.04194 0.520968 0.853576i \(-0.325571\pi\)
0.520968 + 0.853576i \(0.325571\pi\)
\(882\) 0 0
\(883\) −39.6834 −1.33545 −0.667726 0.744407i \(-0.732732\pi\)
−0.667726 + 0.744407i \(0.732732\pi\)
\(884\) 0 0
\(885\) 127.207 4.27601
\(886\) 0 0
\(887\) −10.3257 −0.346701 −0.173351 0.984860i \(-0.555459\pi\)
−0.173351 + 0.984860i \(0.555459\pi\)
\(888\) 0 0
\(889\) −15.3557 −0.515013
\(890\) 0 0
\(891\) −25.9629 −0.869788
\(892\) 0 0
\(893\) 11.0070 0.368334
\(894\) 0 0
\(895\) −56.9496 −1.90362
\(896\) 0 0
\(897\) −28.3379 −0.946175
\(898\) 0 0
\(899\) −13.5432 −0.451690
\(900\) 0 0
\(901\) −21.6229 −0.720365
\(902\) 0 0
\(903\) 13.0249 0.433442
\(904\) 0 0
\(905\) −62.5423 −2.07898
\(906\) 0 0
\(907\) −32.0397 −1.06386 −0.531931 0.846788i \(-0.678533\pi\)
−0.531931 + 0.846788i \(0.678533\pi\)
\(908\) 0 0
\(909\) −62.0031 −2.05651
\(910\) 0 0
\(911\) 37.1616 1.23122 0.615609 0.788052i \(-0.288910\pi\)
0.615609 + 0.788052i \(0.288910\pi\)
\(912\) 0 0
\(913\) 4.62489 0.153062
\(914\) 0 0
\(915\) 9.03134 0.298567
\(916\) 0 0
\(917\) −22.5666 −0.745213
\(918\) 0 0
\(919\) 35.1368 1.15906 0.579528 0.814952i \(-0.303237\pi\)
0.579528 + 0.814952i \(0.303237\pi\)
\(920\) 0 0
\(921\) −63.8823 −2.10499
\(922\) 0 0
\(923\) 71.0082 2.33726
\(924\) 0 0
\(925\) 19.7754 0.650211
\(926\) 0 0
\(927\) −5.46107 −0.179365
\(928\) 0 0
\(929\) −7.85026 −0.257559 −0.128779 0.991673i \(-0.541106\pi\)
−0.128779 + 0.991673i \(0.541106\pi\)
\(930\) 0 0
\(931\) 5.11183 0.167534
\(932\) 0 0
\(933\) 3.64317 0.119272
\(934\) 0 0
\(935\) 22.8709 0.747958
\(936\) 0 0
\(937\) 5.47492 0.178858 0.0894289 0.995993i \(-0.471496\pi\)
0.0894289 + 0.995993i \(0.471496\pi\)
\(938\) 0 0
\(939\) −88.4597 −2.88677
\(940\) 0 0
\(941\) 20.8056 0.678244 0.339122 0.940742i \(-0.389870\pi\)
0.339122 + 0.940742i \(0.389870\pi\)
\(942\) 0 0
\(943\) −8.65469 −0.281835
\(944\) 0 0
\(945\) 58.5323 1.90405
\(946\) 0 0
\(947\) −25.2333 −0.819973 −0.409986 0.912092i \(-0.634467\pi\)
−0.409986 + 0.912092i \(0.634467\pi\)
\(948\) 0 0
\(949\) 22.5140 0.730835
\(950\) 0 0
\(951\) 4.37750 0.141950
\(952\) 0 0
\(953\) −29.1735 −0.945023 −0.472511 0.881325i \(-0.656652\pi\)
−0.472511 + 0.881325i \(0.656652\pi\)
\(954\) 0 0
\(955\) −31.8554 −1.03082
\(956\) 0 0
\(957\) −19.5738 −0.632731
\(958\) 0 0
\(959\) −21.0088 −0.678411
\(960\) 0 0
\(961\) −25.9254 −0.836302
\(962\) 0 0
\(963\) 60.8490 1.96083
\(964\) 0 0
\(965\) 17.6705 0.568834
\(966\) 0 0
\(967\) 5.49314 0.176647 0.0883237 0.996092i \(-0.471849\pi\)
0.0883237 + 0.996092i \(0.471849\pi\)
\(968\) 0 0
\(969\) 26.1820 0.841088
\(970\) 0 0
\(971\) −15.5655 −0.499521 −0.249760 0.968308i \(-0.580352\pi\)
−0.249760 + 0.968308i \(0.580352\pi\)
\(972\) 0 0
\(973\) 11.7923 0.378043
\(974\) 0 0
\(975\) −45.2869 −1.45034
\(976\) 0 0
\(977\) −39.3827 −1.25996 −0.629982 0.776609i \(-0.716938\pi\)
−0.629982 + 0.776609i \(0.716938\pi\)
\(978\) 0 0
\(979\) 15.6624 0.500574
\(980\) 0 0
\(981\) 107.798 3.44172
\(982\) 0 0
\(983\) 14.6297 0.466614 0.233307 0.972403i \(-0.425045\pi\)
0.233307 + 0.972403i \(0.425045\pi\)
\(984\) 0 0
\(985\) 77.9998 2.48528
\(986\) 0 0
\(987\) 49.2431 1.56743
\(988\) 0 0
\(989\) −5.62676 −0.178920
\(990\) 0 0
\(991\) 24.1290 0.766482 0.383241 0.923648i \(-0.374808\pi\)
0.383241 + 0.923648i \(0.374808\pi\)
\(992\) 0 0
\(993\) −89.5285 −2.84110
\(994\) 0 0
\(995\) 18.8094 0.596297
\(996\) 0 0
\(997\) −60.4987 −1.91601 −0.958007 0.286745i \(-0.907427\pi\)
−0.958007 + 0.286745i \(0.907427\pi\)
\(998\) 0 0
\(999\) −95.8951 −3.03399
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3344.2.a.x.1.1 6
4.3 odd 2 836.2.a.d.1.6 6
12.11 even 2 7524.2.a.r.1.5 6
44.43 even 2 9196.2.a.k.1.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
836.2.a.d.1.6 6 4.3 odd 2
3344.2.a.x.1.1 6 1.1 even 1 trivial
7524.2.a.r.1.5 6 12.11 even 2
9196.2.a.k.1.6 6 44.43 even 2