Properties

Label 3344.2.a.o.1.2
Level $3344$
Weight $2$
Character 3344.1
Self dual yes
Analytic conductor $26.702$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3344,2,Mod(1,3344)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3344, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3344.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3344 = 2^{4} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3344.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.7019744359\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{13}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 418)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.30278\) of defining polynomial
Character \(\chi\) \(=\) 3344.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.30278 q^{3} +1.30278 q^{5} +2.30278 q^{7} +7.90833 q^{9} +O(q^{10})\) \(q+3.30278 q^{3} +1.30278 q^{5} +2.30278 q^{7} +7.90833 q^{9} -1.00000 q^{11} +0.302776 q^{13} +4.30278 q^{15} +2.60555 q^{17} -1.00000 q^{19} +7.60555 q^{21} +8.60555 q^{23} -3.30278 q^{25} +16.2111 q^{27} -4.69722 q^{29} -0.302776 q^{31} -3.30278 q^{33} +3.00000 q^{35} -9.21110 q^{37} +1.00000 q^{39} -6.90833 q^{41} -11.9083 q^{43} +10.3028 q^{45} +6.00000 q^{47} -1.69722 q^{49} +8.60555 q^{51} -3.39445 q^{53} -1.30278 q^{55} -3.30278 q^{57} -3.21110 q^{61} +18.2111 q^{63} +0.394449 q^{65} -11.5139 q^{67} +28.4222 q^{69} +13.3028 q^{71} +4.60555 q^{73} -10.9083 q^{75} -2.30278 q^{77} +5.81665 q^{79} +29.8167 q^{81} -10.6972 q^{83} +3.39445 q^{85} -15.5139 q^{87} -2.60555 q^{89} +0.697224 q^{91} -1.00000 q^{93} -1.30278 q^{95} +8.00000 q^{97} -7.90833 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{3} - q^{5} + q^{7} + 5 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 3 q^{3} - q^{5} + q^{7} + 5 q^{9} - 2 q^{11} - 3 q^{13} + 5 q^{15} - 2 q^{17} - 2 q^{19} + 8 q^{21} + 10 q^{23} - 3 q^{25} + 18 q^{27} - 13 q^{29} + 3 q^{31} - 3 q^{33} + 6 q^{35} - 4 q^{37} + 2 q^{39} - 3 q^{41} - 13 q^{43} + 17 q^{45} + 12 q^{47} - 7 q^{49} + 10 q^{51} - 14 q^{53} + q^{55} - 3 q^{57} + 8 q^{61} + 22 q^{63} + 8 q^{65} - 5 q^{67} + 28 q^{69} + 23 q^{71} + 2 q^{73} - 11 q^{75} - q^{77} - 10 q^{79} + 38 q^{81} - 25 q^{83} + 14 q^{85} - 13 q^{87} + 2 q^{89} + 5 q^{91} - 2 q^{93} + q^{95} + 16 q^{97} - 5 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.30278 1.90686 0.953429 0.301617i \(-0.0975264\pi\)
0.953429 + 0.301617i \(0.0975264\pi\)
\(4\) 0 0
\(5\) 1.30278 0.582619 0.291309 0.956629i \(-0.405909\pi\)
0.291309 + 0.956629i \(0.405909\pi\)
\(6\) 0 0
\(7\) 2.30278 0.870367 0.435184 0.900342i \(-0.356683\pi\)
0.435184 + 0.900342i \(0.356683\pi\)
\(8\) 0 0
\(9\) 7.90833 2.63611
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) 0.302776 0.0839749 0.0419874 0.999118i \(-0.486631\pi\)
0.0419874 + 0.999118i \(0.486631\pi\)
\(14\) 0 0
\(15\) 4.30278 1.11097
\(16\) 0 0
\(17\) 2.60555 0.631939 0.315970 0.948769i \(-0.397670\pi\)
0.315970 + 0.948769i \(0.397670\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 7.60555 1.65967
\(22\) 0 0
\(23\) 8.60555 1.79438 0.897191 0.441643i \(-0.145604\pi\)
0.897191 + 0.441643i \(0.145604\pi\)
\(24\) 0 0
\(25\) −3.30278 −0.660555
\(26\) 0 0
\(27\) 16.2111 3.11983
\(28\) 0 0
\(29\) −4.69722 −0.872253 −0.436126 0.899885i \(-0.643650\pi\)
−0.436126 + 0.899885i \(0.643650\pi\)
\(30\) 0 0
\(31\) −0.302776 −0.0543801 −0.0271901 0.999630i \(-0.508656\pi\)
−0.0271901 + 0.999630i \(0.508656\pi\)
\(32\) 0 0
\(33\) −3.30278 −0.574939
\(34\) 0 0
\(35\) 3.00000 0.507093
\(36\) 0 0
\(37\) −9.21110 −1.51430 −0.757148 0.653243i \(-0.773408\pi\)
−0.757148 + 0.653243i \(0.773408\pi\)
\(38\) 0 0
\(39\) 1.00000 0.160128
\(40\) 0 0
\(41\) −6.90833 −1.07890 −0.539450 0.842018i \(-0.681368\pi\)
−0.539450 + 0.842018i \(0.681368\pi\)
\(42\) 0 0
\(43\) −11.9083 −1.81600 −0.908001 0.418967i \(-0.862392\pi\)
−0.908001 + 0.418967i \(0.862392\pi\)
\(44\) 0 0
\(45\) 10.3028 1.53585
\(46\) 0 0
\(47\) 6.00000 0.875190 0.437595 0.899172i \(-0.355830\pi\)
0.437595 + 0.899172i \(0.355830\pi\)
\(48\) 0 0
\(49\) −1.69722 −0.242461
\(50\) 0 0
\(51\) 8.60555 1.20502
\(52\) 0 0
\(53\) −3.39445 −0.466263 −0.233132 0.972445i \(-0.574897\pi\)
−0.233132 + 0.972445i \(0.574897\pi\)
\(54\) 0 0
\(55\) −1.30278 −0.175666
\(56\) 0 0
\(57\) −3.30278 −0.437463
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) −3.21110 −0.411140 −0.205570 0.978642i \(-0.565905\pi\)
−0.205570 + 0.978642i \(0.565905\pi\)
\(62\) 0 0
\(63\) 18.2111 2.29438
\(64\) 0 0
\(65\) 0.394449 0.0489253
\(66\) 0 0
\(67\) −11.5139 −1.40664 −0.703322 0.710871i \(-0.748301\pi\)
−0.703322 + 0.710871i \(0.748301\pi\)
\(68\) 0 0
\(69\) 28.4222 3.42163
\(70\) 0 0
\(71\) 13.3028 1.57875 0.789375 0.613912i \(-0.210405\pi\)
0.789375 + 0.613912i \(0.210405\pi\)
\(72\) 0 0
\(73\) 4.60555 0.539039 0.269520 0.962995i \(-0.413135\pi\)
0.269520 + 0.962995i \(0.413135\pi\)
\(74\) 0 0
\(75\) −10.9083 −1.25959
\(76\) 0 0
\(77\) −2.30278 −0.262426
\(78\) 0 0
\(79\) 5.81665 0.654425 0.327212 0.944951i \(-0.393891\pi\)
0.327212 + 0.944951i \(0.393891\pi\)
\(80\) 0 0
\(81\) 29.8167 3.31296
\(82\) 0 0
\(83\) −10.6972 −1.17417 −0.587086 0.809524i \(-0.699725\pi\)
−0.587086 + 0.809524i \(0.699725\pi\)
\(84\) 0 0
\(85\) 3.39445 0.368180
\(86\) 0 0
\(87\) −15.5139 −1.66326
\(88\) 0 0
\(89\) −2.60555 −0.276188 −0.138094 0.990419i \(-0.544098\pi\)
−0.138094 + 0.990419i \(0.544098\pi\)
\(90\) 0 0
\(91\) 0.697224 0.0730890
\(92\) 0 0
\(93\) −1.00000 −0.103695
\(94\) 0 0
\(95\) −1.30278 −0.133662
\(96\) 0 0
\(97\) 8.00000 0.812277 0.406138 0.913812i \(-0.366875\pi\)
0.406138 + 0.913812i \(0.366875\pi\)
\(98\) 0 0
\(99\) −7.90833 −0.794817
\(100\) 0 0
\(101\) −13.8167 −1.37481 −0.687404 0.726275i \(-0.741250\pi\)
−0.687404 + 0.726275i \(0.741250\pi\)
\(102\) 0 0
\(103\) 5.30278 0.522498 0.261249 0.965271i \(-0.415866\pi\)
0.261249 + 0.965271i \(0.415866\pi\)
\(104\) 0 0
\(105\) 9.90833 0.966954
\(106\) 0 0
\(107\) 11.2111 1.08382 0.541909 0.840437i \(-0.317702\pi\)
0.541909 + 0.840437i \(0.317702\pi\)
\(108\) 0 0
\(109\) 2.00000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) 0 0
\(111\) −30.4222 −2.88755
\(112\) 0 0
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) 11.2111 1.04544
\(116\) 0 0
\(117\) 2.39445 0.221367
\(118\) 0 0
\(119\) 6.00000 0.550019
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) −22.8167 −2.05731
\(124\) 0 0
\(125\) −10.8167 −0.967471
\(126\) 0 0
\(127\) 12.6056 1.11856 0.559281 0.828978i \(-0.311077\pi\)
0.559281 + 0.828978i \(0.311077\pi\)
\(128\) 0 0
\(129\) −39.3305 −3.46286
\(130\) 0 0
\(131\) 6.11943 0.534657 0.267329 0.963605i \(-0.413859\pi\)
0.267329 + 0.963605i \(0.413859\pi\)
\(132\) 0 0
\(133\) −2.30278 −0.199676
\(134\) 0 0
\(135\) 21.1194 1.81767
\(136\) 0 0
\(137\) −21.5139 −1.83805 −0.919027 0.394194i \(-0.871024\pi\)
−0.919027 + 0.394194i \(0.871024\pi\)
\(138\) 0 0
\(139\) 2.69722 0.228776 0.114388 0.993436i \(-0.463509\pi\)
0.114388 + 0.993436i \(0.463509\pi\)
\(140\) 0 0
\(141\) 19.8167 1.66886
\(142\) 0 0
\(143\) −0.302776 −0.0253194
\(144\) 0 0
\(145\) −6.11943 −0.508191
\(146\) 0 0
\(147\) −5.60555 −0.462338
\(148\) 0 0
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) −12.4222 −1.01090 −0.505452 0.862855i \(-0.668674\pi\)
−0.505452 + 0.862855i \(0.668674\pi\)
\(152\) 0 0
\(153\) 20.6056 1.66586
\(154\) 0 0
\(155\) −0.394449 −0.0316829
\(156\) 0 0
\(157\) 11.9083 0.950388 0.475194 0.879881i \(-0.342378\pi\)
0.475194 + 0.879881i \(0.342378\pi\)
\(158\) 0 0
\(159\) −11.2111 −0.889098
\(160\) 0 0
\(161\) 19.8167 1.56177
\(162\) 0 0
\(163\) 18.6056 1.45730 0.728650 0.684887i \(-0.240148\pi\)
0.728650 + 0.684887i \(0.240148\pi\)
\(164\) 0 0
\(165\) −4.30278 −0.334971
\(166\) 0 0
\(167\) −16.4222 −1.27079 −0.635394 0.772188i \(-0.719162\pi\)
−0.635394 + 0.772188i \(0.719162\pi\)
\(168\) 0 0
\(169\) −12.9083 −0.992948
\(170\) 0 0
\(171\) −7.90833 −0.604765
\(172\) 0 0
\(173\) 20.3305 1.54570 0.772851 0.634588i \(-0.218830\pi\)
0.772851 + 0.634588i \(0.218830\pi\)
\(174\) 0 0
\(175\) −7.60555 −0.574926
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −12.1194 −0.905849 −0.452924 0.891549i \(-0.649619\pi\)
−0.452924 + 0.891549i \(0.649619\pi\)
\(180\) 0 0
\(181\) 21.0278 1.56298 0.781490 0.623917i \(-0.214460\pi\)
0.781490 + 0.623917i \(0.214460\pi\)
\(182\) 0 0
\(183\) −10.6056 −0.783985
\(184\) 0 0
\(185\) −12.0000 −0.882258
\(186\) 0 0
\(187\) −2.60555 −0.190537
\(188\) 0 0
\(189\) 37.3305 2.71540
\(190\) 0 0
\(191\) 6.00000 0.434145 0.217072 0.976156i \(-0.430349\pi\)
0.217072 + 0.976156i \(0.430349\pi\)
\(192\) 0 0
\(193\) 7.72498 0.556056 0.278028 0.960573i \(-0.410319\pi\)
0.278028 + 0.960573i \(0.410319\pi\)
\(194\) 0 0
\(195\) 1.30278 0.0932937
\(196\) 0 0
\(197\) −21.6333 −1.54131 −0.770655 0.637253i \(-0.780071\pi\)
−0.770655 + 0.637253i \(0.780071\pi\)
\(198\) 0 0
\(199\) 23.8167 1.68832 0.844159 0.536093i \(-0.180100\pi\)
0.844159 + 0.536093i \(0.180100\pi\)
\(200\) 0 0
\(201\) −38.0278 −2.68227
\(202\) 0 0
\(203\) −10.8167 −0.759180
\(204\) 0 0
\(205\) −9.00000 −0.628587
\(206\) 0 0
\(207\) 68.0555 4.73019
\(208\) 0 0
\(209\) 1.00000 0.0691714
\(210\) 0 0
\(211\) −17.3944 −1.19748 −0.598742 0.800942i \(-0.704332\pi\)
−0.598742 + 0.800942i \(0.704332\pi\)
\(212\) 0 0
\(213\) 43.9361 3.01045
\(214\) 0 0
\(215\) −15.5139 −1.05804
\(216\) 0 0
\(217\) −0.697224 −0.0473307
\(218\) 0 0
\(219\) 15.2111 1.02787
\(220\) 0 0
\(221\) 0.788897 0.0530670
\(222\) 0 0
\(223\) 10.7889 0.722478 0.361239 0.932473i \(-0.382354\pi\)
0.361239 + 0.932473i \(0.382354\pi\)
\(224\) 0 0
\(225\) −26.1194 −1.74130
\(226\) 0 0
\(227\) 19.8167 1.31528 0.657639 0.753333i \(-0.271555\pi\)
0.657639 + 0.753333i \(0.271555\pi\)
\(228\) 0 0
\(229\) 1.09167 0.0721398 0.0360699 0.999349i \(-0.488516\pi\)
0.0360699 + 0.999349i \(0.488516\pi\)
\(230\) 0 0
\(231\) −7.60555 −0.500409
\(232\) 0 0
\(233\) −5.21110 −0.341391 −0.170695 0.985324i \(-0.554601\pi\)
−0.170695 + 0.985324i \(0.554601\pi\)
\(234\) 0 0
\(235\) 7.81665 0.509902
\(236\) 0 0
\(237\) 19.2111 1.24790
\(238\) 0 0
\(239\) −22.9361 −1.48361 −0.741806 0.670615i \(-0.766030\pi\)
−0.741806 + 0.670615i \(0.766030\pi\)
\(240\) 0 0
\(241\) 23.9083 1.54007 0.770035 0.638001i \(-0.220239\pi\)
0.770035 + 0.638001i \(0.220239\pi\)
\(242\) 0 0
\(243\) 49.8444 3.19752
\(244\) 0 0
\(245\) −2.21110 −0.141262
\(246\) 0 0
\(247\) −0.302776 −0.0192652
\(248\) 0 0
\(249\) −35.3305 −2.23898
\(250\) 0 0
\(251\) −24.0000 −1.51487 −0.757433 0.652913i \(-0.773547\pi\)
−0.757433 + 0.652913i \(0.773547\pi\)
\(252\) 0 0
\(253\) −8.60555 −0.541026
\(254\) 0 0
\(255\) 11.2111 0.702066
\(256\) 0 0
\(257\) 2.60555 0.162530 0.0812649 0.996693i \(-0.474104\pi\)
0.0812649 + 0.996693i \(0.474104\pi\)
\(258\) 0 0
\(259\) −21.2111 −1.31799
\(260\) 0 0
\(261\) −37.1472 −2.29935
\(262\) 0 0
\(263\) 16.6972 1.02959 0.514797 0.857312i \(-0.327867\pi\)
0.514797 + 0.857312i \(0.327867\pi\)
\(264\) 0 0
\(265\) −4.42221 −0.271654
\(266\) 0 0
\(267\) −8.60555 −0.526651
\(268\) 0 0
\(269\) 1.81665 0.110763 0.0553817 0.998465i \(-0.482362\pi\)
0.0553817 + 0.998465i \(0.482362\pi\)
\(270\) 0 0
\(271\) −11.5139 −0.699418 −0.349709 0.936858i \(-0.613720\pi\)
−0.349709 + 0.936858i \(0.613720\pi\)
\(272\) 0 0
\(273\) 2.30278 0.139370
\(274\) 0 0
\(275\) 3.30278 0.199165
\(276\) 0 0
\(277\) −10.0000 −0.600842 −0.300421 0.953807i \(-0.597127\pi\)
−0.300421 + 0.953807i \(0.597127\pi\)
\(278\) 0 0
\(279\) −2.39445 −0.143352
\(280\) 0 0
\(281\) −18.5139 −1.10445 −0.552223 0.833697i \(-0.686220\pi\)
−0.552223 + 0.833697i \(0.686220\pi\)
\(282\) 0 0
\(283\) −27.9361 −1.66063 −0.830314 0.557296i \(-0.811839\pi\)
−0.830314 + 0.557296i \(0.811839\pi\)
\(284\) 0 0
\(285\) −4.30278 −0.254874
\(286\) 0 0
\(287\) −15.9083 −0.939039
\(288\) 0 0
\(289\) −10.2111 −0.600653
\(290\) 0 0
\(291\) 26.4222 1.54890
\(292\) 0 0
\(293\) 28.5416 1.66742 0.833710 0.552202i \(-0.186212\pi\)
0.833710 + 0.552202i \(0.186212\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −16.2111 −0.940664
\(298\) 0 0
\(299\) 2.60555 0.150683
\(300\) 0 0
\(301\) −27.4222 −1.58059
\(302\) 0 0
\(303\) −45.6333 −2.62157
\(304\) 0 0
\(305\) −4.18335 −0.239538
\(306\) 0 0
\(307\) 23.8167 1.35929 0.679644 0.733542i \(-0.262134\pi\)
0.679644 + 0.733542i \(0.262134\pi\)
\(308\) 0 0
\(309\) 17.5139 0.996330
\(310\) 0 0
\(311\) −4.18335 −0.237216 −0.118608 0.992941i \(-0.537843\pi\)
−0.118608 + 0.992941i \(0.537843\pi\)
\(312\) 0 0
\(313\) −7.11943 −0.402414 −0.201207 0.979549i \(-0.564486\pi\)
−0.201207 + 0.979549i \(0.564486\pi\)
\(314\) 0 0
\(315\) 23.7250 1.33675
\(316\) 0 0
\(317\) 7.81665 0.439027 0.219514 0.975609i \(-0.429553\pi\)
0.219514 + 0.975609i \(0.429553\pi\)
\(318\) 0 0
\(319\) 4.69722 0.262994
\(320\) 0 0
\(321\) 37.0278 2.06669
\(322\) 0 0
\(323\) −2.60555 −0.144977
\(324\) 0 0
\(325\) −1.00000 −0.0554700
\(326\) 0 0
\(327\) 6.60555 0.365288
\(328\) 0 0
\(329\) 13.8167 0.761737
\(330\) 0 0
\(331\) 9.72498 0.534533 0.267267 0.963623i \(-0.413880\pi\)
0.267267 + 0.963623i \(0.413880\pi\)
\(332\) 0 0
\(333\) −72.8444 −3.99185
\(334\) 0 0
\(335\) −15.0000 −0.819538
\(336\) 0 0
\(337\) −5.69722 −0.310348 −0.155174 0.987887i \(-0.549594\pi\)
−0.155174 + 0.987887i \(0.549594\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0.302776 0.0163962
\(342\) 0 0
\(343\) −20.0278 −1.08140
\(344\) 0 0
\(345\) 37.0278 1.99351
\(346\) 0 0
\(347\) −17.2111 −0.923940 −0.461970 0.886895i \(-0.652857\pi\)
−0.461970 + 0.886895i \(0.652857\pi\)
\(348\) 0 0
\(349\) 3.57779 0.191515 0.0957575 0.995405i \(-0.469473\pi\)
0.0957575 + 0.995405i \(0.469473\pi\)
\(350\) 0 0
\(351\) 4.90833 0.261987
\(352\) 0 0
\(353\) −0.788897 −0.0419888 −0.0209944 0.999780i \(-0.506683\pi\)
−0.0209944 + 0.999780i \(0.506683\pi\)
\(354\) 0 0
\(355\) 17.3305 0.919809
\(356\) 0 0
\(357\) 19.8167 1.04881
\(358\) 0 0
\(359\) 27.5139 1.45213 0.726063 0.687628i \(-0.241348\pi\)
0.726063 + 0.687628i \(0.241348\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 3.30278 0.173351
\(364\) 0 0
\(365\) 6.00000 0.314054
\(366\) 0 0
\(367\) −7.21110 −0.376416 −0.188208 0.982129i \(-0.560268\pi\)
−0.188208 + 0.982129i \(0.560268\pi\)
\(368\) 0 0
\(369\) −54.6333 −2.84410
\(370\) 0 0
\(371\) −7.81665 −0.405820
\(372\) 0 0
\(373\) 17.9083 0.927258 0.463629 0.886029i \(-0.346547\pi\)
0.463629 + 0.886029i \(0.346547\pi\)
\(374\) 0 0
\(375\) −35.7250 −1.84483
\(376\) 0 0
\(377\) −1.42221 −0.0732473
\(378\) 0 0
\(379\) 31.5139 1.61876 0.809380 0.587286i \(-0.199804\pi\)
0.809380 + 0.587286i \(0.199804\pi\)
\(380\) 0 0
\(381\) 41.6333 2.13294
\(382\) 0 0
\(383\) −21.5139 −1.09931 −0.549654 0.835392i \(-0.685240\pi\)
−0.549654 + 0.835392i \(0.685240\pi\)
\(384\) 0 0
\(385\) −3.00000 −0.152894
\(386\) 0 0
\(387\) −94.1749 −4.78718
\(388\) 0 0
\(389\) −19.5416 −0.990800 −0.495400 0.868665i \(-0.664979\pi\)
−0.495400 + 0.868665i \(0.664979\pi\)
\(390\) 0 0
\(391\) 22.4222 1.13394
\(392\) 0 0
\(393\) 20.2111 1.01952
\(394\) 0 0
\(395\) 7.57779 0.381280
\(396\) 0 0
\(397\) 35.7527 1.79438 0.897189 0.441646i \(-0.145605\pi\)
0.897189 + 0.441646i \(0.145605\pi\)
\(398\) 0 0
\(399\) −7.60555 −0.380754
\(400\) 0 0
\(401\) 15.3944 0.768762 0.384381 0.923175i \(-0.374415\pi\)
0.384381 + 0.923175i \(0.374415\pi\)
\(402\) 0 0
\(403\) −0.0916731 −0.00456656
\(404\) 0 0
\(405\) 38.8444 1.93019
\(406\) 0 0
\(407\) 9.21110 0.456577
\(408\) 0 0
\(409\) −38.1472 −1.88626 −0.943128 0.332428i \(-0.892132\pi\)
−0.943128 + 0.332428i \(0.892132\pi\)
\(410\) 0 0
\(411\) −71.0555 −3.50491
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −13.9361 −0.684095
\(416\) 0 0
\(417\) 8.90833 0.436243
\(418\) 0 0
\(419\) −23.2111 −1.13394 −0.566968 0.823740i \(-0.691884\pi\)
−0.566968 + 0.823740i \(0.691884\pi\)
\(420\) 0 0
\(421\) 20.2389 0.986382 0.493191 0.869921i \(-0.335830\pi\)
0.493191 + 0.869921i \(0.335830\pi\)
\(422\) 0 0
\(423\) 47.4500 2.30710
\(424\) 0 0
\(425\) −8.60555 −0.417431
\(426\) 0 0
\(427\) −7.39445 −0.357842
\(428\) 0 0
\(429\) −1.00000 −0.0482805
\(430\) 0 0
\(431\) −17.2111 −0.829030 −0.414515 0.910043i \(-0.636049\pi\)
−0.414515 + 0.910043i \(0.636049\pi\)
\(432\) 0 0
\(433\) 26.2389 1.26096 0.630480 0.776206i \(-0.282858\pi\)
0.630480 + 0.776206i \(0.282858\pi\)
\(434\) 0 0
\(435\) −20.2111 −0.969048
\(436\) 0 0
\(437\) −8.60555 −0.411659
\(438\) 0 0
\(439\) 10.7889 0.514926 0.257463 0.966288i \(-0.417113\pi\)
0.257463 + 0.966288i \(0.417113\pi\)
\(440\) 0 0
\(441\) −13.4222 −0.639153
\(442\) 0 0
\(443\) 3.63331 0.172624 0.0863118 0.996268i \(-0.472492\pi\)
0.0863118 + 0.996268i \(0.472492\pi\)
\(444\) 0 0
\(445\) −3.39445 −0.160912
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −10.1833 −0.480582 −0.240291 0.970701i \(-0.577243\pi\)
−0.240291 + 0.970701i \(0.577243\pi\)
\(450\) 0 0
\(451\) 6.90833 0.325300
\(452\) 0 0
\(453\) −41.0278 −1.92765
\(454\) 0 0
\(455\) 0.908327 0.0425830
\(456\) 0 0
\(457\) 0.183346 0.00857657 0.00428829 0.999991i \(-0.498635\pi\)
0.00428829 + 0.999991i \(0.498635\pi\)
\(458\) 0 0
\(459\) 42.2389 1.97154
\(460\) 0 0
\(461\) −22.4222 −1.04431 −0.522153 0.852852i \(-0.674871\pi\)
−0.522153 + 0.852852i \(0.674871\pi\)
\(462\) 0 0
\(463\) −13.2111 −0.613972 −0.306986 0.951714i \(-0.599320\pi\)
−0.306986 + 0.951714i \(0.599320\pi\)
\(464\) 0 0
\(465\) −1.30278 −0.0604148
\(466\) 0 0
\(467\) 15.3944 0.712370 0.356185 0.934415i \(-0.384077\pi\)
0.356185 + 0.934415i \(0.384077\pi\)
\(468\) 0 0
\(469\) −26.5139 −1.22430
\(470\) 0 0
\(471\) 39.3305 1.81226
\(472\) 0 0
\(473\) 11.9083 0.547545
\(474\) 0 0
\(475\) 3.30278 0.151542
\(476\) 0 0
\(477\) −26.8444 −1.22912
\(478\) 0 0
\(479\) −3.27502 −0.149639 −0.0748197 0.997197i \(-0.523838\pi\)
−0.0748197 + 0.997197i \(0.523838\pi\)
\(480\) 0 0
\(481\) −2.78890 −0.127163
\(482\) 0 0
\(483\) 65.4500 2.97808
\(484\) 0 0
\(485\) 10.4222 0.473248
\(486\) 0 0
\(487\) −10.3305 −0.468121 −0.234061 0.972222i \(-0.575201\pi\)
−0.234061 + 0.972222i \(0.575201\pi\)
\(488\) 0 0
\(489\) 61.4500 2.77886
\(490\) 0 0
\(491\) −31.9361 −1.44126 −0.720628 0.693322i \(-0.756146\pi\)
−0.720628 + 0.693322i \(0.756146\pi\)
\(492\) 0 0
\(493\) −12.2389 −0.551210
\(494\) 0 0
\(495\) −10.3028 −0.463075
\(496\) 0 0
\(497\) 30.6333 1.37409
\(498\) 0 0
\(499\) 34.0000 1.52205 0.761025 0.648723i \(-0.224697\pi\)
0.761025 + 0.648723i \(0.224697\pi\)
\(500\) 0 0
\(501\) −54.2389 −2.42321
\(502\) 0 0
\(503\) 3.11943 0.139088 0.0695442 0.997579i \(-0.477845\pi\)
0.0695442 + 0.997579i \(0.477845\pi\)
\(504\) 0 0
\(505\) −18.0000 −0.800989
\(506\) 0 0
\(507\) −42.6333 −1.89341
\(508\) 0 0
\(509\) 10.4222 0.461956 0.230978 0.972959i \(-0.425807\pi\)
0.230978 + 0.972959i \(0.425807\pi\)
\(510\) 0 0
\(511\) 10.6056 0.469162
\(512\) 0 0
\(513\) −16.2111 −0.715738
\(514\) 0 0
\(515\) 6.90833 0.304417
\(516\) 0 0
\(517\) −6.00000 −0.263880
\(518\) 0 0
\(519\) 67.1472 2.94743
\(520\) 0 0
\(521\) 7.57779 0.331989 0.165995 0.986127i \(-0.446917\pi\)
0.165995 + 0.986127i \(0.446917\pi\)
\(522\) 0 0
\(523\) 17.0278 0.744572 0.372286 0.928118i \(-0.378574\pi\)
0.372286 + 0.928118i \(0.378574\pi\)
\(524\) 0 0
\(525\) −25.1194 −1.09630
\(526\) 0 0
\(527\) −0.788897 −0.0343649
\(528\) 0 0
\(529\) 51.0555 2.21980
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −2.09167 −0.0906004
\(534\) 0 0
\(535\) 14.6056 0.631453
\(536\) 0 0
\(537\) −40.0278 −1.72733
\(538\) 0 0
\(539\) 1.69722 0.0731046
\(540\) 0 0
\(541\) −17.8167 −0.765998 −0.382999 0.923749i \(-0.625109\pi\)
−0.382999 + 0.923749i \(0.625109\pi\)
\(542\) 0 0
\(543\) 69.4500 2.98038
\(544\) 0 0
\(545\) 2.60555 0.111610
\(546\) 0 0
\(547\) 4.00000 0.171028 0.0855138 0.996337i \(-0.472747\pi\)
0.0855138 + 0.996337i \(0.472747\pi\)
\(548\) 0 0
\(549\) −25.3944 −1.08381
\(550\) 0 0
\(551\) 4.69722 0.200108
\(552\) 0 0
\(553\) 13.3944 0.569590
\(554\) 0 0
\(555\) −39.6333 −1.68234
\(556\) 0 0
\(557\) 15.6333 0.662405 0.331202 0.943560i \(-0.392546\pi\)
0.331202 + 0.943560i \(0.392546\pi\)
\(558\) 0 0
\(559\) −3.60555 −0.152499
\(560\) 0 0
\(561\) −8.60555 −0.363327
\(562\) 0 0
\(563\) 21.6333 0.911735 0.455868 0.890048i \(-0.349329\pi\)
0.455868 + 0.890048i \(0.349329\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 68.6611 2.88349
\(568\) 0 0
\(569\) 44.7250 1.87497 0.937484 0.348027i \(-0.113148\pi\)
0.937484 + 0.348027i \(0.113148\pi\)
\(570\) 0 0
\(571\) −39.9361 −1.67127 −0.835637 0.549283i \(-0.814901\pi\)
−0.835637 + 0.549283i \(0.814901\pi\)
\(572\) 0 0
\(573\) 19.8167 0.827853
\(574\) 0 0
\(575\) −28.4222 −1.18529
\(576\) 0 0
\(577\) −28.9083 −1.20347 −0.601735 0.798696i \(-0.705524\pi\)
−0.601735 + 0.798696i \(0.705524\pi\)
\(578\) 0 0
\(579\) 25.5139 1.06032
\(580\) 0 0
\(581\) −24.6333 −1.02196
\(582\) 0 0
\(583\) 3.39445 0.140584
\(584\) 0 0
\(585\) 3.11943 0.128973
\(586\) 0 0
\(587\) −12.0000 −0.495293 −0.247647 0.968850i \(-0.579657\pi\)
−0.247647 + 0.968850i \(0.579657\pi\)
\(588\) 0 0
\(589\) 0.302776 0.0124757
\(590\) 0 0
\(591\) −71.4500 −2.93906
\(592\) 0 0
\(593\) −42.0000 −1.72473 −0.862367 0.506284i \(-0.831019\pi\)
−0.862367 + 0.506284i \(0.831019\pi\)
\(594\) 0 0
\(595\) 7.81665 0.320452
\(596\) 0 0
\(597\) 78.6611 3.21938
\(598\) 0 0
\(599\) 45.1194 1.84353 0.921765 0.387749i \(-0.126747\pi\)
0.921765 + 0.387749i \(0.126747\pi\)
\(600\) 0 0
\(601\) 14.9083 0.608123 0.304062 0.952652i \(-0.401657\pi\)
0.304062 + 0.952652i \(0.401657\pi\)
\(602\) 0 0
\(603\) −91.0555 −3.70807
\(604\) 0 0
\(605\) 1.30278 0.0529654
\(606\) 0 0
\(607\) 17.8167 0.723156 0.361578 0.932342i \(-0.382238\pi\)
0.361578 + 0.932342i \(0.382238\pi\)
\(608\) 0 0
\(609\) −35.7250 −1.44765
\(610\) 0 0
\(611\) 1.81665 0.0734939
\(612\) 0 0
\(613\) 2.00000 0.0807792 0.0403896 0.999184i \(-0.487140\pi\)
0.0403896 + 0.999184i \(0.487140\pi\)
\(614\) 0 0
\(615\) −29.7250 −1.19863
\(616\) 0 0
\(617\) 12.9083 0.519670 0.259835 0.965653i \(-0.416332\pi\)
0.259835 + 0.965653i \(0.416332\pi\)
\(618\) 0 0
\(619\) −22.8444 −0.918194 −0.459097 0.888386i \(-0.651827\pi\)
−0.459097 + 0.888386i \(0.651827\pi\)
\(620\) 0 0
\(621\) 139.505 5.59816
\(622\) 0 0
\(623\) −6.00000 −0.240385
\(624\) 0 0
\(625\) 2.42221 0.0968882
\(626\) 0 0
\(627\) 3.30278 0.131900
\(628\) 0 0
\(629\) −24.0000 −0.956943
\(630\) 0 0
\(631\) 8.97224 0.357179 0.178590 0.983924i \(-0.442847\pi\)
0.178590 + 0.983924i \(0.442847\pi\)
\(632\) 0 0
\(633\) −57.4500 −2.28343
\(634\) 0 0
\(635\) 16.4222 0.651695
\(636\) 0 0
\(637\) −0.513878 −0.0203606
\(638\) 0 0
\(639\) 105.203 4.16175
\(640\) 0 0
\(641\) −30.2389 −1.19436 −0.597182 0.802106i \(-0.703713\pi\)
−0.597182 + 0.802106i \(0.703713\pi\)
\(642\) 0 0
\(643\) 2.42221 0.0955224 0.0477612 0.998859i \(-0.484791\pi\)
0.0477612 + 0.998859i \(0.484791\pi\)
\(644\) 0 0
\(645\) −51.2389 −2.01753
\(646\) 0 0
\(647\) −4.18335 −0.164464 −0.0822322 0.996613i \(-0.526205\pi\)
−0.0822322 + 0.996613i \(0.526205\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −2.30278 −0.0902529
\(652\) 0 0
\(653\) −17.3305 −0.678196 −0.339098 0.940751i \(-0.610122\pi\)
−0.339098 + 0.940751i \(0.610122\pi\)
\(654\) 0 0
\(655\) 7.97224 0.311501
\(656\) 0 0
\(657\) 36.4222 1.42097
\(658\) 0 0
\(659\) 7.02776 0.273763 0.136881 0.990587i \(-0.456292\pi\)
0.136881 + 0.990587i \(0.456292\pi\)
\(660\) 0 0
\(661\) −19.6333 −0.763647 −0.381824 0.924235i \(-0.624704\pi\)
−0.381824 + 0.924235i \(0.624704\pi\)
\(662\) 0 0
\(663\) 2.60555 0.101191
\(664\) 0 0
\(665\) −3.00000 −0.116335
\(666\) 0 0
\(667\) −40.4222 −1.56515
\(668\) 0 0
\(669\) 35.6333 1.37766
\(670\) 0 0
\(671\) 3.21110 0.123963
\(672\) 0 0
\(673\) −2.30278 −0.0887655 −0.0443827 0.999015i \(-0.514132\pi\)
−0.0443827 + 0.999015i \(0.514132\pi\)
\(674\) 0 0
\(675\) −53.5416 −2.06082
\(676\) 0 0
\(677\) −4.69722 −0.180529 −0.0902645 0.995918i \(-0.528771\pi\)
−0.0902645 + 0.995918i \(0.528771\pi\)
\(678\) 0 0
\(679\) 18.4222 0.706979
\(680\) 0 0
\(681\) 65.4500 2.50805
\(682\) 0 0
\(683\) 46.4222 1.77630 0.888148 0.459557i \(-0.151992\pi\)
0.888148 + 0.459557i \(0.151992\pi\)
\(684\) 0 0
\(685\) −28.0278 −1.07089
\(686\) 0 0
\(687\) 3.60555 0.137560
\(688\) 0 0
\(689\) −1.02776 −0.0391544
\(690\) 0 0
\(691\) −3.57779 −0.136106 −0.0680529 0.997682i \(-0.521679\pi\)
−0.0680529 + 0.997682i \(0.521679\pi\)
\(692\) 0 0
\(693\) −18.2111 −0.691783
\(694\) 0 0
\(695\) 3.51388 0.133289
\(696\) 0 0
\(697\) −18.0000 −0.681799
\(698\) 0 0
\(699\) −17.2111 −0.650984
\(700\) 0 0
\(701\) 15.6333 0.590462 0.295231 0.955426i \(-0.404603\pi\)
0.295231 + 0.955426i \(0.404603\pi\)
\(702\) 0 0
\(703\) 9.21110 0.347403
\(704\) 0 0
\(705\) 25.8167 0.972311
\(706\) 0 0
\(707\) −31.8167 −1.19659
\(708\) 0 0
\(709\) 18.3028 0.687375 0.343688 0.939084i \(-0.388324\pi\)
0.343688 + 0.939084i \(0.388324\pi\)
\(710\) 0 0
\(711\) 46.0000 1.72513
\(712\) 0 0
\(713\) −2.60555 −0.0975787
\(714\) 0 0
\(715\) −0.394449 −0.0147515
\(716\) 0 0
\(717\) −75.7527 −2.82904
\(718\) 0 0
\(719\) 4.18335 0.156012 0.0780062 0.996953i \(-0.475145\pi\)
0.0780062 + 0.996953i \(0.475145\pi\)
\(720\) 0 0
\(721\) 12.2111 0.454765
\(722\) 0 0
\(723\) 78.9638 2.93670
\(724\) 0 0
\(725\) 15.5139 0.576171
\(726\) 0 0
\(727\) 43.6333 1.61827 0.809135 0.587623i \(-0.199936\pi\)
0.809135 + 0.587623i \(0.199936\pi\)
\(728\) 0 0
\(729\) 75.1749 2.78426
\(730\) 0 0
\(731\) −31.0278 −1.14760
\(732\) 0 0
\(733\) 7.21110 0.266348 0.133174 0.991093i \(-0.457483\pi\)
0.133174 + 0.991093i \(0.457483\pi\)
\(734\) 0 0
\(735\) −7.30278 −0.269367
\(736\) 0 0
\(737\) 11.5139 0.424119
\(738\) 0 0
\(739\) −35.3583 −1.30068 −0.650338 0.759645i \(-0.725373\pi\)
−0.650338 + 0.759645i \(0.725373\pi\)
\(740\) 0 0
\(741\) −1.00000 −0.0367359
\(742\) 0 0
\(743\) −45.6333 −1.67412 −0.837062 0.547108i \(-0.815729\pi\)
−0.837062 + 0.547108i \(0.815729\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −84.5971 −3.09525
\(748\) 0 0
\(749\) 25.8167 0.943320
\(750\) 0 0
\(751\) −16.8444 −0.614661 −0.307331 0.951603i \(-0.599436\pi\)
−0.307331 + 0.951603i \(0.599436\pi\)
\(752\) 0 0
\(753\) −79.2666 −2.88864
\(754\) 0 0
\(755\) −16.1833 −0.588972
\(756\) 0 0
\(757\) −23.5416 −0.855635 −0.427818 0.903865i \(-0.640717\pi\)
−0.427818 + 0.903865i \(0.640717\pi\)
\(758\) 0 0
\(759\) −28.4222 −1.03166
\(760\) 0 0
\(761\) −30.2389 −1.09616 −0.548079 0.836427i \(-0.684641\pi\)
−0.548079 + 0.836427i \(0.684641\pi\)
\(762\) 0 0
\(763\) 4.60555 0.166732
\(764\) 0 0
\(765\) 26.8444 0.970562
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 5.63331 0.203142 0.101571 0.994828i \(-0.467613\pi\)
0.101571 + 0.994828i \(0.467613\pi\)
\(770\) 0 0
\(771\) 8.60555 0.309921
\(772\) 0 0
\(773\) 19.5778 0.704164 0.352082 0.935969i \(-0.385474\pi\)
0.352082 + 0.935969i \(0.385474\pi\)
\(774\) 0 0
\(775\) 1.00000 0.0359211
\(776\) 0 0
\(777\) −70.0555 −2.51323
\(778\) 0 0
\(779\) 6.90833 0.247516
\(780\) 0 0
\(781\) −13.3028 −0.476011
\(782\) 0 0
\(783\) −76.1472 −2.72128
\(784\) 0 0
\(785\) 15.5139 0.553714
\(786\) 0 0
\(787\) −21.0278 −0.749559 −0.374779 0.927114i \(-0.622282\pi\)
−0.374779 + 0.927114i \(0.622282\pi\)
\(788\) 0 0
\(789\) 55.1472 1.96329
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −0.972244 −0.0345254
\(794\) 0 0
\(795\) −14.6056 −0.518006
\(796\) 0 0
\(797\) 9.39445 0.332768 0.166384 0.986061i \(-0.446791\pi\)
0.166384 + 0.986061i \(0.446791\pi\)
\(798\) 0 0
\(799\) 15.6333 0.553067
\(800\) 0 0
\(801\) −20.6056 −0.728061
\(802\) 0 0
\(803\) −4.60555 −0.162526
\(804\) 0 0
\(805\) 25.8167 0.909917
\(806\) 0 0
\(807\) 6.00000 0.211210
\(808\) 0 0
\(809\) 18.7889 0.660582 0.330291 0.943879i \(-0.392853\pi\)
0.330291 + 0.943879i \(0.392853\pi\)
\(810\) 0 0
\(811\) 13.6333 0.478730 0.239365 0.970930i \(-0.423061\pi\)
0.239365 + 0.970930i \(0.423061\pi\)
\(812\) 0 0
\(813\) −38.0278 −1.33369
\(814\) 0 0
\(815\) 24.2389 0.849050
\(816\) 0 0
\(817\) 11.9083 0.416620
\(818\) 0 0
\(819\) 5.51388 0.192670
\(820\) 0 0
\(821\) −27.3944 −0.956073 −0.478036 0.878340i \(-0.658651\pi\)
−0.478036 + 0.878340i \(0.658651\pi\)
\(822\) 0 0
\(823\) −32.0000 −1.11545 −0.557725 0.830026i \(-0.688326\pi\)
−0.557725 + 0.830026i \(0.688326\pi\)
\(824\) 0 0
\(825\) 10.9083 0.379779
\(826\) 0 0
\(827\) 50.0555 1.74060 0.870300 0.492521i \(-0.163925\pi\)
0.870300 + 0.492521i \(0.163925\pi\)
\(828\) 0 0
\(829\) −56.4222 −1.95962 −0.979812 0.199921i \(-0.935932\pi\)
−0.979812 + 0.199921i \(0.935932\pi\)
\(830\) 0 0
\(831\) −33.0278 −1.14572
\(832\) 0 0
\(833\) −4.42221 −0.153220
\(834\) 0 0
\(835\) −21.3944 −0.740385
\(836\) 0 0
\(837\) −4.90833 −0.169657
\(838\) 0 0
\(839\) −45.1194 −1.55770 −0.778848 0.627213i \(-0.784196\pi\)
−0.778848 + 0.627213i \(0.784196\pi\)
\(840\) 0 0
\(841\) −6.93608 −0.239175
\(842\) 0 0
\(843\) −61.1472 −2.10602
\(844\) 0 0
\(845\) −16.8167 −0.578510
\(846\) 0 0
\(847\) 2.30278 0.0791243
\(848\) 0 0
\(849\) −92.2666 −3.16658
\(850\) 0 0
\(851\) −79.2666 −2.71722
\(852\) 0 0
\(853\) −17.5778 −0.601852 −0.300926 0.953647i \(-0.597296\pi\)
−0.300926 + 0.953647i \(0.597296\pi\)
\(854\) 0 0
\(855\) −10.3028 −0.352347
\(856\) 0 0
\(857\) 10.5416 0.360095 0.180048 0.983658i \(-0.442375\pi\)
0.180048 + 0.983658i \(0.442375\pi\)
\(858\) 0 0
\(859\) 48.8444 1.66655 0.833275 0.552859i \(-0.186463\pi\)
0.833275 + 0.552859i \(0.186463\pi\)
\(860\) 0 0
\(861\) −52.5416 −1.79061
\(862\) 0 0
\(863\) −14.7250 −0.501244 −0.250622 0.968085i \(-0.580635\pi\)
−0.250622 + 0.968085i \(0.580635\pi\)
\(864\) 0 0
\(865\) 26.4861 0.900555
\(866\) 0 0
\(867\) −33.7250 −1.14536
\(868\) 0 0
\(869\) −5.81665 −0.197316
\(870\) 0 0
\(871\) −3.48612 −0.118123
\(872\) 0 0
\(873\) 63.2666 2.14125
\(874\) 0 0
\(875\) −24.9083 −0.842055
\(876\) 0 0
\(877\) −42.5694 −1.43747 −0.718733 0.695286i \(-0.755278\pi\)
−0.718733 + 0.695286i \(0.755278\pi\)
\(878\) 0 0
\(879\) 94.2666 3.17953
\(880\) 0 0
\(881\) −23.0917 −0.777978 −0.388989 0.921242i \(-0.627176\pi\)
−0.388989 + 0.921242i \(0.627176\pi\)
\(882\) 0 0
\(883\) 2.97224 0.100024 0.0500120 0.998749i \(-0.484074\pi\)
0.0500120 + 0.998749i \(0.484074\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 32.8444 1.10281 0.551404 0.834239i \(-0.314092\pi\)
0.551404 + 0.834239i \(0.314092\pi\)
\(888\) 0 0
\(889\) 29.0278 0.973560
\(890\) 0 0
\(891\) −29.8167 −0.998895
\(892\) 0 0
\(893\) −6.00000 −0.200782
\(894\) 0 0
\(895\) −15.7889 −0.527765
\(896\) 0 0
\(897\) 8.60555 0.287331
\(898\) 0 0
\(899\) 1.42221 0.0474332
\(900\) 0 0
\(901\) −8.84441 −0.294650
\(902\) 0 0
\(903\) −90.5694 −3.01396
\(904\) 0 0
\(905\) 27.3944 0.910622
\(906\) 0 0
\(907\) −52.8444 −1.75467 −0.877335 0.479879i \(-0.840681\pi\)
−0.877335 + 0.479879i \(0.840681\pi\)
\(908\) 0 0
\(909\) −109.267 −3.62414
\(910\) 0 0
\(911\) 15.6333 0.517955 0.258977 0.965883i \(-0.416615\pi\)
0.258977 + 0.965883i \(0.416615\pi\)
\(912\) 0 0
\(913\) 10.6972 0.354026
\(914\) 0 0
\(915\) −13.8167 −0.456764
\(916\) 0 0
\(917\) 14.0917 0.465348
\(918\) 0 0
\(919\) 19.1194 0.630692 0.315346 0.948977i \(-0.397879\pi\)
0.315346 + 0.948977i \(0.397879\pi\)
\(920\) 0 0
\(921\) 78.6611 2.59197
\(922\) 0 0
\(923\) 4.02776 0.132575
\(924\) 0 0
\(925\) 30.4222 1.00028
\(926\) 0 0
\(927\) 41.9361 1.37736
\(928\) 0 0
\(929\) 9.51388 0.312140 0.156070 0.987746i \(-0.450117\pi\)
0.156070 + 0.987746i \(0.450117\pi\)
\(930\) 0 0
\(931\) 1.69722 0.0556243
\(932\) 0 0
\(933\) −13.8167 −0.452337
\(934\) 0 0
\(935\) −3.39445 −0.111010
\(936\) 0 0
\(937\) 58.8444 1.92236 0.961182 0.275917i \(-0.0889814\pi\)
0.961182 + 0.275917i \(0.0889814\pi\)
\(938\) 0 0
\(939\) −23.5139 −0.767346
\(940\) 0 0
\(941\) −14.3667 −0.468341 −0.234170 0.972196i \(-0.575237\pi\)
−0.234170 + 0.972196i \(0.575237\pi\)
\(942\) 0 0
\(943\) −59.4500 −1.93596
\(944\) 0 0
\(945\) 48.6333 1.58204
\(946\) 0 0
\(947\) −4.18335 −0.135940 −0.0679702 0.997687i \(-0.521652\pi\)
−0.0679702 + 0.997687i \(0.521652\pi\)
\(948\) 0 0
\(949\) 1.39445 0.0452657
\(950\) 0 0
\(951\) 25.8167 0.837162
\(952\) 0 0
\(953\) 21.6333 0.700772 0.350386 0.936605i \(-0.386050\pi\)
0.350386 + 0.936605i \(0.386050\pi\)
\(954\) 0 0
\(955\) 7.81665 0.252941
\(956\) 0 0
\(957\) 15.5139 0.501492
\(958\) 0 0
\(959\) −49.5416 −1.59978
\(960\) 0 0
\(961\) −30.9083 −0.997043
\(962\) 0 0
\(963\) 88.6611 2.85706
\(964\) 0 0
\(965\) 10.0639 0.323969
\(966\) 0 0
\(967\) 19.6333 0.631365 0.315682 0.948865i \(-0.397767\pi\)
0.315682 + 0.948865i \(0.397767\pi\)
\(968\) 0 0
\(969\) −8.60555 −0.276450
\(970\) 0 0
\(971\) −22.9361 −0.736054 −0.368027 0.929815i \(-0.619967\pi\)
−0.368027 + 0.929815i \(0.619967\pi\)
\(972\) 0 0
\(973\) 6.21110 0.199119
\(974\) 0 0
\(975\) −3.30278 −0.105773
\(976\) 0 0
\(977\) −15.6333 −0.500154 −0.250077 0.968226i \(-0.580456\pi\)
−0.250077 + 0.968226i \(0.580456\pi\)
\(978\) 0 0
\(979\) 2.60555 0.0832738
\(980\) 0 0
\(981\) 15.8167 0.504987
\(982\) 0 0
\(983\) −19.6972 −0.628244 −0.314122 0.949383i \(-0.601710\pi\)
−0.314122 + 0.949383i \(0.601710\pi\)
\(984\) 0 0
\(985\) −28.1833 −0.897996
\(986\) 0 0
\(987\) 45.6333 1.45252
\(988\) 0 0
\(989\) −102.478 −3.25860
\(990\) 0 0
\(991\) 15.0917 0.479403 0.239701 0.970847i \(-0.422950\pi\)
0.239701 + 0.970847i \(0.422950\pi\)
\(992\) 0 0
\(993\) 32.1194 1.01928
\(994\) 0 0
\(995\) 31.0278 0.983646
\(996\) 0 0
\(997\) 21.8167 0.690940 0.345470 0.938430i \(-0.387719\pi\)
0.345470 + 0.938430i \(0.387719\pi\)
\(998\) 0 0
\(999\) −149.322 −4.72434
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3344.2.a.o.1.2 2
4.3 odd 2 418.2.a.d.1.1 2
12.11 even 2 3762.2.a.bb.1.1 2
44.43 even 2 4598.2.a.bc.1.1 2
76.75 even 2 7942.2.a.bb.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
418.2.a.d.1.1 2 4.3 odd 2
3344.2.a.o.1.2 2 1.1 even 1 trivial
3762.2.a.bb.1.1 2 12.11 even 2
4598.2.a.bc.1.1 2 44.43 even 2
7942.2.a.bb.1.2 2 76.75 even 2