Properties

Label 3344.2.a.o.1.1
Level $3344$
Weight $2$
Character 3344.1
Self dual yes
Analytic conductor $26.702$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3344,2,Mod(1,3344)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3344, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3344.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3344 = 2^{4} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3344.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.7019744359\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{13}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 418)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.30278\) of defining polynomial
Character \(\chi\) \(=\) 3344.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.302776 q^{3} -2.30278 q^{5} -1.30278 q^{7} -2.90833 q^{9} +O(q^{10})\) \(q-0.302776 q^{3} -2.30278 q^{5} -1.30278 q^{7} -2.90833 q^{9} -1.00000 q^{11} -3.30278 q^{13} +0.697224 q^{15} -4.60555 q^{17} -1.00000 q^{19} +0.394449 q^{21} +1.39445 q^{23} +0.302776 q^{25} +1.78890 q^{27} -8.30278 q^{29} +3.30278 q^{31} +0.302776 q^{33} +3.00000 q^{35} +5.21110 q^{37} +1.00000 q^{39} +3.90833 q^{41} -1.09167 q^{43} +6.69722 q^{45} +6.00000 q^{47} -5.30278 q^{49} +1.39445 q^{51} -10.6056 q^{53} +2.30278 q^{55} +0.302776 q^{57} +11.2111 q^{61} +3.78890 q^{63} +7.60555 q^{65} +6.51388 q^{67} -0.422205 q^{69} +9.69722 q^{71} -2.60555 q^{73} -0.0916731 q^{75} +1.30278 q^{77} -15.8167 q^{79} +8.18335 q^{81} -14.3028 q^{83} +10.6056 q^{85} +2.51388 q^{87} +4.60555 q^{89} +4.30278 q^{91} -1.00000 q^{93} +2.30278 q^{95} +8.00000 q^{97} +2.90833 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{3} - q^{5} + q^{7} + 5 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 3 q^{3} - q^{5} + q^{7} + 5 q^{9} - 2 q^{11} - 3 q^{13} + 5 q^{15} - 2 q^{17} - 2 q^{19} + 8 q^{21} + 10 q^{23} - 3 q^{25} + 18 q^{27} - 13 q^{29} + 3 q^{31} - 3 q^{33} + 6 q^{35} - 4 q^{37} + 2 q^{39} - 3 q^{41} - 13 q^{43} + 17 q^{45} + 12 q^{47} - 7 q^{49} + 10 q^{51} - 14 q^{53} + q^{55} - 3 q^{57} + 8 q^{61} + 22 q^{63} + 8 q^{65} - 5 q^{67} + 28 q^{69} + 23 q^{71} + 2 q^{73} - 11 q^{75} - q^{77} - 10 q^{79} + 38 q^{81} - 25 q^{83} + 14 q^{85} - 13 q^{87} + 2 q^{89} + 5 q^{91} - 2 q^{93} + q^{95} + 16 q^{97} - 5 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.302776 −0.174808 −0.0874038 0.996173i \(-0.527857\pi\)
−0.0874038 + 0.996173i \(0.527857\pi\)
\(4\) 0 0
\(5\) −2.30278 −1.02983 −0.514916 0.857240i \(-0.672177\pi\)
−0.514916 + 0.857240i \(0.672177\pi\)
\(6\) 0 0
\(7\) −1.30278 −0.492403 −0.246201 0.969219i \(-0.579182\pi\)
−0.246201 + 0.969219i \(0.579182\pi\)
\(8\) 0 0
\(9\) −2.90833 −0.969442
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) −3.30278 −0.916025 −0.458013 0.888946i \(-0.651439\pi\)
−0.458013 + 0.888946i \(0.651439\pi\)
\(14\) 0 0
\(15\) 0.697224 0.180023
\(16\) 0 0
\(17\) −4.60555 −1.11701 −0.558505 0.829501i \(-0.688625\pi\)
−0.558505 + 0.829501i \(0.688625\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0.394449 0.0860758
\(22\) 0 0
\(23\) 1.39445 0.290763 0.145381 0.989376i \(-0.453559\pi\)
0.145381 + 0.989376i \(0.453559\pi\)
\(24\) 0 0
\(25\) 0.302776 0.0605551
\(26\) 0 0
\(27\) 1.78890 0.344273
\(28\) 0 0
\(29\) −8.30278 −1.54179 −0.770893 0.636964i \(-0.780190\pi\)
−0.770893 + 0.636964i \(0.780190\pi\)
\(30\) 0 0
\(31\) 3.30278 0.593196 0.296598 0.955002i \(-0.404148\pi\)
0.296598 + 0.955002i \(0.404148\pi\)
\(32\) 0 0
\(33\) 0.302776 0.0527065
\(34\) 0 0
\(35\) 3.00000 0.507093
\(36\) 0 0
\(37\) 5.21110 0.856700 0.428350 0.903613i \(-0.359095\pi\)
0.428350 + 0.903613i \(0.359095\pi\)
\(38\) 0 0
\(39\) 1.00000 0.160128
\(40\) 0 0
\(41\) 3.90833 0.610378 0.305189 0.952292i \(-0.401280\pi\)
0.305189 + 0.952292i \(0.401280\pi\)
\(42\) 0 0
\(43\) −1.09167 −0.166479 −0.0832393 0.996530i \(-0.526527\pi\)
−0.0832393 + 0.996530i \(0.526527\pi\)
\(44\) 0 0
\(45\) 6.69722 0.998363
\(46\) 0 0
\(47\) 6.00000 0.875190 0.437595 0.899172i \(-0.355830\pi\)
0.437595 + 0.899172i \(0.355830\pi\)
\(48\) 0 0
\(49\) −5.30278 −0.757539
\(50\) 0 0
\(51\) 1.39445 0.195262
\(52\) 0 0
\(53\) −10.6056 −1.45678 −0.728392 0.685160i \(-0.759732\pi\)
−0.728392 + 0.685160i \(0.759732\pi\)
\(54\) 0 0
\(55\) 2.30278 0.310506
\(56\) 0 0
\(57\) 0.302776 0.0401036
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 11.2111 1.43543 0.717717 0.696335i \(-0.245187\pi\)
0.717717 + 0.696335i \(0.245187\pi\)
\(62\) 0 0
\(63\) 3.78890 0.477356
\(64\) 0 0
\(65\) 7.60555 0.943353
\(66\) 0 0
\(67\) 6.51388 0.795797 0.397898 0.917429i \(-0.369740\pi\)
0.397898 + 0.917429i \(0.369740\pi\)
\(68\) 0 0
\(69\) −0.422205 −0.0508275
\(70\) 0 0
\(71\) 9.69722 1.15085 0.575424 0.817855i \(-0.304837\pi\)
0.575424 + 0.817855i \(0.304837\pi\)
\(72\) 0 0
\(73\) −2.60555 −0.304957 −0.152478 0.988307i \(-0.548725\pi\)
−0.152478 + 0.988307i \(0.548725\pi\)
\(74\) 0 0
\(75\) −0.0916731 −0.0105855
\(76\) 0 0
\(77\) 1.30278 0.148465
\(78\) 0 0
\(79\) −15.8167 −1.77951 −0.889756 0.456436i \(-0.849126\pi\)
−0.889756 + 0.456436i \(0.849126\pi\)
\(80\) 0 0
\(81\) 8.18335 0.909261
\(82\) 0 0
\(83\) −14.3028 −1.56993 −0.784967 0.619538i \(-0.787320\pi\)
−0.784967 + 0.619538i \(0.787320\pi\)
\(84\) 0 0
\(85\) 10.6056 1.15033
\(86\) 0 0
\(87\) 2.51388 0.269516
\(88\) 0 0
\(89\) 4.60555 0.488187 0.244094 0.969752i \(-0.421510\pi\)
0.244094 + 0.969752i \(0.421510\pi\)
\(90\) 0 0
\(91\) 4.30278 0.451053
\(92\) 0 0
\(93\) −1.00000 −0.103695
\(94\) 0 0
\(95\) 2.30278 0.236260
\(96\) 0 0
\(97\) 8.00000 0.812277 0.406138 0.913812i \(-0.366875\pi\)
0.406138 + 0.913812i \(0.366875\pi\)
\(98\) 0 0
\(99\) 2.90833 0.292298
\(100\) 0 0
\(101\) 7.81665 0.777786 0.388893 0.921283i \(-0.372858\pi\)
0.388893 + 0.921283i \(0.372858\pi\)
\(102\) 0 0
\(103\) 1.69722 0.167232 0.0836162 0.996498i \(-0.473353\pi\)
0.0836162 + 0.996498i \(0.473353\pi\)
\(104\) 0 0
\(105\) −0.908327 −0.0886436
\(106\) 0 0
\(107\) −3.21110 −0.310429 −0.155215 0.987881i \(-0.549607\pi\)
−0.155215 + 0.987881i \(0.549607\pi\)
\(108\) 0 0
\(109\) 2.00000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) 0 0
\(111\) −1.57779 −0.149758
\(112\) 0 0
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) −3.21110 −0.299437
\(116\) 0 0
\(117\) 9.60555 0.888034
\(118\) 0 0
\(119\) 6.00000 0.550019
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) −1.18335 −0.106699
\(124\) 0 0
\(125\) 10.8167 0.967471
\(126\) 0 0
\(127\) 5.39445 0.478680 0.239340 0.970936i \(-0.423069\pi\)
0.239340 + 0.970936i \(0.423069\pi\)
\(128\) 0 0
\(129\) 0.330532 0.0291017
\(130\) 0 0
\(131\) −19.1194 −1.67047 −0.835236 0.549891i \(-0.814669\pi\)
−0.835236 + 0.549891i \(0.814669\pi\)
\(132\) 0 0
\(133\) 1.30278 0.112965
\(134\) 0 0
\(135\) −4.11943 −0.354544
\(136\) 0 0
\(137\) −3.48612 −0.297839 −0.148920 0.988849i \(-0.547580\pi\)
−0.148920 + 0.988849i \(0.547580\pi\)
\(138\) 0 0
\(139\) 6.30278 0.534594 0.267297 0.963614i \(-0.413869\pi\)
0.267297 + 0.963614i \(0.413869\pi\)
\(140\) 0 0
\(141\) −1.81665 −0.152990
\(142\) 0 0
\(143\) 3.30278 0.276192
\(144\) 0 0
\(145\) 19.1194 1.58778
\(146\) 0 0
\(147\) 1.60555 0.132424
\(148\) 0 0
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) 16.4222 1.33642 0.668210 0.743973i \(-0.267061\pi\)
0.668210 + 0.743973i \(0.267061\pi\)
\(152\) 0 0
\(153\) 13.3944 1.08288
\(154\) 0 0
\(155\) −7.60555 −0.610893
\(156\) 0 0
\(157\) 1.09167 0.0871250 0.0435625 0.999051i \(-0.486129\pi\)
0.0435625 + 0.999051i \(0.486129\pi\)
\(158\) 0 0
\(159\) 3.21110 0.254657
\(160\) 0 0
\(161\) −1.81665 −0.143172
\(162\) 0 0
\(163\) 11.3944 0.892482 0.446241 0.894913i \(-0.352762\pi\)
0.446241 + 0.894913i \(0.352762\pi\)
\(164\) 0 0
\(165\) −0.697224 −0.0542788
\(166\) 0 0
\(167\) 12.4222 0.961259 0.480630 0.876924i \(-0.340408\pi\)
0.480630 + 0.876924i \(0.340408\pi\)
\(168\) 0 0
\(169\) −2.09167 −0.160898
\(170\) 0 0
\(171\) 2.90833 0.222405
\(172\) 0 0
\(173\) −19.3305 −1.46967 −0.734837 0.678244i \(-0.762741\pi\)
−0.734837 + 0.678244i \(0.762741\pi\)
\(174\) 0 0
\(175\) −0.394449 −0.0298175
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 13.1194 0.980592 0.490296 0.871556i \(-0.336889\pi\)
0.490296 + 0.871556i \(0.336889\pi\)
\(180\) 0 0
\(181\) −15.0278 −1.11700 −0.558502 0.829503i \(-0.688624\pi\)
−0.558502 + 0.829503i \(0.688624\pi\)
\(182\) 0 0
\(183\) −3.39445 −0.250925
\(184\) 0 0
\(185\) −12.0000 −0.882258
\(186\) 0 0
\(187\) 4.60555 0.336791
\(188\) 0 0
\(189\) −2.33053 −0.169521
\(190\) 0 0
\(191\) 6.00000 0.434145 0.217072 0.976156i \(-0.430349\pi\)
0.217072 + 0.976156i \(0.430349\pi\)
\(192\) 0 0
\(193\) −24.7250 −1.77974 −0.889872 0.456211i \(-0.849206\pi\)
−0.889872 + 0.456211i \(0.849206\pi\)
\(194\) 0 0
\(195\) −2.30278 −0.164905
\(196\) 0 0
\(197\) 21.6333 1.54131 0.770655 0.637253i \(-0.219929\pi\)
0.770655 + 0.637253i \(0.219929\pi\)
\(198\) 0 0
\(199\) 2.18335 0.154773 0.0773867 0.997001i \(-0.475342\pi\)
0.0773867 + 0.997001i \(0.475342\pi\)
\(200\) 0 0
\(201\) −1.97224 −0.139111
\(202\) 0 0
\(203\) 10.8167 0.759180
\(204\) 0 0
\(205\) −9.00000 −0.628587
\(206\) 0 0
\(207\) −4.05551 −0.281878
\(208\) 0 0
\(209\) 1.00000 0.0691714
\(210\) 0 0
\(211\) −24.6056 −1.69392 −0.846958 0.531660i \(-0.821569\pi\)
−0.846958 + 0.531660i \(0.821569\pi\)
\(212\) 0 0
\(213\) −2.93608 −0.201177
\(214\) 0 0
\(215\) 2.51388 0.171445
\(216\) 0 0
\(217\) −4.30278 −0.292091
\(218\) 0 0
\(219\) 0.788897 0.0533087
\(220\) 0 0
\(221\) 15.2111 1.02321
\(222\) 0 0
\(223\) 25.2111 1.68826 0.844130 0.536138i \(-0.180117\pi\)
0.844130 + 0.536138i \(0.180117\pi\)
\(224\) 0 0
\(225\) −0.880571 −0.0587047
\(226\) 0 0
\(227\) −1.81665 −0.120576 −0.0602878 0.998181i \(-0.519202\pi\)
−0.0602878 + 0.998181i \(0.519202\pi\)
\(228\) 0 0
\(229\) 11.9083 0.786924 0.393462 0.919341i \(-0.371277\pi\)
0.393462 + 0.919341i \(0.371277\pi\)
\(230\) 0 0
\(231\) −0.394449 −0.0259528
\(232\) 0 0
\(233\) 9.21110 0.603439 0.301720 0.953397i \(-0.402439\pi\)
0.301720 + 0.953397i \(0.402439\pi\)
\(234\) 0 0
\(235\) −13.8167 −0.901299
\(236\) 0 0
\(237\) 4.78890 0.311072
\(238\) 0 0
\(239\) 23.9361 1.54830 0.774148 0.633004i \(-0.218178\pi\)
0.774148 + 0.633004i \(0.218178\pi\)
\(240\) 0 0
\(241\) 13.0917 0.843309 0.421654 0.906757i \(-0.361450\pi\)
0.421654 + 0.906757i \(0.361450\pi\)
\(242\) 0 0
\(243\) −7.84441 −0.503219
\(244\) 0 0
\(245\) 12.2111 0.780139
\(246\) 0 0
\(247\) 3.30278 0.210151
\(248\) 0 0
\(249\) 4.33053 0.274436
\(250\) 0 0
\(251\) −24.0000 −1.51487 −0.757433 0.652913i \(-0.773547\pi\)
−0.757433 + 0.652913i \(0.773547\pi\)
\(252\) 0 0
\(253\) −1.39445 −0.0876682
\(254\) 0 0
\(255\) −3.21110 −0.201087
\(256\) 0 0
\(257\) −4.60555 −0.287286 −0.143643 0.989630i \(-0.545882\pi\)
−0.143643 + 0.989630i \(0.545882\pi\)
\(258\) 0 0
\(259\) −6.78890 −0.421842
\(260\) 0 0
\(261\) 24.1472 1.49467
\(262\) 0 0
\(263\) 20.3028 1.25192 0.625961 0.779854i \(-0.284707\pi\)
0.625961 + 0.779854i \(0.284707\pi\)
\(264\) 0 0
\(265\) 24.4222 1.50024
\(266\) 0 0
\(267\) −1.39445 −0.0853389
\(268\) 0 0
\(269\) −19.8167 −1.20824 −0.604121 0.796892i \(-0.706476\pi\)
−0.604121 + 0.796892i \(0.706476\pi\)
\(270\) 0 0
\(271\) 6.51388 0.395690 0.197845 0.980233i \(-0.436606\pi\)
0.197845 + 0.980233i \(0.436606\pi\)
\(272\) 0 0
\(273\) −1.30278 −0.0788476
\(274\) 0 0
\(275\) −0.302776 −0.0182581
\(276\) 0 0
\(277\) −10.0000 −0.600842 −0.300421 0.953807i \(-0.597127\pi\)
−0.300421 + 0.953807i \(0.597127\pi\)
\(278\) 0 0
\(279\) −9.60555 −0.575069
\(280\) 0 0
\(281\) −0.486122 −0.0289996 −0.0144998 0.999895i \(-0.504616\pi\)
−0.0144998 + 0.999895i \(0.504616\pi\)
\(282\) 0 0
\(283\) 18.9361 1.12563 0.562817 0.826582i \(-0.309718\pi\)
0.562817 + 0.826582i \(0.309718\pi\)
\(284\) 0 0
\(285\) −0.697224 −0.0413000
\(286\) 0 0
\(287\) −5.09167 −0.300552
\(288\) 0 0
\(289\) 4.21110 0.247712
\(290\) 0 0
\(291\) −2.42221 −0.141992
\(292\) 0 0
\(293\) −25.5416 −1.49216 −0.746079 0.665857i \(-0.768066\pi\)
−0.746079 + 0.665857i \(0.768066\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −1.78890 −0.103802
\(298\) 0 0
\(299\) −4.60555 −0.266346
\(300\) 0 0
\(301\) 1.42221 0.0819745
\(302\) 0 0
\(303\) −2.36669 −0.135963
\(304\) 0 0
\(305\) −25.8167 −1.47826
\(306\) 0 0
\(307\) 2.18335 0.124610 0.0623051 0.998057i \(-0.480155\pi\)
0.0623051 + 0.998057i \(0.480155\pi\)
\(308\) 0 0
\(309\) −0.513878 −0.0292335
\(310\) 0 0
\(311\) −25.8167 −1.46393 −0.731964 0.681343i \(-0.761396\pi\)
−0.731964 + 0.681343i \(0.761396\pi\)
\(312\) 0 0
\(313\) 18.1194 1.02417 0.512085 0.858935i \(-0.328873\pi\)
0.512085 + 0.858935i \(0.328873\pi\)
\(314\) 0 0
\(315\) −8.72498 −0.491597
\(316\) 0 0
\(317\) −13.8167 −0.776021 −0.388010 0.921655i \(-0.626838\pi\)
−0.388010 + 0.921655i \(0.626838\pi\)
\(318\) 0 0
\(319\) 8.30278 0.464866
\(320\) 0 0
\(321\) 0.972244 0.0542653
\(322\) 0 0
\(323\) 4.60555 0.256260
\(324\) 0 0
\(325\) −1.00000 −0.0554700
\(326\) 0 0
\(327\) −0.605551 −0.0334871
\(328\) 0 0
\(329\) −7.81665 −0.430946
\(330\) 0 0
\(331\) −22.7250 −1.24908 −0.624539 0.780994i \(-0.714713\pi\)
−0.624539 + 0.780994i \(0.714713\pi\)
\(332\) 0 0
\(333\) −15.1556 −0.830521
\(334\) 0 0
\(335\) −15.0000 −0.819538
\(336\) 0 0
\(337\) −9.30278 −0.506754 −0.253377 0.967368i \(-0.581541\pi\)
−0.253377 + 0.967368i \(0.581541\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −3.30278 −0.178855
\(342\) 0 0
\(343\) 16.0278 0.865417
\(344\) 0 0
\(345\) 0.972244 0.0523438
\(346\) 0 0
\(347\) −2.78890 −0.149716 −0.0748579 0.997194i \(-0.523850\pi\)
−0.0748579 + 0.997194i \(0.523850\pi\)
\(348\) 0 0
\(349\) 32.4222 1.73552 0.867760 0.496983i \(-0.165559\pi\)
0.867760 + 0.496983i \(0.165559\pi\)
\(350\) 0 0
\(351\) −5.90833 −0.315363
\(352\) 0 0
\(353\) −15.2111 −0.809605 −0.404803 0.914404i \(-0.632660\pi\)
−0.404803 + 0.914404i \(0.632660\pi\)
\(354\) 0 0
\(355\) −22.3305 −1.18518
\(356\) 0 0
\(357\) −1.81665 −0.0961475
\(358\) 0 0
\(359\) 9.48612 0.500658 0.250329 0.968161i \(-0.419461\pi\)
0.250329 + 0.968161i \(0.419461\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) −0.302776 −0.0158916
\(364\) 0 0
\(365\) 6.00000 0.314054
\(366\) 0 0
\(367\) 7.21110 0.376416 0.188208 0.982129i \(-0.439732\pi\)
0.188208 + 0.982129i \(0.439732\pi\)
\(368\) 0 0
\(369\) −11.3667 −0.591726
\(370\) 0 0
\(371\) 13.8167 0.717325
\(372\) 0 0
\(373\) 7.09167 0.367193 0.183596 0.983002i \(-0.441226\pi\)
0.183596 + 0.983002i \(0.441226\pi\)
\(374\) 0 0
\(375\) −3.27502 −0.169121
\(376\) 0 0
\(377\) 27.4222 1.41232
\(378\) 0 0
\(379\) 13.4861 0.692736 0.346368 0.938099i \(-0.387415\pi\)
0.346368 + 0.938099i \(0.387415\pi\)
\(380\) 0 0
\(381\) −1.63331 −0.0836769
\(382\) 0 0
\(383\) −3.48612 −0.178133 −0.0890663 0.996026i \(-0.528388\pi\)
−0.0890663 + 0.996026i \(0.528388\pi\)
\(384\) 0 0
\(385\) −3.00000 −0.152894
\(386\) 0 0
\(387\) 3.17494 0.161391
\(388\) 0 0
\(389\) 34.5416 1.75133 0.875665 0.482919i \(-0.160423\pi\)
0.875665 + 0.482919i \(0.160423\pi\)
\(390\) 0 0
\(391\) −6.42221 −0.324785
\(392\) 0 0
\(393\) 5.78890 0.292011
\(394\) 0 0
\(395\) 36.4222 1.83260
\(396\) 0 0
\(397\) −32.7527 −1.64381 −0.821906 0.569623i \(-0.807089\pi\)
−0.821906 + 0.569623i \(0.807089\pi\)
\(398\) 0 0
\(399\) −0.394449 −0.0197471
\(400\) 0 0
\(401\) 22.6056 1.12887 0.564434 0.825478i \(-0.309095\pi\)
0.564434 + 0.825478i \(0.309095\pi\)
\(402\) 0 0
\(403\) −10.9083 −0.543382
\(404\) 0 0
\(405\) −18.8444 −0.936386
\(406\) 0 0
\(407\) −5.21110 −0.258305
\(408\) 0 0
\(409\) 23.1472 1.14455 0.572277 0.820060i \(-0.306060\pi\)
0.572277 + 0.820060i \(0.306060\pi\)
\(410\) 0 0
\(411\) 1.05551 0.0520646
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 32.9361 1.61677
\(416\) 0 0
\(417\) −1.90833 −0.0934512
\(418\) 0 0
\(419\) −8.78890 −0.429366 −0.214683 0.976684i \(-0.568872\pi\)
−0.214683 + 0.976684i \(0.568872\pi\)
\(420\) 0 0
\(421\) −30.2389 −1.47375 −0.736876 0.676028i \(-0.763700\pi\)
−0.736876 + 0.676028i \(0.763700\pi\)
\(422\) 0 0
\(423\) −17.4500 −0.848446
\(424\) 0 0
\(425\) −1.39445 −0.0676407
\(426\) 0 0
\(427\) −14.6056 −0.706812
\(428\) 0 0
\(429\) −1.00000 −0.0482805
\(430\) 0 0
\(431\) −2.78890 −0.134336 −0.0671682 0.997742i \(-0.521396\pi\)
−0.0671682 + 0.997742i \(0.521396\pi\)
\(432\) 0 0
\(433\) −24.2389 −1.16485 −0.582423 0.812886i \(-0.697895\pi\)
−0.582423 + 0.812886i \(0.697895\pi\)
\(434\) 0 0
\(435\) −5.78890 −0.277556
\(436\) 0 0
\(437\) −1.39445 −0.0667055
\(438\) 0 0
\(439\) 25.2111 1.20326 0.601630 0.798775i \(-0.294518\pi\)
0.601630 + 0.798775i \(0.294518\pi\)
\(440\) 0 0
\(441\) 15.4222 0.734391
\(442\) 0 0
\(443\) −39.6333 −1.88304 −0.941518 0.336964i \(-0.890600\pi\)
−0.941518 + 0.336964i \(0.890600\pi\)
\(444\) 0 0
\(445\) −10.6056 −0.502751
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −31.8167 −1.50152 −0.750760 0.660575i \(-0.770313\pi\)
−0.750760 + 0.660575i \(0.770313\pi\)
\(450\) 0 0
\(451\) −3.90833 −0.184036
\(452\) 0 0
\(453\) −4.97224 −0.233616
\(454\) 0 0
\(455\) −9.90833 −0.464510
\(456\) 0 0
\(457\) 21.8167 1.02054 0.510270 0.860014i \(-0.329545\pi\)
0.510270 + 0.860014i \(0.329545\pi\)
\(458\) 0 0
\(459\) −8.23886 −0.384557
\(460\) 0 0
\(461\) 6.42221 0.299112 0.149556 0.988753i \(-0.452216\pi\)
0.149556 + 0.988753i \(0.452216\pi\)
\(462\) 0 0
\(463\) 1.21110 0.0562847 0.0281424 0.999604i \(-0.491041\pi\)
0.0281424 + 0.999604i \(0.491041\pi\)
\(464\) 0 0
\(465\) 2.30278 0.106789
\(466\) 0 0
\(467\) 22.6056 1.04606 0.523030 0.852314i \(-0.324802\pi\)
0.523030 + 0.852314i \(0.324802\pi\)
\(468\) 0 0
\(469\) −8.48612 −0.391853
\(470\) 0 0
\(471\) −0.330532 −0.0152301
\(472\) 0 0
\(473\) 1.09167 0.0501952
\(474\) 0 0
\(475\) −0.302776 −0.0138923
\(476\) 0 0
\(477\) 30.8444 1.41227
\(478\) 0 0
\(479\) −35.7250 −1.63232 −0.816158 0.577829i \(-0.803900\pi\)
−0.816158 + 0.577829i \(0.803900\pi\)
\(480\) 0 0
\(481\) −17.2111 −0.784759
\(482\) 0 0
\(483\) 0.550039 0.0250276
\(484\) 0 0
\(485\) −18.4222 −0.836509
\(486\) 0 0
\(487\) 29.3305 1.32909 0.664547 0.747247i \(-0.268625\pi\)
0.664547 + 0.747247i \(0.268625\pi\)
\(488\) 0 0
\(489\) −3.44996 −0.156013
\(490\) 0 0
\(491\) 14.9361 0.674056 0.337028 0.941495i \(-0.390578\pi\)
0.337028 + 0.941495i \(0.390578\pi\)
\(492\) 0 0
\(493\) 38.2389 1.72219
\(494\) 0 0
\(495\) −6.69722 −0.301018
\(496\) 0 0
\(497\) −12.6333 −0.566681
\(498\) 0 0
\(499\) 34.0000 1.52205 0.761025 0.648723i \(-0.224697\pi\)
0.761025 + 0.648723i \(0.224697\pi\)
\(500\) 0 0
\(501\) −3.76114 −0.168035
\(502\) 0 0
\(503\) −22.1194 −0.986257 −0.493128 0.869957i \(-0.664147\pi\)
−0.493128 + 0.869957i \(0.664147\pi\)
\(504\) 0 0
\(505\) −18.0000 −0.800989
\(506\) 0 0
\(507\) 0.633308 0.0281262
\(508\) 0 0
\(509\) −18.4222 −0.816550 −0.408275 0.912859i \(-0.633870\pi\)
−0.408275 + 0.912859i \(0.633870\pi\)
\(510\) 0 0
\(511\) 3.39445 0.150162
\(512\) 0 0
\(513\) −1.78890 −0.0789818
\(514\) 0 0
\(515\) −3.90833 −0.172221
\(516\) 0 0
\(517\) −6.00000 −0.263880
\(518\) 0 0
\(519\) 5.85281 0.256910
\(520\) 0 0
\(521\) 36.4222 1.59569 0.797843 0.602865i \(-0.205974\pi\)
0.797843 + 0.602865i \(0.205974\pi\)
\(522\) 0 0
\(523\) −19.0278 −0.832026 −0.416013 0.909359i \(-0.636573\pi\)
−0.416013 + 0.909359i \(0.636573\pi\)
\(524\) 0 0
\(525\) 0.119429 0.00521233
\(526\) 0 0
\(527\) −15.2111 −0.662606
\(528\) 0 0
\(529\) −21.0555 −0.915457
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −12.9083 −0.559122
\(534\) 0 0
\(535\) 7.39445 0.319690
\(536\) 0 0
\(537\) −3.97224 −0.171415
\(538\) 0 0
\(539\) 5.30278 0.228407
\(540\) 0 0
\(541\) 3.81665 0.164091 0.0820454 0.996629i \(-0.473855\pi\)
0.0820454 + 0.996629i \(0.473855\pi\)
\(542\) 0 0
\(543\) 4.55004 0.195261
\(544\) 0 0
\(545\) −4.60555 −0.197280
\(546\) 0 0
\(547\) 4.00000 0.171028 0.0855138 0.996337i \(-0.472747\pi\)
0.0855138 + 0.996337i \(0.472747\pi\)
\(548\) 0 0
\(549\) −32.6056 −1.39157
\(550\) 0 0
\(551\) 8.30278 0.353710
\(552\) 0 0
\(553\) 20.6056 0.876237
\(554\) 0 0
\(555\) 3.63331 0.154225
\(556\) 0 0
\(557\) −27.6333 −1.17086 −0.585430 0.810723i \(-0.699074\pi\)
−0.585430 + 0.810723i \(0.699074\pi\)
\(558\) 0 0
\(559\) 3.60555 0.152499
\(560\) 0 0
\(561\) −1.39445 −0.0588737
\(562\) 0 0
\(563\) −21.6333 −0.911735 −0.455868 0.890048i \(-0.650671\pi\)
−0.455868 + 0.890048i \(0.650671\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −10.6611 −0.447723
\(568\) 0 0
\(569\) 12.2750 0.514596 0.257298 0.966332i \(-0.417168\pi\)
0.257298 + 0.966332i \(0.417168\pi\)
\(570\) 0 0
\(571\) 6.93608 0.290266 0.145133 0.989412i \(-0.453639\pi\)
0.145133 + 0.989412i \(0.453639\pi\)
\(572\) 0 0
\(573\) −1.81665 −0.0758918
\(574\) 0 0
\(575\) 0.422205 0.0176072
\(576\) 0 0
\(577\) −18.0917 −0.753166 −0.376583 0.926383i \(-0.622901\pi\)
−0.376583 + 0.926383i \(0.622901\pi\)
\(578\) 0 0
\(579\) 7.48612 0.311113
\(580\) 0 0
\(581\) 18.6333 0.773040
\(582\) 0 0
\(583\) 10.6056 0.439237
\(584\) 0 0
\(585\) −22.1194 −0.914526
\(586\) 0 0
\(587\) −12.0000 −0.495293 −0.247647 0.968850i \(-0.579657\pi\)
−0.247647 + 0.968850i \(0.579657\pi\)
\(588\) 0 0
\(589\) −3.30278 −0.136088
\(590\) 0 0
\(591\) −6.55004 −0.269433
\(592\) 0 0
\(593\) −42.0000 −1.72473 −0.862367 0.506284i \(-0.831019\pi\)
−0.862367 + 0.506284i \(0.831019\pi\)
\(594\) 0 0
\(595\) −13.8167 −0.566428
\(596\) 0 0
\(597\) −0.661064 −0.0270555
\(598\) 0 0
\(599\) 19.8806 0.812298 0.406149 0.913807i \(-0.366871\pi\)
0.406149 + 0.913807i \(0.366871\pi\)
\(600\) 0 0
\(601\) 4.09167 0.166903 0.0834514 0.996512i \(-0.473406\pi\)
0.0834514 + 0.996512i \(0.473406\pi\)
\(602\) 0 0
\(603\) −18.9445 −0.771479
\(604\) 0 0
\(605\) −2.30278 −0.0936211
\(606\) 0 0
\(607\) −3.81665 −0.154913 −0.0774566 0.996996i \(-0.524680\pi\)
−0.0774566 + 0.996996i \(0.524680\pi\)
\(608\) 0 0
\(609\) −3.27502 −0.132710
\(610\) 0 0
\(611\) −19.8167 −0.801696
\(612\) 0 0
\(613\) 2.00000 0.0807792 0.0403896 0.999184i \(-0.487140\pi\)
0.0403896 + 0.999184i \(0.487140\pi\)
\(614\) 0 0
\(615\) 2.72498 0.109882
\(616\) 0 0
\(617\) 2.09167 0.0842076 0.0421038 0.999113i \(-0.486594\pi\)
0.0421038 + 0.999113i \(0.486594\pi\)
\(618\) 0 0
\(619\) 34.8444 1.40052 0.700258 0.713890i \(-0.253068\pi\)
0.700258 + 0.713890i \(0.253068\pi\)
\(620\) 0 0
\(621\) 2.49453 0.100102
\(622\) 0 0
\(623\) −6.00000 −0.240385
\(624\) 0 0
\(625\) −26.4222 −1.05689
\(626\) 0 0
\(627\) −0.302776 −0.0120917
\(628\) 0 0
\(629\) −24.0000 −0.956943
\(630\) 0 0
\(631\) 45.0278 1.79253 0.896263 0.443522i \(-0.146271\pi\)
0.896263 + 0.443522i \(0.146271\pi\)
\(632\) 0 0
\(633\) 7.44996 0.296109
\(634\) 0 0
\(635\) −12.4222 −0.492960
\(636\) 0 0
\(637\) 17.5139 0.693925
\(638\) 0 0
\(639\) −28.2027 −1.11568
\(640\) 0 0
\(641\) 20.2389 0.799387 0.399693 0.916649i \(-0.369117\pi\)
0.399693 + 0.916649i \(0.369117\pi\)
\(642\) 0 0
\(643\) −26.4222 −1.04199 −0.520995 0.853560i \(-0.674439\pi\)
−0.520995 + 0.853560i \(0.674439\pi\)
\(644\) 0 0
\(645\) −0.761141 −0.0299699
\(646\) 0 0
\(647\) −25.8167 −1.01496 −0.507479 0.861664i \(-0.669422\pi\)
−0.507479 + 0.861664i \(0.669422\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 1.30278 0.0510598
\(652\) 0 0
\(653\) 22.3305 0.873861 0.436931 0.899495i \(-0.356066\pi\)
0.436931 + 0.899495i \(0.356066\pi\)
\(654\) 0 0
\(655\) 44.0278 1.72031
\(656\) 0 0
\(657\) 7.57779 0.295638
\(658\) 0 0
\(659\) −29.0278 −1.13076 −0.565380 0.824830i \(-0.691271\pi\)
−0.565380 + 0.824830i \(0.691271\pi\)
\(660\) 0 0
\(661\) 23.6333 0.919229 0.459615 0.888118i \(-0.347988\pi\)
0.459615 + 0.888118i \(0.347988\pi\)
\(662\) 0 0
\(663\) −4.60555 −0.178865
\(664\) 0 0
\(665\) −3.00000 −0.116335
\(666\) 0 0
\(667\) −11.5778 −0.448294
\(668\) 0 0
\(669\) −7.63331 −0.295121
\(670\) 0 0
\(671\) −11.2111 −0.432800
\(672\) 0 0
\(673\) 1.30278 0.0502183 0.0251092 0.999685i \(-0.492007\pi\)
0.0251092 + 0.999685i \(0.492007\pi\)
\(674\) 0 0
\(675\) 0.541635 0.0208475
\(676\) 0 0
\(677\) −8.30278 −0.319102 −0.159551 0.987190i \(-0.551005\pi\)
−0.159551 + 0.987190i \(0.551005\pi\)
\(678\) 0 0
\(679\) −10.4222 −0.399968
\(680\) 0 0
\(681\) 0.550039 0.0210775
\(682\) 0 0
\(683\) 17.5778 0.672596 0.336298 0.941756i \(-0.390825\pi\)
0.336298 + 0.941756i \(0.390825\pi\)
\(684\) 0 0
\(685\) 8.02776 0.306725
\(686\) 0 0
\(687\) −3.60555 −0.137560
\(688\) 0 0
\(689\) 35.0278 1.33445
\(690\) 0 0
\(691\) −32.4222 −1.23340 −0.616699 0.787199i \(-0.711531\pi\)
−0.616699 + 0.787199i \(0.711531\pi\)
\(692\) 0 0
\(693\) −3.78890 −0.143928
\(694\) 0 0
\(695\) −14.5139 −0.550543
\(696\) 0 0
\(697\) −18.0000 −0.681799
\(698\) 0 0
\(699\) −2.78890 −0.105486
\(700\) 0 0
\(701\) −27.6333 −1.04370 −0.521848 0.853039i \(-0.674757\pi\)
−0.521848 + 0.853039i \(0.674757\pi\)
\(702\) 0 0
\(703\) −5.21110 −0.196540
\(704\) 0 0
\(705\) 4.18335 0.157554
\(706\) 0 0
\(707\) −10.1833 −0.382984
\(708\) 0 0
\(709\) 14.6972 0.551966 0.275983 0.961163i \(-0.410997\pi\)
0.275983 + 0.961163i \(0.410997\pi\)
\(710\) 0 0
\(711\) 46.0000 1.72513
\(712\) 0 0
\(713\) 4.60555 0.172479
\(714\) 0 0
\(715\) −7.60555 −0.284431
\(716\) 0 0
\(717\) −7.24726 −0.270654
\(718\) 0 0
\(719\) 25.8167 0.962799 0.481399 0.876501i \(-0.340129\pi\)
0.481399 + 0.876501i \(0.340129\pi\)
\(720\) 0 0
\(721\) −2.21110 −0.0823458
\(722\) 0 0
\(723\) −3.96384 −0.147417
\(724\) 0 0
\(725\) −2.51388 −0.0933631
\(726\) 0 0
\(727\) 0.366692 0.0135999 0.00679993 0.999977i \(-0.497835\pi\)
0.00679993 + 0.999977i \(0.497835\pi\)
\(728\) 0 0
\(729\) −22.1749 −0.821294
\(730\) 0 0
\(731\) 5.02776 0.185958
\(732\) 0 0
\(733\) −7.21110 −0.266348 −0.133174 0.991093i \(-0.542517\pi\)
−0.133174 + 0.991093i \(0.542517\pi\)
\(734\) 0 0
\(735\) −3.69722 −0.136374
\(736\) 0 0
\(737\) −6.51388 −0.239942
\(738\) 0 0
\(739\) 40.3583 1.48460 0.742302 0.670066i \(-0.233734\pi\)
0.742302 + 0.670066i \(0.233734\pi\)
\(740\) 0 0
\(741\) −1.00000 −0.0367359
\(742\) 0 0
\(743\) −2.36669 −0.0868255 −0.0434128 0.999057i \(-0.513823\pi\)
−0.0434128 + 0.999057i \(0.513823\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 41.5971 1.52196
\(748\) 0 0
\(749\) 4.18335 0.152856
\(750\) 0 0
\(751\) 40.8444 1.49043 0.745217 0.666822i \(-0.232346\pi\)
0.745217 + 0.666822i \(0.232346\pi\)
\(752\) 0 0
\(753\) 7.26662 0.264810
\(754\) 0 0
\(755\) −37.8167 −1.37629
\(756\) 0 0
\(757\) 30.5416 1.11005 0.555027 0.831832i \(-0.312708\pi\)
0.555027 + 0.831832i \(0.312708\pi\)
\(758\) 0 0
\(759\) 0.422205 0.0153251
\(760\) 0 0
\(761\) 20.2389 0.733658 0.366829 0.930288i \(-0.380443\pi\)
0.366829 + 0.930288i \(0.380443\pi\)
\(762\) 0 0
\(763\) −2.60555 −0.0943273
\(764\) 0 0
\(765\) −30.8444 −1.11518
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −37.6333 −1.35709 −0.678546 0.734558i \(-0.737390\pi\)
−0.678546 + 0.734558i \(0.737390\pi\)
\(770\) 0 0
\(771\) 1.39445 0.0502198
\(772\) 0 0
\(773\) 48.4222 1.74163 0.870813 0.491615i \(-0.163593\pi\)
0.870813 + 0.491615i \(0.163593\pi\)
\(774\) 0 0
\(775\) 1.00000 0.0359211
\(776\) 0 0
\(777\) 2.05551 0.0737411
\(778\) 0 0
\(779\) −3.90833 −0.140030
\(780\) 0 0
\(781\) −9.69722 −0.346994
\(782\) 0 0
\(783\) −14.8528 −0.530796
\(784\) 0 0
\(785\) −2.51388 −0.0897242
\(786\) 0 0
\(787\) 15.0278 0.535682 0.267841 0.963463i \(-0.413690\pi\)
0.267841 + 0.963463i \(0.413690\pi\)
\(788\) 0 0
\(789\) −6.14719 −0.218846
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −37.0278 −1.31489
\(794\) 0 0
\(795\) −7.39445 −0.262254
\(796\) 0 0
\(797\) 16.6056 0.588199 0.294099 0.955775i \(-0.404980\pi\)
0.294099 + 0.955775i \(0.404980\pi\)
\(798\) 0 0
\(799\) −27.6333 −0.977596
\(800\) 0 0
\(801\) −13.3944 −0.473270
\(802\) 0 0
\(803\) 2.60555 0.0919479
\(804\) 0 0
\(805\) 4.18335 0.147444
\(806\) 0 0
\(807\) 6.00000 0.211210
\(808\) 0 0
\(809\) 33.2111 1.16764 0.583820 0.811883i \(-0.301557\pi\)
0.583820 + 0.811883i \(0.301557\pi\)
\(810\) 0 0
\(811\) −29.6333 −1.04057 −0.520283 0.853994i \(-0.674174\pi\)
−0.520283 + 0.853994i \(0.674174\pi\)
\(812\) 0 0
\(813\) −1.97224 −0.0691696
\(814\) 0 0
\(815\) −26.2389 −0.919107
\(816\) 0 0
\(817\) 1.09167 0.0381928
\(818\) 0 0
\(819\) −12.5139 −0.437270
\(820\) 0 0
\(821\) −34.6056 −1.20774 −0.603871 0.797082i \(-0.706376\pi\)
−0.603871 + 0.797082i \(0.706376\pi\)
\(822\) 0 0
\(823\) −32.0000 −1.11545 −0.557725 0.830026i \(-0.688326\pi\)
−0.557725 + 0.830026i \(0.688326\pi\)
\(824\) 0 0
\(825\) 0.0916731 0.00319165
\(826\) 0 0
\(827\) −22.0555 −0.766945 −0.383473 0.923552i \(-0.625272\pi\)
−0.383473 + 0.923552i \(0.625272\pi\)
\(828\) 0 0
\(829\) −27.5778 −0.957816 −0.478908 0.877865i \(-0.658967\pi\)
−0.478908 + 0.877865i \(0.658967\pi\)
\(830\) 0 0
\(831\) 3.02776 0.105032
\(832\) 0 0
\(833\) 24.4222 0.846179
\(834\) 0 0
\(835\) −28.6056 −0.989936
\(836\) 0 0
\(837\) 5.90833 0.204222
\(838\) 0 0
\(839\) −19.8806 −0.686354 −0.343177 0.939271i \(-0.611503\pi\)
−0.343177 + 0.939271i \(0.611503\pi\)
\(840\) 0 0
\(841\) 39.9361 1.37711
\(842\) 0 0
\(843\) 0.147186 0.00506935
\(844\) 0 0
\(845\) 4.81665 0.165698
\(846\) 0 0
\(847\) −1.30278 −0.0447639
\(848\) 0 0
\(849\) −5.73338 −0.196769
\(850\) 0 0
\(851\) 7.26662 0.249096
\(852\) 0 0
\(853\) −46.4222 −1.58947 −0.794733 0.606959i \(-0.792389\pi\)
−0.794733 + 0.606959i \(0.792389\pi\)
\(854\) 0 0
\(855\) −6.69722 −0.229040
\(856\) 0 0
\(857\) −43.5416 −1.48735 −0.743677 0.668539i \(-0.766920\pi\)
−0.743677 + 0.668539i \(0.766920\pi\)
\(858\) 0 0
\(859\) −8.84441 −0.301767 −0.150884 0.988552i \(-0.548212\pi\)
−0.150884 + 0.988552i \(0.548212\pi\)
\(860\) 0 0
\(861\) 1.54163 0.0525388
\(862\) 0 0
\(863\) 17.7250 0.603365 0.301683 0.953408i \(-0.402452\pi\)
0.301683 + 0.953408i \(0.402452\pi\)
\(864\) 0 0
\(865\) 44.5139 1.51352
\(866\) 0 0
\(867\) −1.27502 −0.0433019
\(868\) 0 0
\(869\) 15.8167 0.536543
\(870\) 0 0
\(871\) −21.5139 −0.728970
\(872\) 0 0
\(873\) −23.2666 −0.787456
\(874\) 0 0
\(875\) −14.0917 −0.476385
\(876\) 0 0
\(877\) 47.5694 1.60630 0.803152 0.595774i \(-0.203155\pi\)
0.803152 + 0.595774i \(0.203155\pi\)
\(878\) 0 0
\(879\) 7.73338 0.260841
\(880\) 0 0
\(881\) −33.9083 −1.14240 −0.571200 0.820811i \(-0.693522\pi\)
−0.571200 + 0.820811i \(0.693522\pi\)
\(882\) 0 0
\(883\) 39.0278 1.31339 0.656694 0.754157i \(-0.271954\pi\)
0.656694 + 0.754157i \(0.271954\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −24.8444 −0.834194 −0.417097 0.908862i \(-0.636952\pi\)
−0.417097 + 0.908862i \(0.636952\pi\)
\(888\) 0 0
\(889\) −7.02776 −0.235703
\(890\) 0 0
\(891\) −8.18335 −0.274152
\(892\) 0 0
\(893\) −6.00000 −0.200782
\(894\) 0 0
\(895\) −30.2111 −1.00985
\(896\) 0 0
\(897\) 1.39445 0.0465593
\(898\) 0 0
\(899\) −27.4222 −0.914582
\(900\) 0 0
\(901\) 48.8444 1.62724
\(902\) 0 0
\(903\) −0.430609 −0.0143298
\(904\) 0 0
\(905\) 34.6056 1.15033
\(906\) 0 0
\(907\) 4.84441 0.160856 0.0804280 0.996760i \(-0.474371\pi\)
0.0804280 + 0.996760i \(0.474371\pi\)
\(908\) 0 0
\(909\) −22.7334 −0.754019
\(910\) 0 0
\(911\) −27.6333 −0.915532 −0.457766 0.889073i \(-0.651350\pi\)
−0.457766 + 0.889073i \(0.651350\pi\)
\(912\) 0 0
\(913\) 14.3028 0.473353
\(914\) 0 0
\(915\) 7.81665 0.258411
\(916\) 0 0
\(917\) 24.9083 0.822545
\(918\) 0 0
\(919\) −6.11943 −0.201861 −0.100931 0.994893i \(-0.532182\pi\)
−0.100931 + 0.994893i \(0.532182\pi\)
\(920\) 0 0
\(921\) −0.661064 −0.0217828
\(922\) 0 0
\(923\) −32.0278 −1.05421
\(924\) 0 0
\(925\) 1.57779 0.0518776
\(926\) 0 0
\(927\) −4.93608 −0.162122
\(928\) 0 0
\(929\) −8.51388 −0.279331 −0.139666 0.990199i \(-0.544603\pi\)
−0.139666 + 0.990199i \(0.544603\pi\)
\(930\) 0 0
\(931\) 5.30278 0.173791
\(932\) 0 0
\(933\) 7.81665 0.255906
\(934\) 0 0
\(935\) −10.6056 −0.346839
\(936\) 0 0
\(937\) 1.15559 0.0377515 0.0188757 0.999822i \(-0.493991\pi\)
0.0188757 + 0.999822i \(0.493991\pi\)
\(938\) 0 0
\(939\) −5.48612 −0.179033
\(940\) 0 0
\(941\) −57.6333 −1.87879 −0.939396 0.342834i \(-0.888613\pi\)
−0.939396 + 0.342834i \(0.888613\pi\)
\(942\) 0 0
\(943\) 5.44996 0.177475
\(944\) 0 0
\(945\) 5.36669 0.174579
\(946\) 0 0
\(947\) −25.8167 −0.838929 −0.419464 0.907772i \(-0.637782\pi\)
−0.419464 + 0.907772i \(0.637782\pi\)
\(948\) 0 0
\(949\) 8.60555 0.279348
\(950\) 0 0
\(951\) 4.18335 0.135654
\(952\) 0 0
\(953\) −21.6333 −0.700772 −0.350386 0.936605i \(-0.613950\pi\)
−0.350386 + 0.936605i \(0.613950\pi\)
\(954\) 0 0
\(955\) −13.8167 −0.447096
\(956\) 0 0
\(957\) −2.51388 −0.0812621
\(958\) 0 0
\(959\) 4.54163 0.146657
\(960\) 0 0
\(961\) −20.0917 −0.648118
\(962\) 0 0
\(963\) 9.33894 0.300943
\(964\) 0 0
\(965\) 56.9361 1.83284
\(966\) 0 0
\(967\) −23.6333 −0.759996 −0.379998 0.924987i \(-0.624075\pi\)
−0.379998 + 0.924987i \(0.624075\pi\)
\(968\) 0 0
\(969\) −1.39445 −0.0447961
\(970\) 0 0
\(971\) 23.9361 0.768145 0.384073 0.923303i \(-0.374521\pi\)
0.384073 + 0.923303i \(0.374521\pi\)
\(972\) 0 0
\(973\) −8.21110 −0.263236
\(974\) 0 0
\(975\) 0.302776 0.00969658
\(976\) 0 0
\(977\) 27.6333 0.884068 0.442034 0.896998i \(-0.354257\pi\)
0.442034 + 0.896998i \(0.354257\pi\)
\(978\) 0 0
\(979\) −4.60555 −0.147194
\(980\) 0 0
\(981\) −5.81665 −0.185711
\(982\) 0 0
\(983\) −23.3028 −0.743243 −0.371622 0.928384i \(-0.621198\pi\)
−0.371622 + 0.928384i \(0.621198\pi\)
\(984\) 0 0
\(985\) −49.8167 −1.58729
\(986\) 0 0
\(987\) 2.36669 0.0753326
\(988\) 0 0
\(989\) −1.52228 −0.0484058
\(990\) 0 0
\(991\) 25.9083 0.823005 0.411503 0.911409i \(-0.365004\pi\)
0.411503 + 0.911409i \(0.365004\pi\)
\(992\) 0 0
\(993\) 6.88057 0.218348
\(994\) 0 0
\(995\) −5.02776 −0.159391
\(996\) 0 0
\(997\) 0.183346 0.00580663 0.00290332 0.999996i \(-0.499076\pi\)
0.00290332 + 0.999996i \(0.499076\pi\)
\(998\) 0 0
\(999\) 9.32213 0.294939
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3344.2.a.o.1.1 2
4.3 odd 2 418.2.a.d.1.2 2
12.11 even 2 3762.2.a.bb.1.2 2
44.43 even 2 4598.2.a.bc.1.2 2
76.75 even 2 7942.2.a.bb.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
418.2.a.d.1.2 2 4.3 odd 2
3344.2.a.o.1.1 2 1.1 even 1 trivial
3762.2.a.bb.1.2 2 12.11 even 2
4598.2.a.bc.1.2 2 44.43 even 2
7942.2.a.bb.1.1 2 76.75 even 2