Properties

Label 3344.2.a.l
Level $3344$
Weight $2$
Character orbit 3344.a
Self dual yes
Analytic conductor $26.702$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3344,2,Mod(1,3344)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3344, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3344.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3344 = 2^{4} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3344.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.7019744359\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{21}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 418)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{21})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{3} + ( - \beta + 2) q^{5} + ( - \beta + 3) q^{7} + (\beta + 2) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta q^{3} + ( - \beta + 2) q^{5} + ( - \beta + 3) q^{7} + (\beta + 2) q^{9} - q^{11} + (\beta + 3) q^{13} + (\beta - 5) q^{15} + (2 \beta - 4) q^{17} - q^{19} + (2 \beta - 5) q^{21} + ( - 2 \beta - 2) q^{23} + ( - 3 \beta + 4) q^{25} + 5 q^{27} + (\beta + 4) q^{29} + ( - \beta + 9) q^{31} - \beta q^{33} + ( - 4 \beta + 11) q^{35} + 8 q^{37} + (4 \beta + 5) q^{39} + (\beta + 1) q^{41} + (3 \beta - 2) q^{43} + ( - \beta - 1) q^{45} + (4 \beta - 2) q^{47} + ( - 5 \beta + 7) q^{49} + ( - 2 \beta + 10) q^{51} + (2 \beta + 2) q^{53} + (\beta - 2) q^{55} - \beta q^{57} + 2 q^{61} + q^{63} + ( - 2 \beta + 1) q^{65} + ( - \beta + 3) q^{67} + ( - 4 \beta - 10) q^{69} + ( - 3 \beta + 6) q^{71} + ( - 2 \beta + 6) q^{73} + (\beta - 15) q^{75} + (\beta - 3) q^{77} + ( - 2 \beta + 2) q^{79} + (2 \beta - 6) q^{81} + ( - \beta + 2) q^{83} + (6 \beta - 18) q^{85} + (5 \beta + 5) q^{87} + ( - 2 \beta - 8) q^{89} + ( - \beta + 4) q^{91} + (8 \beta - 5) q^{93} + (\beta - 2) q^{95} + 8 q^{97} + ( - \beta - 2) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{3} + 3 q^{5} + 5 q^{7} + 5 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + q^{3} + 3 q^{5} + 5 q^{7} + 5 q^{9} - 2 q^{11} + 7 q^{13} - 9 q^{15} - 6 q^{17} - 2 q^{19} - 8 q^{21} - 6 q^{23} + 5 q^{25} + 10 q^{27} + 9 q^{29} + 17 q^{31} - q^{33} + 18 q^{35} + 16 q^{37} + 14 q^{39} + 3 q^{41} - q^{43} - 3 q^{45} + 9 q^{49} + 18 q^{51} + 6 q^{53} - 3 q^{55} - q^{57} + 4 q^{61} + 2 q^{63} + 5 q^{67} - 24 q^{69} + 9 q^{71} + 10 q^{73} - 29 q^{75} - 5 q^{77} + 2 q^{79} - 10 q^{81} + 3 q^{83} - 30 q^{85} + 15 q^{87} - 18 q^{89} + 7 q^{91} - 2 q^{93} - 3 q^{95} + 16 q^{97} - 5 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.79129
2.79129
0 −1.79129 0 3.79129 0 4.79129 0 0.208712 0
1.2 0 2.79129 0 −0.791288 0 0.208712 0 4.79129 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(11\) \( +1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3344.2.a.l 2
4.b odd 2 1 418.2.a.f 2
12.b even 2 1 3762.2.a.s 2
44.c even 2 1 4598.2.a.y 2
76.d even 2 1 7942.2.a.w 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
418.2.a.f 2 4.b odd 2 1
3344.2.a.l 2 1.a even 1 1 trivial
3762.2.a.s 2 12.b even 2 1
4598.2.a.y 2 44.c even 2 1
7942.2.a.w 2 76.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3344))\):

\( T_{3}^{2} - T_{3} - 5 \) Copy content Toggle raw display
\( T_{5}^{2} - 3T_{5} - 3 \) Copy content Toggle raw display
\( T_{7}^{2} - 5T_{7} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - T - 5 \) Copy content Toggle raw display
$5$ \( T^{2} - 3T - 3 \) Copy content Toggle raw display
$7$ \( T^{2} - 5T + 1 \) Copy content Toggle raw display
$11$ \( (T + 1)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 7T + 7 \) Copy content Toggle raw display
$17$ \( T^{2} + 6T - 12 \) Copy content Toggle raw display
$19$ \( (T + 1)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 6T - 12 \) Copy content Toggle raw display
$29$ \( T^{2} - 9T + 15 \) Copy content Toggle raw display
$31$ \( T^{2} - 17T + 67 \) Copy content Toggle raw display
$37$ \( (T - 8)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 3T - 3 \) Copy content Toggle raw display
$43$ \( T^{2} + T - 47 \) Copy content Toggle raw display
$47$ \( T^{2} - 84 \) Copy content Toggle raw display
$53$ \( T^{2} - 6T - 12 \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( (T - 2)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} - 5T + 1 \) Copy content Toggle raw display
$71$ \( T^{2} - 9T - 27 \) Copy content Toggle raw display
$73$ \( T^{2} - 10T + 4 \) Copy content Toggle raw display
$79$ \( T^{2} - 2T - 20 \) Copy content Toggle raw display
$83$ \( T^{2} - 3T - 3 \) Copy content Toggle raw display
$89$ \( T^{2} + 18T + 60 \) Copy content Toggle raw display
$97$ \( (T - 8)^{2} \) Copy content Toggle raw display
show more
show less