Properties

Label 3344.2.a.v.1.3
Level $3344$
Weight $2$
Character 3344.1
Self dual yes
Analytic conductor $26.702$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3344,2,Mod(1,3344)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3344, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3344.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3344 = 2^{4} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3344.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.7019744359\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.576096652.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 8x^{4} + 11x^{3} + 16x^{2} - 6x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1672)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.393583\) of defining polynomial
Character \(\chi\) \(=\) 3344.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.39358 q^{3} -3.68793 q^{5} +0.935893 q^{7} -1.05793 q^{9} -1.00000 q^{11} -0.935893 q^{13} +5.13944 q^{15} +5.08152 q^{17} -1.00000 q^{19} -1.30424 q^{21} -0.699469 q^{23} +8.60085 q^{25} +5.65506 q^{27} +10.3529 q^{29} -1.63536 q^{31} +1.39358 q^{33} -3.45151 q^{35} +3.78098 q^{37} +1.30424 q^{39} +3.35846 q^{41} -5.45297 q^{43} +3.90156 q^{45} +0.658952 q^{47} -6.12410 q^{49} -7.08152 q^{51} -3.54292 q^{53} +3.68793 q^{55} +1.39358 q^{57} -8.23478 q^{59} +2.14708 q^{61} -0.990105 q^{63} +3.45151 q^{65} -11.9457 q^{67} +0.974768 q^{69} +6.67265 q^{71} +5.27906 q^{73} -11.9860 q^{75} -0.935893 q^{77} +2.98471 q^{79} -4.70702 q^{81} -7.41103 q^{83} -18.7403 q^{85} -14.4276 q^{87} +11.8282 q^{89} -0.875895 q^{91} +2.27901 q^{93} +3.68793 q^{95} +2.22644 q^{97} +1.05793 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 4 q^{3} + q^{5} + 4 q^{9} - 6 q^{11} - 7 q^{15} + 3 q^{17} - 6 q^{19} + 7 q^{21} - 7 q^{23} + 3 q^{25} - 13 q^{27} - 4 q^{29} - 7 q^{31} + 4 q^{33} - 6 q^{35} - 2 q^{37} - 7 q^{39} + 7 q^{41} - 21 q^{43}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.39358 −0.804586 −0.402293 0.915511i \(-0.631787\pi\)
−0.402293 + 0.915511i \(0.631787\pi\)
\(4\) 0 0
\(5\) −3.68793 −1.64929 −0.824647 0.565648i \(-0.808626\pi\)
−0.824647 + 0.565648i \(0.808626\pi\)
\(6\) 0 0
\(7\) 0.935893 0.353734 0.176867 0.984235i \(-0.443404\pi\)
0.176867 + 0.984235i \(0.443404\pi\)
\(8\) 0 0
\(9\) −1.05793 −0.352642
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) −0.935893 −0.259570 −0.129785 0.991542i \(-0.541429\pi\)
−0.129785 + 0.991542i \(0.541429\pi\)
\(14\) 0 0
\(15\) 5.13944 1.32700
\(16\) 0 0
\(17\) 5.08152 1.23245 0.616224 0.787571i \(-0.288661\pi\)
0.616224 + 0.787571i \(0.288661\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) −1.30424 −0.284609
\(22\) 0 0
\(23\) −0.699469 −0.145849 −0.0729247 0.997337i \(-0.523233\pi\)
−0.0729247 + 0.997337i \(0.523233\pi\)
\(24\) 0 0
\(25\) 8.60085 1.72017
\(26\) 0 0
\(27\) 5.65506 1.08832
\(28\) 0 0
\(29\) 10.3529 1.92248 0.961241 0.275709i \(-0.0889125\pi\)
0.961241 + 0.275709i \(0.0889125\pi\)
\(30\) 0 0
\(31\) −1.63536 −0.293720 −0.146860 0.989157i \(-0.546917\pi\)
−0.146860 + 0.989157i \(0.546917\pi\)
\(32\) 0 0
\(33\) 1.39358 0.242592
\(34\) 0 0
\(35\) −3.45151 −0.583411
\(36\) 0 0
\(37\) 3.78098 0.621590 0.310795 0.950477i \(-0.399405\pi\)
0.310795 + 0.950477i \(0.399405\pi\)
\(38\) 0 0
\(39\) 1.30424 0.208846
\(40\) 0 0
\(41\) 3.35846 0.524503 0.262251 0.965000i \(-0.415535\pi\)
0.262251 + 0.965000i \(0.415535\pi\)
\(42\) 0 0
\(43\) −5.45297 −0.831570 −0.415785 0.909463i \(-0.636493\pi\)
−0.415785 + 0.909463i \(0.636493\pi\)
\(44\) 0 0
\(45\) 3.90156 0.581610
\(46\) 0 0
\(47\) 0.658952 0.0961180 0.0480590 0.998844i \(-0.484696\pi\)
0.0480590 + 0.998844i \(0.484696\pi\)
\(48\) 0 0
\(49\) −6.12410 −0.874872
\(50\) 0 0
\(51\) −7.08152 −0.991611
\(52\) 0 0
\(53\) −3.54292 −0.486657 −0.243329 0.969944i \(-0.578239\pi\)
−0.243329 + 0.969944i \(0.578239\pi\)
\(54\) 0 0
\(55\) 3.68793 0.497281
\(56\) 0 0
\(57\) 1.39358 0.184585
\(58\) 0 0
\(59\) −8.23478 −1.07208 −0.536039 0.844193i \(-0.680080\pi\)
−0.536039 + 0.844193i \(0.680080\pi\)
\(60\) 0 0
\(61\) 2.14708 0.274906 0.137453 0.990508i \(-0.456108\pi\)
0.137453 + 0.990508i \(0.456108\pi\)
\(62\) 0 0
\(63\) −0.990105 −0.124741
\(64\) 0 0
\(65\) 3.45151 0.428107
\(66\) 0 0
\(67\) −11.9457 −1.45939 −0.729697 0.683770i \(-0.760339\pi\)
−0.729697 + 0.683770i \(0.760339\pi\)
\(68\) 0 0
\(69\) 0.974768 0.117348
\(70\) 0 0
\(71\) 6.67265 0.791897 0.395949 0.918273i \(-0.370416\pi\)
0.395949 + 0.918273i \(0.370416\pi\)
\(72\) 0 0
\(73\) 5.27906 0.617868 0.308934 0.951084i \(-0.400028\pi\)
0.308934 + 0.951084i \(0.400028\pi\)
\(74\) 0 0
\(75\) −11.9860 −1.38402
\(76\) 0 0
\(77\) −0.935893 −0.106655
\(78\) 0 0
\(79\) 2.98471 0.335807 0.167903 0.985803i \(-0.446300\pi\)
0.167903 + 0.985803i \(0.446300\pi\)
\(80\) 0 0
\(81\) −4.70702 −0.523002
\(82\) 0 0
\(83\) −7.41103 −0.813466 −0.406733 0.913547i \(-0.633332\pi\)
−0.406733 + 0.913547i \(0.633332\pi\)
\(84\) 0 0
\(85\) −18.7403 −2.03267
\(86\) 0 0
\(87\) −14.4276 −1.54680
\(88\) 0 0
\(89\) 11.8282 1.25378 0.626892 0.779107i \(-0.284327\pi\)
0.626892 + 0.779107i \(0.284327\pi\)
\(90\) 0 0
\(91\) −0.875895 −0.0918187
\(92\) 0 0
\(93\) 2.27901 0.236323
\(94\) 0 0
\(95\) 3.68793 0.378374
\(96\) 0 0
\(97\) 2.22644 0.226061 0.113030 0.993592i \(-0.463944\pi\)
0.113030 + 0.993592i \(0.463944\pi\)
\(98\) 0 0
\(99\) 1.05793 0.106326
\(100\) 0 0
\(101\) −4.93425 −0.490976 −0.245488 0.969400i \(-0.578948\pi\)
−0.245488 + 0.969400i \(0.578948\pi\)
\(102\) 0 0
\(103\) 4.48420 0.441842 0.220921 0.975292i \(-0.429094\pi\)
0.220921 + 0.975292i \(0.429094\pi\)
\(104\) 0 0
\(105\) 4.80997 0.469405
\(106\) 0 0
\(107\) −3.83294 −0.370545 −0.185272 0.982687i \(-0.559317\pi\)
−0.185272 + 0.982687i \(0.559317\pi\)
\(108\) 0 0
\(109\) −12.0662 −1.15574 −0.577868 0.816131i \(-0.696115\pi\)
−0.577868 + 0.816131i \(0.696115\pi\)
\(110\) 0 0
\(111\) −5.26912 −0.500122
\(112\) 0 0
\(113\) 0.199224 0.0187415 0.00937073 0.999956i \(-0.497017\pi\)
0.00937073 + 0.999956i \(0.497017\pi\)
\(114\) 0 0
\(115\) 2.57959 0.240548
\(116\) 0 0
\(117\) 0.990105 0.0915352
\(118\) 0 0
\(119\) 4.75575 0.435959
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) −4.68029 −0.422007
\(124\) 0 0
\(125\) −13.2797 −1.18777
\(126\) 0 0
\(127\) 5.22878 0.463979 0.231990 0.972718i \(-0.425476\pi\)
0.231990 + 0.972718i \(0.425476\pi\)
\(128\) 0 0
\(129\) 7.59917 0.669069
\(130\) 0 0
\(131\) −10.7848 −0.942271 −0.471135 0.882061i \(-0.656156\pi\)
−0.471135 + 0.882061i \(0.656156\pi\)
\(132\) 0 0
\(133\) −0.935893 −0.0811522
\(134\) 0 0
\(135\) −20.8555 −1.79495
\(136\) 0 0
\(137\) 1.92971 0.164866 0.0824332 0.996597i \(-0.473731\pi\)
0.0824332 + 0.996597i \(0.473731\pi\)
\(138\) 0 0
\(139\) 12.3719 1.04937 0.524687 0.851295i \(-0.324182\pi\)
0.524687 + 0.851295i \(0.324182\pi\)
\(140\) 0 0
\(141\) −0.918305 −0.0773352
\(142\) 0 0
\(143\) 0.935893 0.0782633
\(144\) 0 0
\(145\) −38.1807 −3.17074
\(146\) 0 0
\(147\) 8.53445 0.703910
\(148\) 0 0
\(149\) 0.770299 0.0631054 0.0315527 0.999502i \(-0.489955\pi\)
0.0315527 + 0.999502i \(0.489955\pi\)
\(150\) 0 0
\(151\) −13.4413 −1.09383 −0.546917 0.837187i \(-0.684199\pi\)
−0.546917 + 0.837187i \(0.684199\pi\)
\(152\) 0 0
\(153\) −5.37586 −0.434613
\(154\) 0 0
\(155\) 6.03110 0.484430
\(156\) 0 0
\(157\) −14.4123 −1.15022 −0.575112 0.818074i \(-0.695042\pi\)
−0.575112 + 0.818074i \(0.695042\pi\)
\(158\) 0 0
\(159\) 4.93735 0.391558
\(160\) 0 0
\(161\) −0.654628 −0.0515919
\(162\) 0 0
\(163\) −19.3130 −1.51271 −0.756357 0.654159i \(-0.773023\pi\)
−0.756357 + 0.654159i \(0.773023\pi\)
\(164\) 0 0
\(165\) −5.13944 −0.400105
\(166\) 0 0
\(167\) 9.63137 0.745298 0.372649 0.927972i \(-0.378450\pi\)
0.372649 + 0.927972i \(0.378450\pi\)
\(168\) 0 0
\(169\) −12.1241 −0.932623
\(170\) 0 0
\(171\) 1.05793 0.0809016
\(172\) 0 0
\(173\) 0.677247 0.0514901 0.0257451 0.999669i \(-0.491804\pi\)
0.0257451 + 0.999669i \(0.491804\pi\)
\(174\) 0 0
\(175\) 8.04947 0.608483
\(176\) 0 0
\(177\) 11.4759 0.862578
\(178\) 0 0
\(179\) −5.72548 −0.427942 −0.213971 0.976840i \(-0.568640\pi\)
−0.213971 + 0.976840i \(0.568640\pi\)
\(180\) 0 0
\(181\) −9.35081 −0.695041 −0.347520 0.937672i \(-0.612976\pi\)
−0.347520 + 0.937672i \(0.612976\pi\)
\(182\) 0 0
\(183\) −2.99214 −0.221185
\(184\) 0 0
\(185\) −13.9440 −1.02518
\(186\) 0 0
\(187\) −5.08152 −0.371597
\(188\) 0 0
\(189\) 5.29253 0.384975
\(190\) 0 0
\(191\) −17.4681 −1.26394 −0.631972 0.774991i \(-0.717754\pi\)
−0.631972 + 0.774991i \(0.717754\pi\)
\(192\) 0 0
\(193\) −16.7647 −1.20675 −0.603374 0.797459i \(-0.706177\pi\)
−0.603374 + 0.797459i \(0.706177\pi\)
\(194\) 0 0
\(195\) −4.80997 −0.344449
\(196\) 0 0
\(197\) 17.0575 1.21530 0.607649 0.794205i \(-0.292113\pi\)
0.607649 + 0.794205i \(0.292113\pi\)
\(198\) 0 0
\(199\) 20.4336 1.44850 0.724249 0.689539i \(-0.242187\pi\)
0.724249 + 0.689539i \(0.242187\pi\)
\(200\) 0 0
\(201\) 16.6473 1.17421
\(202\) 0 0
\(203\) 9.68919 0.680048
\(204\) 0 0
\(205\) −12.3858 −0.865059
\(206\) 0 0
\(207\) 0.739986 0.0514326
\(208\) 0 0
\(209\) 1.00000 0.0691714
\(210\) 0 0
\(211\) −7.80329 −0.537201 −0.268600 0.963252i \(-0.586561\pi\)
−0.268600 + 0.963252i \(0.586561\pi\)
\(212\) 0 0
\(213\) −9.29889 −0.637149
\(214\) 0 0
\(215\) 20.1102 1.37150
\(216\) 0 0
\(217\) −1.53052 −0.103899
\(218\) 0 0
\(219\) −7.35682 −0.497127
\(220\) 0 0
\(221\) −4.75575 −0.319907
\(222\) 0 0
\(223\) −0.928430 −0.0621723 −0.0310861 0.999517i \(-0.509897\pi\)
−0.0310861 + 0.999517i \(0.509897\pi\)
\(224\) 0 0
\(225\) −9.09905 −0.606604
\(226\) 0 0
\(227\) −9.79093 −0.649847 −0.324923 0.945740i \(-0.605339\pi\)
−0.324923 + 0.945740i \(0.605339\pi\)
\(228\) 0 0
\(229\) 14.6197 0.966098 0.483049 0.875593i \(-0.339529\pi\)
0.483049 + 0.875593i \(0.339529\pi\)
\(230\) 0 0
\(231\) 1.30424 0.0858130
\(232\) 0 0
\(233\) −8.36058 −0.547720 −0.273860 0.961770i \(-0.588300\pi\)
−0.273860 + 0.961770i \(0.588300\pi\)
\(234\) 0 0
\(235\) −2.43017 −0.158527
\(236\) 0 0
\(237\) −4.15945 −0.270185
\(238\) 0 0
\(239\) −22.7011 −1.46841 −0.734206 0.678927i \(-0.762445\pi\)
−0.734206 + 0.678927i \(0.762445\pi\)
\(240\) 0 0
\(241\) −16.4595 −1.06025 −0.530124 0.847920i \(-0.677855\pi\)
−0.530124 + 0.847920i \(0.677855\pi\)
\(242\) 0 0
\(243\) −10.4056 −0.667516
\(244\) 0 0
\(245\) 22.5853 1.44292
\(246\) 0 0
\(247\) 0.935893 0.0595494
\(248\) 0 0
\(249\) 10.3279 0.654503
\(250\) 0 0
\(251\) 14.9560 0.944016 0.472008 0.881594i \(-0.343529\pi\)
0.472008 + 0.881594i \(0.343529\pi\)
\(252\) 0 0
\(253\) 0.699469 0.0439752
\(254\) 0 0
\(255\) 26.1162 1.63546
\(256\) 0 0
\(257\) −17.8714 −1.11479 −0.557394 0.830248i \(-0.688199\pi\)
−0.557394 + 0.830248i \(0.688199\pi\)
\(258\) 0 0
\(259\) 3.53860 0.219878
\(260\) 0 0
\(261\) −10.9526 −0.677948
\(262\) 0 0
\(263\) −9.61150 −0.592670 −0.296335 0.955084i \(-0.595765\pi\)
−0.296335 + 0.955084i \(0.595765\pi\)
\(264\) 0 0
\(265\) 13.0660 0.802641
\(266\) 0 0
\(267\) −16.4835 −1.00878
\(268\) 0 0
\(269\) 24.1855 1.47462 0.737308 0.675557i \(-0.236097\pi\)
0.737308 + 0.675557i \(0.236097\pi\)
\(270\) 0 0
\(271\) −16.6190 −1.00953 −0.504765 0.863257i \(-0.668421\pi\)
−0.504765 + 0.863257i \(0.668421\pi\)
\(272\) 0 0
\(273\) 1.22063 0.0738761
\(274\) 0 0
\(275\) −8.60085 −0.518650
\(276\) 0 0
\(277\) −8.59648 −0.516513 −0.258256 0.966076i \(-0.583148\pi\)
−0.258256 + 0.966076i \(0.583148\pi\)
\(278\) 0 0
\(279\) 1.73009 0.103578
\(280\) 0 0
\(281\) 20.8058 1.24117 0.620584 0.784140i \(-0.286896\pi\)
0.620584 + 0.784140i \(0.286896\pi\)
\(282\) 0 0
\(283\) −24.8703 −1.47838 −0.739192 0.673495i \(-0.764792\pi\)
−0.739192 + 0.673495i \(0.764792\pi\)
\(284\) 0 0
\(285\) −5.13944 −0.304434
\(286\) 0 0
\(287\) 3.14315 0.185535
\(288\) 0 0
\(289\) 8.82180 0.518930
\(290\) 0 0
\(291\) −3.10273 −0.181885
\(292\) 0 0
\(293\) −1.88487 −0.110115 −0.0550576 0.998483i \(-0.517534\pi\)
−0.0550576 + 0.998483i \(0.517534\pi\)
\(294\) 0 0
\(295\) 30.3693 1.76817
\(296\) 0 0
\(297\) −5.65506 −0.328140
\(298\) 0 0
\(299\) 0.654628 0.0378581
\(300\) 0 0
\(301\) −5.10339 −0.294155
\(302\) 0 0
\(303\) 6.87629 0.395033
\(304\) 0 0
\(305\) −7.91830 −0.453401
\(306\) 0 0
\(307\) 24.7291 1.41137 0.705683 0.708527i \(-0.250640\pi\)
0.705683 + 0.708527i \(0.250640\pi\)
\(308\) 0 0
\(309\) −6.24911 −0.355499
\(310\) 0 0
\(311\) −26.9935 −1.53066 −0.765332 0.643636i \(-0.777425\pi\)
−0.765332 + 0.643636i \(0.777425\pi\)
\(312\) 0 0
\(313\) 1.18039 0.0667195 0.0333598 0.999443i \(-0.489379\pi\)
0.0333598 + 0.999443i \(0.489379\pi\)
\(314\) 0 0
\(315\) 3.65144 0.205735
\(316\) 0 0
\(317\) 33.7737 1.89692 0.948459 0.316899i \(-0.102642\pi\)
0.948459 + 0.316899i \(0.102642\pi\)
\(318\) 0 0
\(319\) −10.3529 −0.579650
\(320\) 0 0
\(321\) 5.34153 0.298135
\(322\) 0 0
\(323\) −5.08152 −0.282743
\(324\) 0 0
\(325\) −8.04947 −0.446504
\(326\) 0 0
\(327\) 16.8153 0.929888
\(328\) 0 0
\(329\) 0.616708 0.0340002
\(330\) 0 0
\(331\) −14.8244 −0.814824 −0.407412 0.913245i \(-0.633569\pi\)
−0.407412 + 0.913245i \(0.633569\pi\)
\(332\) 0 0
\(333\) −4.00000 −0.219199
\(334\) 0 0
\(335\) 44.0548 2.40697
\(336\) 0 0
\(337\) −23.7922 −1.29604 −0.648022 0.761622i \(-0.724404\pi\)
−0.648022 + 0.761622i \(0.724404\pi\)
\(338\) 0 0
\(339\) −0.277636 −0.0150791
\(340\) 0 0
\(341\) 1.63536 0.0885598
\(342\) 0 0
\(343\) −12.2828 −0.663206
\(344\) 0 0
\(345\) −3.59488 −0.193542
\(346\) 0 0
\(347\) −19.4448 −1.04385 −0.521927 0.852990i \(-0.674787\pi\)
−0.521927 + 0.852990i \(0.674787\pi\)
\(348\) 0 0
\(349\) −36.6940 −1.96418 −0.982092 0.188404i \(-0.939668\pi\)
−0.982092 + 0.188404i \(0.939668\pi\)
\(350\) 0 0
\(351\) −5.29253 −0.282494
\(352\) 0 0
\(353\) 23.4755 1.24947 0.624737 0.780835i \(-0.285206\pi\)
0.624737 + 0.780835i \(0.285206\pi\)
\(354\) 0 0
\(355\) −24.6083 −1.30607
\(356\) 0 0
\(357\) −6.62754 −0.350767
\(358\) 0 0
\(359\) 18.9503 1.00016 0.500078 0.865980i \(-0.333305\pi\)
0.500078 + 0.865980i \(0.333305\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) −1.39358 −0.0731442
\(364\) 0 0
\(365\) −19.4688 −1.01905
\(366\) 0 0
\(367\) −12.5792 −0.656631 −0.328315 0.944568i \(-0.606481\pi\)
−0.328315 + 0.944568i \(0.606481\pi\)
\(368\) 0 0
\(369\) −3.55300 −0.184962
\(370\) 0 0
\(371\) −3.31579 −0.172147
\(372\) 0 0
\(373\) −27.4973 −1.42376 −0.711879 0.702302i \(-0.752156\pi\)
−0.711879 + 0.702302i \(0.752156\pi\)
\(374\) 0 0
\(375\) 18.5063 0.955663
\(376\) 0 0
\(377\) −9.68919 −0.499019
\(378\) 0 0
\(379\) 28.7184 1.47517 0.737583 0.675257i \(-0.235967\pi\)
0.737583 + 0.675257i \(0.235967\pi\)
\(380\) 0 0
\(381\) −7.28674 −0.373311
\(382\) 0 0
\(383\) 26.3536 1.34661 0.673303 0.739367i \(-0.264875\pi\)
0.673303 + 0.739367i \(0.264875\pi\)
\(384\) 0 0
\(385\) 3.45151 0.175905
\(386\) 0 0
\(387\) 5.76884 0.293246
\(388\) 0 0
\(389\) −2.13833 −0.108417 −0.0542087 0.998530i \(-0.517264\pi\)
−0.0542087 + 0.998530i \(0.517264\pi\)
\(390\) 0 0
\(391\) −3.55436 −0.179752
\(392\) 0 0
\(393\) 15.0295 0.758138
\(394\) 0 0
\(395\) −11.0074 −0.553844
\(396\) 0 0
\(397\) 32.9260 1.65251 0.826253 0.563299i \(-0.190468\pi\)
0.826253 + 0.563299i \(0.190468\pi\)
\(398\) 0 0
\(399\) 1.30424 0.0652939
\(400\) 0 0
\(401\) 21.9766 1.09746 0.548729 0.836001i \(-0.315112\pi\)
0.548729 + 0.836001i \(0.315112\pi\)
\(402\) 0 0
\(403\) 1.53052 0.0762408
\(404\) 0 0
\(405\) 17.3592 0.862584
\(406\) 0 0
\(407\) −3.78098 −0.187416
\(408\) 0 0
\(409\) −19.4032 −0.959425 −0.479712 0.877426i \(-0.659259\pi\)
−0.479712 + 0.877426i \(0.659259\pi\)
\(410\) 0 0
\(411\) −2.68921 −0.132649
\(412\) 0 0
\(413\) −7.70687 −0.379230
\(414\) 0 0
\(415\) 27.3314 1.34164
\(416\) 0 0
\(417\) −17.2413 −0.844311
\(418\) 0 0
\(419\) 9.54182 0.466148 0.233074 0.972459i \(-0.425121\pi\)
0.233074 + 0.972459i \(0.425121\pi\)
\(420\) 0 0
\(421\) 34.9016 1.70100 0.850499 0.525977i \(-0.176300\pi\)
0.850499 + 0.525977i \(0.176300\pi\)
\(422\) 0 0
\(423\) −0.697122 −0.0338952
\(424\) 0 0
\(425\) 43.7053 2.12002
\(426\) 0 0
\(427\) 2.00944 0.0972437
\(428\) 0 0
\(429\) −1.30424 −0.0629695
\(430\) 0 0
\(431\) 14.5320 0.699983 0.349992 0.936753i \(-0.386184\pi\)
0.349992 + 0.936753i \(0.386184\pi\)
\(432\) 0 0
\(433\) −24.3163 −1.16857 −0.584283 0.811550i \(-0.698624\pi\)
−0.584283 + 0.811550i \(0.698624\pi\)
\(434\) 0 0
\(435\) 53.2080 2.55113
\(436\) 0 0
\(437\) 0.699469 0.0334601
\(438\) 0 0
\(439\) −12.2402 −0.584194 −0.292097 0.956389i \(-0.594353\pi\)
−0.292097 + 0.956389i \(0.594353\pi\)
\(440\) 0 0
\(441\) 6.47885 0.308516
\(442\) 0 0
\(443\) 3.50983 0.166757 0.0833785 0.996518i \(-0.473429\pi\)
0.0833785 + 0.996518i \(0.473429\pi\)
\(444\) 0 0
\(445\) −43.6215 −2.06786
\(446\) 0 0
\(447\) −1.07348 −0.0507737
\(448\) 0 0
\(449\) −19.1263 −0.902625 −0.451312 0.892366i \(-0.649044\pi\)
−0.451312 + 0.892366i \(0.649044\pi\)
\(450\) 0 0
\(451\) −3.35846 −0.158144
\(452\) 0 0
\(453\) 18.7315 0.880083
\(454\) 0 0
\(455\) 3.23024 0.151436
\(456\) 0 0
\(457\) 35.4333 1.65750 0.828750 0.559619i \(-0.189052\pi\)
0.828750 + 0.559619i \(0.189052\pi\)
\(458\) 0 0
\(459\) 28.7363 1.34129
\(460\) 0 0
\(461\) 18.8922 0.879899 0.439950 0.898022i \(-0.354996\pi\)
0.439950 + 0.898022i \(0.354996\pi\)
\(462\) 0 0
\(463\) 22.6999 1.05496 0.527478 0.849569i \(-0.323138\pi\)
0.527478 + 0.849569i \(0.323138\pi\)
\(464\) 0 0
\(465\) −8.40485 −0.389765
\(466\) 0 0
\(467\) 0.971666 0.0449633 0.0224817 0.999747i \(-0.492843\pi\)
0.0224817 + 0.999747i \(0.492843\pi\)
\(468\) 0 0
\(469\) −11.1799 −0.516238
\(470\) 0 0
\(471\) 20.0847 0.925454
\(472\) 0 0
\(473\) 5.45297 0.250728
\(474\) 0 0
\(475\) −8.60085 −0.394634
\(476\) 0 0
\(477\) 3.74815 0.171616
\(478\) 0 0
\(479\) 23.9664 1.09505 0.547526 0.836789i \(-0.315570\pi\)
0.547526 + 0.836789i \(0.315570\pi\)
\(480\) 0 0
\(481\) −3.53860 −0.161346
\(482\) 0 0
\(483\) 0.912279 0.0415101
\(484\) 0 0
\(485\) −8.21097 −0.372841
\(486\) 0 0
\(487\) −16.5519 −0.750036 −0.375018 0.927017i \(-0.622364\pi\)
−0.375018 + 0.927017i \(0.622364\pi\)
\(488\) 0 0
\(489\) 26.9143 1.21711
\(490\) 0 0
\(491\) 8.24711 0.372187 0.186093 0.982532i \(-0.440417\pi\)
0.186093 + 0.982532i \(0.440417\pi\)
\(492\) 0 0
\(493\) 52.6083 2.36936
\(494\) 0 0
\(495\) −3.90156 −0.175362
\(496\) 0 0
\(497\) 6.24488 0.280121
\(498\) 0 0
\(499\) −1.67368 −0.0749242 −0.0374621 0.999298i \(-0.511927\pi\)
−0.0374621 + 0.999298i \(0.511927\pi\)
\(500\) 0 0
\(501\) −13.4221 −0.599656
\(502\) 0 0
\(503\) 38.4859 1.71600 0.858001 0.513648i \(-0.171706\pi\)
0.858001 + 0.513648i \(0.171706\pi\)
\(504\) 0 0
\(505\) 18.1972 0.809764
\(506\) 0 0
\(507\) 16.8960 0.750376
\(508\) 0 0
\(509\) −26.1695 −1.15994 −0.579972 0.814637i \(-0.696936\pi\)
−0.579972 + 0.814637i \(0.696936\pi\)
\(510\) 0 0
\(511\) 4.94064 0.218561
\(512\) 0 0
\(513\) −5.65506 −0.249677
\(514\) 0 0
\(515\) −16.5374 −0.728727
\(516\) 0 0
\(517\) −0.658952 −0.0289807
\(518\) 0 0
\(519\) −0.943800 −0.0414282
\(520\) 0 0
\(521\) −17.1490 −0.751311 −0.375656 0.926759i \(-0.622582\pi\)
−0.375656 + 0.926759i \(0.622582\pi\)
\(522\) 0 0
\(523\) 7.71709 0.337445 0.168722 0.985664i \(-0.446036\pi\)
0.168722 + 0.985664i \(0.446036\pi\)
\(524\) 0 0
\(525\) −11.2176 −0.489576
\(526\) 0 0
\(527\) −8.31012 −0.361994
\(528\) 0 0
\(529\) −22.5107 −0.978728
\(530\) 0 0
\(531\) 8.71179 0.378059
\(532\) 0 0
\(533\) −3.14315 −0.136145
\(534\) 0 0
\(535\) 14.1356 0.611137
\(536\) 0 0
\(537\) 7.97893 0.344316
\(538\) 0 0
\(539\) 6.12410 0.263784
\(540\) 0 0
\(541\) −6.84605 −0.294335 −0.147167 0.989112i \(-0.547016\pi\)
−0.147167 + 0.989112i \(0.547016\pi\)
\(542\) 0 0
\(543\) 13.0311 0.559220
\(544\) 0 0
\(545\) 44.4994 1.90615
\(546\) 0 0
\(547\) 23.9144 1.02251 0.511253 0.859430i \(-0.329182\pi\)
0.511253 + 0.859430i \(0.329182\pi\)
\(548\) 0 0
\(549\) −2.27146 −0.0969434
\(550\) 0 0
\(551\) −10.3529 −0.441048
\(552\) 0 0
\(553\) 2.79337 0.118786
\(554\) 0 0
\(555\) 19.4321 0.824849
\(556\) 0 0
\(557\) −37.5532 −1.59118 −0.795590 0.605835i \(-0.792839\pi\)
−0.795590 + 0.605835i \(0.792839\pi\)
\(558\) 0 0
\(559\) 5.10339 0.215851
\(560\) 0 0
\(561\) 7.08152 0.298982
\(562\) 0 0
\(563\) 17.5457 0.739461 0.369731 0.929139i \(-0.379450\pi\)
0.369731 + 0.929139i \(0.379450\pi\)
\(564\) 0 0
\(565\) −0.734726 −0.0309102
\(566\) 0 0
\(567\) −4.40526 −0.185004
\(568\) 0 0
\(569\) −43.3795 −1.81856 −0.909282 0.416181i \(-0.863368\pi\)
−0.909282 + 0.416181i \(0.863368\pi\)
\(570\) 0 0
\(571\) −24.9640 −1.04471 −0.522356 0.852728i \(-0.674947\pi\)
−0.522356 + 0.852728i \(0.674947\pi\)
\(572\) 0 0
\(573\) 24.3432 1.01695
\(574\) 0 0
\(575\) −6.01603 −0.250886
\(576\) 0 0
\(577\) −3.88246 −0.161629 −0.0808144 0.996729i \(-0.525752\pi\)
−0.0808144 + 0.996729i \(0.525752\pi\)
\(578\) 0 0
\(579\) 23.3630 0.970932
\(580\) 0 0
\(581\) −6.93593 −0.287751
\(582\) 0 0
\(583\) 3.54292 0.146733
\(584\) 0 0
\(585\) −3.65144 −0.150968
\(586\) 0 0
\(587\) 3.84313 0.158623 0.0793114 0.996850i \(-0.474728\pi\)
0.0793114 + 0.996850i \(0.474728\pi\)
\(588\) 0 0
\(589\) 1.63536 0.0673839
\(590\) 0 0
\(591\) −23.7711 −0.977812
\(592\) 0 0
\(593\) 18.1126 0.743794 0.371897 0.928274i \(-0.378707\pi\)
0.371897 + 0.928274i \(0.378707\pi\)
\(594\) 0 0
\(595\) −17.5389 −0.719025
\(596\) 0 0
\(597\) −28.4759 −1.16544
\(598\) 0 0
\(599\) −28.6039 −1.16873 −0.584363 0.811493i \(-0.698655\pi\)
−0.584363 + 0.811493i \(0.698655\pi\)
\(600\) 0 0
\(601\) −34.6660 −1.41405 −0.707027 0.707187i \(-0.749964\pi\)
−0.707027 + 0.707187i \(0.749964\pi\)
\(602\) 0 0
\(603\) 12.6376 0.514643
\(604\) 0 0
\(605\) −3.68793 −0.149936
\(606\) 0 0
\(607\) −36.4105 −1.47786 −0.738928 0.673784i \(-0.764668\pi\)
−0.738928 + 0.673784i \(0.764668\pi\)
\(608\) 0 0
\(609\) −13.5027 −0.547157
\(610\) 0 0
\(611\) −0.616708 −0.0249493
\(612\) 0 0
\(613\) −38.6118 −1.55952 −0.779758 0.626081i \(-0.784658\pi\)
−0.779758 + 0.626081i \(0.784658\pi\)
\(614\) 0 0
\(615\) 17.2606 0.696014
\(616\) 0 0
\(617\) −12.5159 −0.503871 −0.251935 0.967744i \(-0.581067\pi\)
−0.251935 + 0.967744i \(0.581067\pi\)
\(618\) 0 0
\(619\) 5.87425 0.236106 0.118053 0.993007i \(-0.462335\pi\)
0.118053 + 0.993007i \(0.462335\pi\)
\(620\) 0 0
\(621\) −3.95554 −0.158730
\(622\) 0 0
\(623\) 11.0699 0.443506
\(624\) 0 0
\(625\) 5.97031 0.238813
\(626\) 0 0
\(627\) −1.39358 −0.0556544
\(628\) 0 0
\(629\) 19.2131 0.766078
\(630\) 0 0
\(631\) −38.9417 −1.55024 −0.775122 0.631811i \(-0.782312\pi\)
−0.775122 + 0.631811i \(0.782312\pi\)
\(632\) 0 0
\(633\) 10.8745 0.432224
\(634\) 0 0
\(635\) −19.2834 −0.765238
\(636\) 0 0
\(637\) 5.73150 0.227090
\(638\) 0 0
\(639\) −7.05916 −0.279256
\(640\) 0 0
\(641\) −26.8864 −1.06195 −0.530975 0.847388i \(-0.678174\pi\)
−0.530975 + 0.847388i \(0.678174\pi\)
\(642\) 0 0
\(643\) −47.5320 −1.87448 −0.937239 0.348687i \(-0.886628\pi\)
−0.937239 + 0.348687i \(0.886628\pi\)
\(644\) 0 0
\(645\) −28.0252 −1.10349
\(646\) 0 0
\(647\) −27.7865 −1.09240 −0.546201 0.837654i \(-0.683926\pi\)
−0.546201 + 0.837654i \(0.683926\pi\)
\(648\) 0 0
\(649\) 8.23478 0.323243
\(650\) 0 0
\(651\) 2.13291 0.0835954
\(652\) 0 0
\(653\) 31.1045 1.21721 0.608606 0.793472i \(-0.291729\pi\)
0.608606 + 0.793472i \(0.291729\pi\)
\(654\) 0 0
\(655\) 39.7736 1.55408
\(656\) 0 0
\(657\) −5.58486 −0.217886
\(658\) 0 0
\(659\) −43.2523 −1.68487 −0.842436 0.538796i \(-0.818879\pi\)
−0.842436 + 0.538796i \(0.818879\pi\)
\(660\) 0 0
\(661\) 35.5341 1.38212 0.691058 0.722799i \(-0.257145\pi\)
0.691058 + 0.722799i \(0.257145\pi\)
\(662\) 0 0
\(663\) 6.62754 0.257392
\(664\) 0 0
\(665\) 3.45151 0.133844
\(666\) 0 0
\(667\) −7.24152 −0.280393
\(668\) 0 0
\(669\) 1.29385 0.0500229
\(670\) 0 0
\(671\) −2.14708 −0.0828873
\(672\) 0 0
\(673\) −9.65878 −0.372319 −0.186159 0.982520i \(-0.559604\pi\)
−0.186159 + 0.982520i \(0.559604\pi\)
\(674\) 0 0
\(675\) 48.6383 1.87209
\(676\) 0 0
\(677\) 38.7057 1.48758 0.743790 0.668413i \(-0.233026\pi\)
0.743790 + 0.668413i \(0.233026\pi\)
\(678\) 0 0
\(679\) 2.08371 0.0799655
\(680\) 0 0
\(681\) 13.6445 0.522858
\(682\) 0 0
\(683\) −15.9434 −0.610056 −0.305028 0.952343i \(-0.598666\pi\)
−0.305028 + 0.952343i \(0.598666\pi\)
\(684\) 0 0
\(685\) −7.11664 −0.271913
\(686\) 0 0
\(687\) −20.3738 −0.777309
\(688\) 0 0
\(689\) 3.31579 0.126322
\(690\) 0 0
\(691\) 14.5517 0.553571 0.276786 0.960932i \(-0.410731\pi\)
0.276786 + 0.960932i \(0.410731\pi\)
\(692\) 0 0
\(693\) 0.990105 0.0376110
\(694\) 0 0
\(695\) −45.6269 −1.73073
\(696\) 0 0
\(697\) 17.0660 0.646423
\(698\) 0 0
\(699\) 11.6512 0.440688
\(700\) 0 0
\(701\) 23.6087 0.891689 0.445844 0.895110i \(-0.352903\pi\)
0.445844 + 0.895110i \(0.352903\pi\)
\(702\) 0 0
\(703\) −3.78098 −0.142603
\(704\) 0 0
\(705\) 3.38664 0.127548
\(706\) 0 0
\(707\) −4.61793 −0.173675
\(708\) 0 0
\(709\) 46.3389 1.74029 0.870146 0.492793i \(-0.164024\pi\)
0.870146 + 0.492793i \(0.164024\pi\)
\(710\) 0 0
\(711\) −3.15761 −0.118419
\(712\) 0 0
\(713\) 1.14388 0.0428388
\(714\) 0 0
\(715\) −3.45151 −0.129079
\(716\) 0 0
\(717\) 31.6359 1.18146
\(718\) 0 0
\(719\) 46.6570 1.74001 0.870007 0.493040i \(-0.164114\pi\)
0.870007 + 0.493040i \(0.164114\pi\)
\(720\) 0 0
\(721\) 4.19673 0.156294
\(722\) 0 0
\(723\) 22.9377 0.853060
\(724\) 0 0
\(725\) 89.0436 3.30699
\(726\) 0 0
\(727\) −26.9900 −1.00100 −0.500502 0.865736i \(-0.666851\pi\)
−0.500502 + 0.865736i \(0.666851\pi\)
\(728\) 0 0
\(729\) 28.6221 1.06008
\(730\) 0 0
\(731\) −27.7094 −1.02487
\(732\) 0 0
\(733\) 22.1162 0.816879 0.408439 0.912785i \(-0.366073\pi\)
0.408439 + 0.912785i \(0.366073\pi\)
\(734\) 0 0
\(735\) −31.4745 −1.16095
\(736\) 0 0
\(737\) 11.9457 0.440024
\(738\) 0 0
\(739\) −28.9847 −1.06622 −0.533109 0.846046i \(-0.678976\pi\)
−0.533109 + 0.846046i \(0.678976\pi\)
\(740\) 0 0
\(741\) −1.30424 −0.0479126
\(742\) 0 0
\(743\) −4.37615 −0.160546 −0.0802728 0.996773i \(-0.525579\pi\)
−0.0802728 + 0.996773i \(0.525579\pi\)
\(744\) 0 0
\(745\) −2.84081 −0.104079
\(746\) 0 0
\(747\) 7.84031 0.286862
\(748\) 0 0
\(749\) −3.58722 −0.131074
\(750\) 0 0
\(751\) −52.4195 −1.91282 −0.956408 0.292034i \(-0.905668\pi\)
−0.956408 + 0.292034i \(0.905668\pi\)
\(752\) 0 0
\(753\) −20.8425 −0.759541
\(754\) 0 0
\(755\) 49.5704 1.80405
\(756\) 0 0
\(757\) 5.87571 0.213556 0.106778 0.994283i \(-0.465947\pi\)
0.106778 + 0.994283i \(0.465947\pi\)
\(758\) 0 0
\(759\) −0.974768 −0.0353819
\(760\) 0 0
\(761\) −11.6463 −0.422179 −0.211090 0.977467i \(-0.567701\pi\)
−0.211090 + 0.977467i \(0.567701\pi\)
\(762\) 0 0
\(763\) −11.2927 −0.408823
\(764\) 0 0
\(765\) 19.8258 0.716804
\(766\) 0 0
\(767\) 7.70687 0.278279
\(768\) 0 0
\(769\) −23.6432 −0.852595 −0.426298 0.904583i \(-0.640182\pi\)
−0.426298 + 0.904583i \(0.640182\pi\)
\(770\) 0 0
\(771\) 24.9053 0.896943
\(772\) 0 0
\(773\) 14.9649 0.538251 0.269126 0.963105i \(-0.413265\pi\)
0.269126 + 0.963105i \(0.413265\pi\)
\(774\) 0 0
\(775\) −14.0655 −0.505247
\(776\) 0 0
\(777\) −4.93133 −0.176910
\(778\) 0 0
\(779\) −3.35846 −0.120329
\(780\) 0 0
\(781\) −6.67265 −0.238766
\(782\) 0 0
\(783\) 58.5462 2.09227
\(784\) 0 0
\(785\) 53.1515 1.89706
\(786\) 0 0
\(787\) −52.1218 −1.85794 −0.928971 0.370153i \(-0.879305\pi\)
−0.928971 + 0.370153i \(0.879305\pi\)
\(788\) 0 0
\(789\) 13.3944 0.476854
\(790\) 0 0
\(791\) 0.186453 0.00662950
\(792\) 0 0
\(793\) −2.00944 −0.0713573
\(794\) 0 0
\(795\) −18.2086 −0.645794
\(796\) 0 0
\(797\) −0.228796 −0.00810438 −0.00405219 0.999992i \(-0.501290\pi\)
−0.00405219 + 0.999992i \(0.501290\pi\)
\(798\) 0 0
\(799\) 3.34847 0.118461
\(800\) 0 0
\(801\) −12.5133 −0.442136
\(802\) 0 0
\(803\) −5.27906 −0.186294
\(804\) 0 0
\(805\) 2.41422 0.0850902
\(806\) 0 0
\(807\) −33.7045 −1.18645
\(808\) 0 0
\(809\) −6.19090 −0.217661 −0.108830 0.994060i \(-0.534710\pi\)
−0.108830 + 0.994060i \(0.534710\pi\)
\(810\) 0 0
\(811\) 32.7083 1.14854 0.574271 0.818665i \(-0.305286\pi\)
0.574271 + 0.818665i \(0.305286\pi\)
\(812\) 0 0
\(813\) 23.1599 0.812253
\(814\) 0 0
\(815\) 71.2252 2.49491
\(816\) 0 0
\(817\) 5.45297 0.190775
\(818\) 0 0
\(819\) 0.926632 0.0323791
\(820\) 0 0
\(821\) −45.1037 −1.57413 −0.787065 0.616869i \(-0.788401\pi\)
−0.787065 + 0.616869i \(0.788401\pi\)
\(822\) 0 0
\(823\) 36.4985 1.27226 0.636129 0.771583i \(-0.280535\pi\)
0.636129 + 0.771583i \(0.280535\pi\)
\(824\) 0 0
\(825\) 11.9860 0.417299
\(826\) 0 0
\(827\) −8.61147 −0.299450 −0.149725 0.988728i \(-0.547839\pi\)
−0.149725 + 0.988728i \(0.547839\pi\)
\(828\) 0 0
\(829\) 22.0910 0.767253 0.383626 0.923488i \(-0.374675\pi\)
0.383626 + 0.923488i \(0.374675\pi\)
\(830\) 0 0
\(831\) 11.9799 0.415579
\(832\) 0 0
\(833\) −31.1197 −1.07823
\(834\) 0 0
\(835\) −35.5199 −1.22922
\(836\) 0 0
\(837\) −9.24806 −0.319660
\(838\) 0 0
\(839\) −4.14847 −0.143221 −0.0716106 0.997433i \(-0.522814\pi\)
−0.0716106 + 0.997433i \(0.522814\pi\)
\(840\) 0 0
\(841\) 78.1822 2.69594
\(842\) 0 0
\(843\) −28.9946 −0.998626
\(844\) 0 0
\(845\) 44.7129 1.53817
\(846\) 0 0
\(847\) 0.935893 0.0321577
\(848\) 0 0
\(849\) 34.6588 1.18949
\(850\) 0 0
\(851\) −2.64468 −0.0906585
\(852\) 0 0
\(853\) −32.1956 −1.10236 −0.551178 0.834388i \(-0.685821\pi\)
−0.551178 + 0.834388i \(0.685821\pi\)
\(854\) 0 0
\(855\) −3.90156 −0.133430
\(856\) 0 0
\(857\) 8.02947 0.274282 0.137141 0.990552i \(-0.456209\pi\)
0.137141 + 0.990552i \(0.456209\pi\)
\(858\) 0 0
\(859\) 10.7062 0.365289 0.182645 0.983179i \(-0.441534\pi\)
0.182645 + 0.983179i \(0.441534\pi\)
\(860\) 0 0
\(861\) −4.38025 −0.149278
\(862\) 0 0
\(863\) −13.5645 −0.461742 −0.230871 0.972984i \(-0.574158\pi\)
−0.230871 + 0.972984i \(0.574158\pi\)
\(864\) 0 0
\(865\) −2.49764 −0.0849223
\(866\) 0 0
\(867\) −12.2939 −0.417523
\(868\) 0 0
\(869\) −2.98471 −0.101250
\(870\) 0 0
\(871\) 11.1799 0.378815
\(872\) 0 0
\(873\) −2.35541 −0.0797185
\(874\) 0 0
\(875\) −12.4283 −0.420155
\(876\) 0 0
\(877\) 27.3923 0.924972 0.462486 0.886627i \(-0.346958\pi\)
0.462486 + 0.886627i \(0.346958\pi\)
\(878\) 0 0
\(879\) 2.62672 0.0885972
\(880\) 0 0
\(881\) −46.5748 −1.56914 −0.784572 0.620037i \(-0.787117\pi\)
−0.784572 + 0.620037i \(0.787117\pi\)
\(882\) 0 0
\(883\) 35.9121 1.20854 0.604269 0.796781i \(-0.293465\pi\)
0.604269 + 0.796781i \(0.293465\pi\)
\(884\) 0 0
\(885\) −42.3222 −1.42264
\(886\) 0 0
\(887\) 40.9815 1.37603 0.688013 0.725699i \(-0.258483\pi\)
0.688013 + 0.725699i \(0.258483\pi\)
\(888\) 0 0
\(889\) 4.89358 0.164125
\(890\) 0 0
\(891\) 4.70702 0.157691
\(892\) 0 0
\(893\) −0.658952 −0.0220510
\(894\) 0 0
\(895\) 21.1152 0.705802
\(896\) 0 0
\(897\) −0.912279 −0.0304601
\(898\) 0 0
\(899\) −16.9307 −0.564671
\(900\) 0 0
\(901\) −18.0034 −0.599780
\(902\) 0 0
\(903\) 7.11201 0.236673
\(904\) 0 0
\(905\) 34.4852 1.14633
\(906\) 0 0
\(907\) 34.2438 1.13705 0.568523 0.822668i \(-0.307515\pi\)
0.568523 + 0.822668i \(0.307515\pi\)
\(908\) 0 0
\(909\) 5.22007 0.173139
\(910\) 0 0
\(911\) −55.1081 −1.82581 −0.912906 0.408169i \(-0.866167\pi\)
−0.912906 + 0.408169i \(0.866167\pi\)
\(912\) 0 0
\(913\) 7.41103 0.245269
\(914\) 0 0
\(915\) 11.0348 0.364800
\(916\) 0 0
\(917\) −10.0934 −0.333313
\(918\) 0 0
\(919\) 1.06736 0.0352088 0.0176044 0.999845i \(-0.494396\pi\)
0.0176044 + 0.999845i \(0.494396\pi\)
\(920\) 0 0
\(921\) −34.4621 −1.13557
\(922\) 0 0
\(923\) −6.24488 −0.205553
\(924\) 0 0
\(925\) 32.5197 1.06924
\(926\) 0 0
\(927\) −4.74395 −0.155812
\(928\) 0 0
\(929\) −12.0458 −0.395210 −0.197605 0.980282i \(-0.563316\pi\)
−0.197605 + 0.980282i \(0.563316\pi\)
\(930\) 0 0
\(931\) 6.12410 0.200709
\(932\) 0 0
\(933\) 37.6178 1.23155
\(934\) 0 0
\(935\) 18.7403 0.612873
\(936\) 0 0
\(937\) 38.1579 1.24656 0.623282 0.781997i \(-0.285799\pi\)
0.623282 + 0.781997i \(0.285799\pi\)
\(938\) 0 0
\(939\) −1.64497 −0.0536816
\(940\) 0 0
\(941\) −17.7232 −0.577761 −0.288881 0.957365i \(-0.593283\pi\)
−0.288881 + 0.957365i \(0.593283\pi\)
\(942\) 0 0
\(943\) −2.34914 −0.0764984
\(944\) 0 0
\(945\) −19.5185 −0.634936
\(946\) 0 0
\(947\) −37.0110 −1.20270 −0.601348 0.798987i \(-0.705369\pi\)
−0.601348 + 0.798987i \(0.705369\pi\)
\(948\) 0 0
\(949\) −4.94064 −0.160380
\(950\) 0 0
\(951\) −47.0664 −1.52623
\(952\) 0 0
\(953\) 6.61111 0.214155 0.107077 0.994251i \(-0.465851\pi\)
0.107077 + 0.994251i \(0.465851\pi\)
\(954\) 0 0
\(955\) 64.4210 2.08462
\(956\) 0 0
\(957\) 14.4276 0.466378
\(958\) 0 0
\(959\) 1.80600 0.0583188
\(960\) 0 0
\(961\) −28.3256 −0.913729
\(962\) 0 0
\(963\) 4.05497 0.130670
\(964\) 0 0
\(965\) 61.8270 1.99028
\(966\) 0 0
\(967\) 17.8631 0.574438 0.287219 0.957865i \(-0.407269\pi\)
0.287219 + 0.957865i \(0.407269\pi\)
\(968\) 0 0
\(969\) 7.08152 0.227491
\(970\) 0 0
\(971\) −37.1698 −1.19284 −0.596418 0.802674i \(-0.703410\pi\)
−0.596418 + 0.802674i \(0.703410\pi\)
\(972\) 0 0
\(973\) 11.5788 0.371199
\(974\) 0 0
\(975\) 11.2176 0.359251
\(976\) 0 0
\(977\) −1.03235 −0.0330278 −0.0165139 0.999864i \(-0.505257\pi\)
−0.0165139 + 0.999864i \(0.505257\pi\)
\(978\) 0 0
\(979\) −11.8282 −0.378030
\(980\) 0 0
\(981\) 12.7652 0.407561
\(982\) 0 0
\(983\) −30.4875 −0.972402 −0.486201 0.873847i \(-0.661618\pi\)
−0.486201 + 0.873847i \(0.661618\pi\)
\(984\) 0 0
\(985\) −62.9070 −2.00438
\(986\) 0 0
\(987\) −0.859434 −0.0273561
\(988\) 0 0
\(989\) 3.81418 0.121284
\(990\) 0 0
\(991\) 2.54227 0.0807579 0.0403790 0.999184i \(-0.487143\pi\)
0.0403790 + 0.999184i \(0.487143\pi\)
\(992\) 0 0
\(993\) 20.6591 0.655595
\(994\) 0 0
\(995\) −75.3576 −2.38900
\(996\) 0 0
\(997\) −20.4065 −0.646282 −0.323141 0.946351i \(-0.604739\pi\)
−0.323141 + 0.946351i \(0.604739\pi\)
\(998\) 0 0
\(999\) 21.3817 0.676487
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3344.2.a.v.1.3 6
4.3 odd 2 1672.2.a.j.1.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1672.2.a.j.1.4 6 4.3 odd 2
3344.2.a.v.1.3 6 1.1 even 1 trivial