Properties

Label 3344.2.a.ba.1.4
Level $3344$
Weight $2$
Character 3344.1
Self dual yes
Analytic conductor $26.702$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3344,2,Mod(1,3344)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3344.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3344, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3344 = 2^{4} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3344.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,0,-2,0,2,0,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.7019744359\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 14x^{5} + 10x^{4} + 59x^{3} - 27x^{2} - 66x + 30 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 209)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(2.61330\) of defining polynomial
Character \(\chi\) \(=\) 3344.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.19599 q^{3} +4.07680 q^{5} -3.61829 q^{7} -1.56960 q^{9} +1.00000 q^{11} -1.47857 q^{13} -4.87582 q^{15} -3.27003 q^{17} -1.00000 q^{19} +4.32745 q^{21} +7.45793 q^{23} +11.6203 q^{25} +5.46521 q^{27} +1.02535 q^{29} -1.64921 q^{31} -1.19599 q^{33} -14.7511 q^{35} -6.71293 q^{37} +1.76836 q^{39} -3.92451 q^{41} -5.38113 q^{43} -6.39896 q^{45} +3.71597 q^{47} +6.09205 q^{49} +3.91093 q^{51} -0.102902 q^{53} +4.07680 q^{55} +1.19599 q^{57} -13.2986 q^{59} -6.49664 q^{61} +5.67929 q^{63} -6.02783 q^{65} +3.70989 q^{67} -8.91962 q^{69} -6.32968 q^{71} -1.37759 q^{73} -13.8978 q^{75} -3.61829 q^{77} -13.6725 q^{79} -1.82753 q^{81} -5.44061 q^{83} -13.3313 q^{85} -1.22631 q^{87} +12.1357 q^{89} +5.34990 q^{91} +1.97244 q^{93} -4.07680 q^{95} -13.7910 q^{97} -1.56960 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - 2 q^{3} + 2 q^{5} - 10 q^{7} + 11 q^{9} + 7 q^{11} - 4 q^{13} - 12 q^{15} + 2 q^{17} - 7 q^{19} - 14 q^{21} - 10 q^{23} + 9 q^{25} + 4 q^{27} - 18 q^{29} - 24 q^{31} - 2 q^{33} - 8 q^{35} - 24 q^{39}+ \cdots + 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.19599 −0.690506 −0.345253 0.938510i \(-0.612207\pi\)
−0.345253 + 0.938510i \(0.612207\pi\)
\(4\) 0 0
\(5\) 4.07680 1.82320 0.911600 0.411078i \(-0.134847\pi\)
0.911600 + 0.411078i \(0.134847\pi\)
\(6\) 0 0
\(7\) −3.61829 −1.36759 −0.683793 0.729676i \(-0.739671\pi\)
−0.683793 + 0.729676i \(0.739671\pi\)
\(8\) 0 0
\(9\) −1.56960 −0.523201
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) −1.47857 −0.410081 −0.205041 0.978753i \(-0.565733\pi\)
−0.205041 + 0.978753i \(0.565733\pi\)
\(14\) 0 0
\(15\) −4.87582 −1.25893
\(16\) 0 0
\(17\) −3.27003 −0.793099 −0.396549 0.918013i \(-0.629792\pi\)
−0.396549 + 0.918013i \(0.629792\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 4.32745 0.944327
\(22\) 0 0
\(23\) 7.45793 1.55509 0.777543 0.628830i \(-0.216466\pi\)
0.777543 + 0.628830i \(0.216466\pi\)
\(24\) 0 0
\(25\) 11.6203 2.32406
\(26\) 0 0
\(27\) 5.46521 1.05178
\(28\) 0 0
\(29\) 1.02535 0.190403 0.0952013 0.995458i \(-0.469651\pi\)
0.0952013 + 0.995458i \(0.469651\pi\)
\(30\) 0 0
\(31\) −1.64921 −0.296207 −0.148104 0.988972i \(-0.547317\pi\)
−0.148104 + 0.988972i \(0.547317\pi\)
\(32\) 0 0
\(33\) −1.19599 −0.208195
\(34\) 0 0
\(35\) −14.7511 −2.49338
\(36\) 0 0
\(37\) −6.71293 −1.10360 −0.551799 0.833977i \(-0.686059\pi\)
−0.551799 + 0.833977i \(0.686059\pi\)
\(38\) 0 0
\(39\) 1.76836 0.283164
\(40\) 0 0
\(41\) −3.92451 −0.612905 −0.306453 0.951886i \(-0.599142\pi\)
−0.306453 + 0.951886i \(0.599142\pi\)
\(42\) 0 0
\(43\) −5.38113 −0.820614 −0.410307 0.911947i \(-0.634578\pi\)
−0.410307 + 0.911947i \(0.634578\pi\)
\(44\) 0 0
\(45\) −6.39896 −0.953901
\(46\) 0 0
\(47\) 3.71597 0.542030 0.271015 0.962575i \(-0.412641\pi\)
0.271015 + 0.962575i \(0.412641\pi\)
\(48\) 0 0
\(49\) 6.09205 0.870292
\(50\) 0 0
\(51\) 3.91093 0.547640
\(52\) 0 0
\(53\) −0.102902 −0.0141347 −0.00706733 0.999975i \(-0.502250\pi\)
−0.00706733 + 0.999975i \(0.502250\pi\)
\(54\) 0 0
\(55\) 4.07680 0.549716
\(56\) 0 0
\(57\) 1.19599 0.158413
\(58\) 0 0
\(59\) −13.2986 −1.73134 −0.865668 0.500619i \(-0.833106\pi\)
−0.865668 + 0.500619i \(0.833106\pi\)
\(60\) 0 0
\(61\) −6.49664 −0.831809 −0.415905 0.909408i \(-0.636535\pi\)
−0.415905 + 0.909408i \(0.636535\pi\)
\(62\) 0 0
\(63\) 5.67929 0.715523
\(64\) 0 0
\(65\) −6.02783 −0.747661
\(66\) 0 0
\(67\) 3.70989 0.453235 0.226618 0.973984i \(-0.427233\pi\)
0.226618 + 0.973984i \(0.427233\pi\)
\(68\) 0 0
\(69\) −8.91962 −1.07380
\(70\) 0 0
\(71\) −6.32968 −0.751194 −0.375597 0.926783i \(-0.622562\pi\)
−0.375597 + 0.926783i \(0.622562\pi\)
\(72\) 0 0
\(73\) −1.37759 −0.161235 −0.0806173 0.996745i \(-0.525689\pi\)
−0.0806173 + 0.996745i \(0.525689\pi\)
\(74\) 0 0
\(75\) −13.8978 −1.60478
\(76\) 0 0
\(77\) −3.61829 −0.412343
\(78\) 0 0
\(79\) −13.6725 −1.53828 −0.769141 0.639079i \(-0.779316\pi\)
−0.769141 + 0.639079i \(0.779316\pi\)
\(80\) 0 0
\(81\) −1.82753 −0.203059
\(82\) 0 0
\(83\) −5.44061 −0.597184 −0.298592 0.954381i \(-0.596517\pi\)
−0.298592 + 0.954381i \(0.596517\pi\)
\(84\) 0 0
\(85\) −13.3313 −1.44598
\(86\) 0 0
\(87\) −1.22631 −0.131474
\(88\) 0 0
\(89\) 12.1357 1.28638 0.643191 0.765706i \(-0.277610\pi\)
0.643191 + 0.765706i \(0.277610\pi\)
\(90\) 0 0
\(91\) 5.34990 0.560822
\(92\) 0 0
\(93\) 1.97244 0.204533
\(94\) 0 0
\(95\) −4.07680 −0.418271
\(96\) 0 0
\(97\) −13.7910 −1.40026 −0.700131 0.714014i \(-0.746875\pi\)
−0.700131 + 0.714014i \(0.746875\pi\)
\(98\) 0 0
\(99\) −1.56960 −0.157751
\(100\) 0 0
\(101\) −11.0029 −1.09483 −0.547413 0.836863i \(-0.684387\pi\)
−0.547413 + 0.836863i \(0.684387\pi\)
\(102\) 0 0
\(103\) 4.99191 0.491867 0.245934 0.969287i \(-0.420906\pi\)
0.245934 + 0.969287i \(0.420906\pi\)
\(104\) 0 0
\(105\) 17.6421 1.72170
\(106\) 0 0
\(107\) −7.31345 −0.707018 −0.353509 0.935431i \(-0.615012\pi\)
−0.353509 + 0.935431i \(0.615012\pi\)
\(108\) 0 0
\(109\) −1.44482 −0.138389 −0.0691944 0.997603i \(-0.522043\pi\)
−0.0691944 + 0.997603i \(0.522043\pi\)
\(110\) 0 0
\(111\) 8.02861 0.762042
\(112\) 0 0
\(113\) −12.0369 −1.13234 −0.566169 0.824289i \(-0.691575\pi\)
−0.566169 + 0.824289i \(0.691575\pi\)
\(114\) 0 0
\(115\) 30.4045 2.83523
\(116\) 0 0
\(117\) 2.32077 0.214555
\(118\) 0 0
\(119\) 11.8319 1.08463
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 4.69368 0.423215
\(124\) 0 0
\(125\) 26.9897 2.41403
\(126\) 0 0
\(127\) 4.69692 0.416784 0.208392 0.978045i \(-0.433177\pi\)
0.208392 + 0.978045i \(0.433177\pi\)
\(128\) 0 0
\(129\) 6.43578 0.566639
\(130\) 0 0
\(131\) −3.74466 −0.327173 −0.163586 0.986529i \(-0.552306\pi\)
−0.163586 + 0.986529i \(0.552306\pi\)
\(132\) 0 0
\(133\) 3.61829 0.313746
\(134\) 0 0
\(135\) 22.2806 1.91761
\(136\) 0 0
\(137\) −15.7595 −1.34643 −0.673213 0.739449i \(-0.735086\pi\)
−0.673213 + 0.739449i \(0.735086\pi\)
\(138\) 0 0
\(139\) 2.52822 0.214440 0.107220 0.994235i \(-0.465805\pi\)
0.107220 + 0.994235i \(0.465805\pi\)
\(140\) 0 0
\(141\) −4.44427 −0.374275
\(142\) 0 0
\(143\) −1.47857 −0.123644
\(144\) 0 0
\(145\) 4.18015 0.347142
\(146\) 0 0
\(147\) −7.28604 −0.600942
\(148\) 0 0
\(149\) 1.84902 0.151477 0.0757387 0.997128i \(-0.475869\pi\)
0.0757387 + 0.997128i \(0.475869\pi\)
\(150\) 0 0
\(151\) 15.3184 1.24659 0.623296 0.781986i \(-0.285793\pi\)
0.623296 + 0.781986i \(0.285793\pi\)
\(152\) 0 0
\(153\) 5.13265 0.414950
\(154\) 0 0
\(155\) −6.72351 −0.540045
\(156\) 0 0
\(157\) 24.6631 1.96833 0.984165 0.177254i \(-0.0567215\pi\)
0.984165 + 0.177254i \(0.0567215\pi\)
\(158\) 0 0
\(159\) 0.123070 0.00976006
\(160\) 0 0
\(161\) −26.9850 −2.12671
\(162\) 0 0
\(163\) 3.72149 0.291490 0.145745 0.989322i \(-0.453442\pi\)
0.145745 + 0.989322i \(0.453442\pi\)
\(164\) 0 0
\(165\) −4.87582 −0.379582
\(166\) 0 0
\(167\) −2.64758 −0.204876 −0.102438 0.994739i \(-0.532664\pi\)
−0.102438 + 0.994739i \(0.532664\pi\)
\(168\) 0 0
\(169\) −10.8138 −0.831833
\(170\) 0 0
\(171\) 1.56960 0.120031
\(172\) 0 0
\(173\) 7.34552 0.558469 0.279235 0.960223i \(-0.409919\pi\)
0.279235 + 0.960223i \(0.409919\pi\)
\(174\) 0 0
\(175\) −42.0457 −3.17835
\(176\) 0 0
\(177\) 15.9051 1.19550
\(178\) 0 0
\(179\) −9.55394 −0.714095 −0.357047 0.934086i \(-0.616217\pi\)
−0.357047 + 0.934086i \(0.616217\pi\)
\(180\) 0 0
\(181\) 6.02638 0.447937 0.223969 0.974596i \(-0.428099\pi\)
0.223969 + 0.974596i \(0.428099\pi\)
\(182\) 0 0
\(183\) 7.76993 0.574369
\(184\) 0 0
\(185\) −27.3673 −2.01208
\(186\) 0 0
\(187\) −3.27003 −0.239128
\(188\) 0 0
\(189\) −19.7747 −1.43840
\(190\) 0 0
\(191\) −17.7069 −1.28123 −0.640613 0.767864i \(-0.721320\pi\)
−0.640613 + 0.767864i \(0.721320\pi\)
\(192\) 0 0
\(193\) 3.69348 0.265863 0.132931 0.991125i \(-0.457561\pi\)
0.132931 + 0.991125i \(0.457561\pi\)
\(194\) 0 0
\(195\) 7.20924 0.516264
\(196\) 0 0
\(197\) −25.7789 −1.83667 −0.918336 0.395802i \(-0.870467\pi\)
−0.918336 + 0.395802i \(0.870467\pi\)
\(198\) 0 0
\(199\) −18.8953 −1.33945 −0.669726 0.742608i \(-0.733589\pi\)
−0.669726 + 0.742608i \(0.733589\pi\)
\(200\) 0 0
\(201\) −4.43700 −0.312962
\(202\) 0 0
\(203\) −3.71002 −0.260392
\(204\) 0 0
\(205\) −15.9994 −1.11745
\(206\) 0 0
\(207\) −11.7060 −0.813623
\(208\) 0 0
\(209\) −1.00000 −0.0691714
\(210\) 0 0
\(211\) 10.1993 0.702150 0.351075 0.936347i \(-0.385816\pi\)
0.351075 + 0.936347i \(0.385816\pi\)
\(212\) 0 0
\(213\) 7.57024 0.518704
\(214\) 0 0
\(215\) −21.9378 −1.49614
\(216\) 0 0
\(217\) 5.96733 0.405089
\(218\) 0 0
\(219\) 1.64759 0.111334
\(220\) 0 0
\(221\) 4.83497 0.325235
\(222\) 0 0
\(223\) 0.262700 0.0175917 0.00879584 0.999961i \(-0.497200\pi\)
0.00879584 + 0.999961i \(0.497200\pi\)
\(224\) 0 0
\(225\) −18.2393 −1.21595
\(226\) 0 0
\(227\) −27.3256 −1.81367 −0.906834 0.421489i \(-0.861508\pi\)
−0.906834 + 0.421489i \(0.861508\pi\)
\(228\) 0 0
\(229\) −5.53171 −0.365546 −0.182773 0.983155i \(-0.558507\pi\)
−0.182773 + 0.983155i \(0.558507\pi\)
\(230\) 0 0
\(231\) 4.32745 0.284725
\(232\) 0 0
\(233\) 27.4733 1.79984 0.899918 0.436059i \(-0.143626\pi\)
0.899918 + 0.436059i \(0.143626\pi\)
\(234\) 0 0
\(235\) 15.1493 0.988229
\(236\) 0 0
\(237\) 16.3523 1.06219
\(238\) 0 0
\(239\) −1.40339 −0.0907781 −0.0453890 0.998969i \(-0.514453\pi\)
−0.0453890 + 0.998969i \(0.514453\pi\)
\(240\) 0 0
\(241\) −20.7696 −1.33789 −0.668944 0.743312i \(-0.733254\pi\)
−0.668944 + 0.743312i \(0.733254\pi\)
\(242\) 0 0
\(243\) −14.2099 −0.911566
\(244\) 0 0
\(245\) 24.8361 1.58672
\(246\) 0 0
\(247\) 1.47857 0.0940791
\(248\) 0 0
\(249\) 6.50692 0.412359
\(250\) 0 0
\(251\) 1.29936 0.0820148 0.0410074 0.999159i \(-0.486943\pi\)
0.0410074 + 0.999159i \(0.486943\pi\)
\(252\) 0 0
\(253\) 7.45793 0.468876
\(254\) 0 0
\(255\) 15.9441 0.998457
\(256\) 0 0
\(257\) 3.41219 0.212847 0.106423 0.994321i \(-0.466060\pi\)
0.106423 + 0.994321i \(0.466060\pi\)
\(258\) 0 0
\(259\) 24.2893 1.50927
\(260\) 0 0
\(261\) −1.60939 −0.0996189
\(262\) 0 0
\(263\) −14.2418 −0.878189 −0.439094 0.898441i \(-0.644701\pi\)
−0.439094 + 0.898441i \(0.644701\pi\)
\(264\) 0 0
\(265\) −0.419510 −0.0257703
\(266\) 0 0
\(267\) −14.5142 −0.888254
\(268\) 0 0
\(269\) 5.39477 0.328925 0.164462 0.986383i \(-0.447411\pi\)
0.164462 + 0.986383i \(0.447411\pi\)
\(270\) 0 0
\(271\) 11.0624 0.671995 0.335998 0.941863i \(-0.390927\pi\)
0.335998 + 0.941863i \(0.390927\pi\)
\(272\) 0 0
\(273\) −6.39843 −0.387251
\(274\) 0 0
\(275\) 11.6203 0.700731
\(276\) 0 0
\(277\) 14.0808 0.846036 0.423018 0.906121i \(-0.360971\pi\)
0.423018 + 0.906121i \(0.360971\pi\)
\(278\) 0 0
\(279\) 2.58861 0.154976
\(280\) 0 0
\(281\) −10.8199 −0.645459 −0.322729 0.946491i \(-0.604600\pi\)
−0.322729 + 0.946491i \(0.604600\pi\)
\(282\) 0 0
\(283\) −1.90947 −0.113506 −0.0567532 0.998388i \(-0.518075\pi\)
−0.0567532 + 0.998388i \(0.518075\pi\)
\(284\) 0 0
\(285\) 4.87582 0.288819
\(286\) 0 0
\(287\) 14.2000 0.838201
\(288\) 0 0
\(289\) −6.30690 −0.370994
\(290\) 0 0
\(291\) 16.4939 0.966890
\(292\) 0 0
\(293\) 3.63550 0.212388 0.106194 0.994345i \(-0.466133\pi\)
0.106194 + 0.994345i \(0.466133\pi\)
\(294\) 0 0
\(295\) −54.2159 −3.15657
\(296\) 0 0
\(297\) 5.46521 0.317124
\(298\) 0 0
\(299\) −11.0271 −0.637712
\(300\) 0 0
\(301\) 19.4705 1.12226
\(302\) 0 0
\(303\) 13.1593 0.755984
\(304\) 0 0
\(305\) −26.4855 −1.51656
\(306\) 0 0
\(307\) 23.5329 1.34310 0.671548 0.740961i \(-0.265630\pi\)
0.671548 + 0.740961i \(0.265630\pi\)
\(308\) 0 0
\(309\) −5.97028 −0.339637
\(310\) 0 0
\(311\) 16.0026 0.907425 0.453713 0.891148i \(-0.350099\pi\)
0.453713 + 0.891148i \(0.350099\pi\)
\(312\) 0 0
\(313\) 16.0034 0.904566 0.452283 0.891875i \(-0.350610\pi\)
0.452283 + 0.891875i \(0.350610\pi\)
\(314\) 0 0
\(315\) 23.1533 1.30454
\(316\) 0 0
\(317\) −20.8766 −1.17255 −0.586273 0.810113i \(-0.699405\pi\)
−0.586273 + 0.810113i \(0.699405\pi\)
\(318\) 0 0
\(319\) 1.02535 0.0574086
\(320\) 0 0
\(321\) 8.74683 0.488200
\(322\) 0 0
\(323\) 3.27003 0.181949
\(324\) 0 0
\(325\) −17.1814 −0.953054
\(326\) 0 0
\(327\) 1.72800 0.0955584
\(328\) 0 0
\(329\) −13.4455 −0.741273
\(330\) 0 0
\(331\) −15.1136 −0.830721 −0.415360 0.909657i \(-0.636345\pi\)
−0.415360 + 0.909657i \(0.636345\pi\)
\(332\) 0 0
\(333\) 10.5366 0.577404
\(334\) 0 0
\(335\) 15.1245 0.826339
\(336\) 0 0
\(337\) −12.2766 −0.668751 −0.334376 0.942440i \(-0.608525\pi\)
−0.334376 + 0.942440i \(0.608525\pi\)
\(338\) 0 0
\(339\) 14.3961 0.781886
\(340\) 0 0
\(341\) −1.64921 −0.0893098
\(342\) 0 0
\(343\) 3.28525 0.177387
\(344\) 0 0
\(345\) −36.3635 −1.95775
\(346\) 0 0
\(347\) 30.9067 1.65916 0.829580 0.558387i \(-0.188580\pi\)
0.829580 + 0.558387i \(0.188580\pi\)
\(348\) 0 0
\(349\) −23.9024 −1.27947 −0.639733 0.768597i \(-0.720955\pi\)
−0.639733 + 0.768597i \(0.720955\pi\)
\(350\) 0 0
\(351\) −8.08069 −0.431315
\(352\) 0 0
\(353\) 15.0158 0.799210 0.399605 0.916687i \(-0.369147\pi\)
0.399605 + 0.916687i \(0.369147\pi\)
\(354\) 0 0
\(355\) −25.8048 −1.36958
\(356\) 0 0
\(357\) −14.1509 −0.748945
\(358\) 0 0
\(359\) −14.0826 −0.743251 −0.371626 0.928383i \(-0.621200\pi\)
−0.371626 + 0.928383i \(0.621200\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) −1.19599 −0.0627733
\(364\) 0 0
\(365\) −5.61616 −0.293963
\(366\) 0 0
\(367\) −21.3142 −1.11259 −0.556296 0.830984i \(-0.687778\pi\)
−0.556296 + 0.830984i \(0.687778\pi\)
\(368\) 0 0
\(369\) 6.15992 0.320673
\(370\) 0 0
\(371\) 0.372329 0.0193304
\(372\) 0 0
\(373\) −2.42088 −0.125349 −0.0626743 0.998034i \(-0.519963\pi\)
−0.0626743 + 0.998034i \(0.519963\pi\)
\(374\) 0 0
\(375\) −32.2794 −1.66690
\(376\) 0 0
\(377\) −1.51605 −0.0780806
\(378\) 0 0
\(379\) −8.87535 −0.455896 −0.227948 0.973673i \(-0.573202\pi\)
−0.227948 + 0.973673i \(0.573202\pi\)
\(380\) 0 0
\(381\) −5.61748 −0.287792
\(382\) 0 0
\(383\) 3.54065 0.180919 0.0904595 0.995900i \(-0.471166\pi\)
0.0904595 + 0.995900i \(0.471166\pi\)
\(384\) 0 0
\(385\) −14.7511 −0.751784
\(386\) 0 0
\(387\) 8.44624 0.429346
\(388\) 0 0
\(389\) −16.7041 −0.846933 −0.423466 0.905912i \(-0.639187\pi\)
−0.423466 + 0.905912i \(0.639187\pi\)
\(390\) 0 0
\(391\) −24.3877 −1.23334
\(392\) 0 0
\(393\) 4.47858 0.225915
\(394\) 0 0
\(395\) −55.7403 −2.80460
\(396\) 0 0
\(397\) 28.2073 1.41568 0.707841 0.706372i \(-0.249669\pi\)
0.707841 + 0.706372i \(0.249669\pi\)
\(398\) 0 0
\(399\) −4.32745 −0.216643
\(400\) 0 0
\(401\) −36.2078 −1.80813 −0.904065 0.427395i \(-0.859431\pi\)
−0.904065 + 0.427395i \(0.859431\pi\)
\(402\) 0 0
\(403\) 2.43847 0.121469
\(404\) 0 0
\(405\) −7.45049 −0.370218
\(406\) 0 0
\(407\) −6.71293 −0.332748
\(408\) 0 0
\(409\) 36.9236 1.82576 0.912878 0.408233i \(-0.133855\pi\)
0.912878 + 0.408233i \(0.133855\pi\)
\(410\) 0 0
\(411\) 18.8482 0.929715
\(412\) 0 0
\(413\) 48.1184 2.36775
\(414\) 0 0
\(415\) −22.1803 −1.08879
\(416\) 0 0
\(417\) −3.02373 −0.148072
\(418\) 0 0
\(419\) −18.0690 −0.882726 −0.441363 0.897329i \(-0.645505\pi\)
−0.441363 + 0.897329i \(0.645505\pi\)
\(420\) 0 0
\(421\) −8.57629 −0.417983 −0.208991 0.977918i \(-0.567018\pi\)
−0.208991 + 0.977918i \(0.567018\pi\)
\(422\) 0 0
\(423\) −5.83260 −0.283591
\(424\) 0 0
\(425\) −37.9987 −1.84321
\(426\) 0 0
\(427\) 23.5067 1.13757
\(428\) 0 0
\(429\) 1.76836 0.0853771
\(430\) 0 0
\(431\) −4.28147 −0.206231 −0.103116 0.994669i \(-0.532881\pi\)
−0.103116 + 0.994669i \(0.532881\pi\)
\(432\) 0 0
\(433\) 18.2035 0.874804 0.437402 0.899266i \(-0.355899\pi\)
0.437402 + 0.899266i \(0.355899\pi\)
\(434\) 0 0
\(435\) −4.99942 −0.239704
\(436\) 0 0
\(437\) −7.45793 −0.356761
\(438\) 0 0
\(439\) −29.4442 −1.40529 −0.702647 0.711538i \(-0.747999\pi\)
−0.702647 + 0.711538i \(0.747999\pi\)
\(440\) 0 0
\(441\) −9.56210 −0.455338
\(442\) 0 0
\(443\) 24.3633 1.15753 0.578767 0.815493i \(-0.303534\pi\)
0.578767 + 0.815493i \(0.303534\pi\)
\(444\) 0 0
\(445\) 49.4748 2.34533
\(446\) 0 0
\(447\) −2.21141 −0.104596
\(448\) 0 0
\(449\) 38.7776 1.83003 0.915015 0.403421i \(-0.132179\pi\)
0.915015 + 0.403421i \(0.132179\pi\)
\(450\) 0 0
\(451\) −3.92451 −0.184798
\(452\) 0 0
\(453\) −18.3206 −0.860779
\(454\) 0 0
\(455\) 21.8105 1.02249
\(456\) 0 0
\(457\) −7.47672 −0.349746 −0.174873 0.984591i \(-0.555952\pi\)
−0.174873 + 0.984591i \(0.555952\pi\)
\(458\) 0 0
\(459\) −17.8714 −0.834165
\(460\) 0 0
\(461\) 15.9782 0.744181 0.372091 0.928196i \(-0.378641\pi\)
0.372091 + 0.928196i \(0.378641\pi\)
\(462\) 0 0
\(463\) 6.10221 0.283594 0.141797 0.989896i \(-0.454712\pi\)
0.141797 + 0.989896i \(0.454712\pi\)
\(464\) 0 0
\(465\) 8.04126 0.372904
\(466\) 0 0
\(467\) 26.6373 1.23263 0.616313 0.787502i \(-0.288626\pi\)
0.616313 + 0.787502i \(0.288626\pi\)
\(468\) 0 0
\(469\) −13.4235 −0.619838
\(470\) 0 0
\(471\) −29.4969 −1.35914
\(472\) 0 0
\(473\) −5.38113 −0.247424
\(474\) 0 0
\(475\) −11.6203 −0.533176
\(476\) 0 0
\(477\) 0.161515 0.00739527
\(478\) 0 0
\(479\) 16.2094 0.740626 0.370313 0.928907i \(-0.379250\pi\)
0.370313 + 0.928907i \(0.379250\pi\)
\(480\) 0 0
\(481\) 9.92553 0.452565
\(482\) 0 0
\(483\) 32.2738 1.46851
\(484\) 0 0
\(485\) −56.2231 −2.55296
\(486\) 0 0
\(487\) 4.82448 0.218618 0.109309 0.994008i \(-0.465136\pi\)
0.109309 + 0.994008i \(0.465136\pi\)
\(488\) 0 0
\(489\) −4.45088 −0.201276
\(490\) 0 0
\(491\) 8.53579 0.385215 0.192607 0.981276i \(-0.438306\pi\)
0.192607 + 0.981276i \(0.438306\pi\)
\(492\) 0 0
\(493\) −3.35293 −0.151008
\(494\) 0 0
\(495\) −6.39896 −0.287612
\(496\) 0 0
\(497\) 22.9026 1.02732
\(498\) 0 0
\(499\) 13.4325 0.601319 0.300660 0.953732i \(-0.402793\pi\)
0.300660 + 0.953732i \(0.402793\pi\)
\(500\) 0 0
\(501\) 3.16648 0.141468
\(502\) 0 0
\(503\) 1.66487 0.0742327 0.0371163 0.999311i \(-0.488183\pi\)
0.0371163 + 0.999311i \(0.488183\pi\)
\(504\) 0 0
\(505\) −44.8565 −1.99609
\(506\) 0 0
\(507\) 12.9333 0.574386
\(508\) 0 0
\(509\) −14.9684 −0.663463 −0.331731 0.943374i \(-0.607633\pi\)
−0.331731 + 0.943374i \(0.607633\pi\)
\(510\) 0 0
\(511\) 4.98452 0.220502
\(512\) 0 0
\(513\) −5.46521 −0.241295
\(514\) 0 0
\(515\) 20.3510 0.896772
\(516\) 0 0
\(517\) 3.71597 0.163428
\(518\) 0 0
\(519\) −8.78518 −0.385627
\(520\) 0 0
\(521\) −7.89123 −0.345721 −0.172861 0.984946i \(-0.555301\pi\)
−0.172861 + 0.984946i \(0.555301\pi\)
\(522\) 0 0
\(523\) 22.3062 0.975381 0.487690 0.873017i \(-0.337840\pi\)
0.487690 + 0.873017i \(0.337840\pi\)
\(524\) 0 0
\(525\) 50.2863 2.19467
\(526\) 0 0
\(527\) 5.39297 0.234922
\(528\) 0 0
\(529\) 32.6207 1.41829
\(530\) 0 0
\(531\) 20.8736 0.905837
\(532\) 0 0
\(533\) 5.80266 0.251341
\(534\) 0 0
\(535\) −29.8155 −1.28904
\(536\) 0 0
\(537\) 11.4264 0.493087
\(538\) 0 0
\(539\) 6.09205 0.262403
\(540\) 0 0
\(541\) 38.9694 1.67542 0.837712 0.546112i \(-0.183893\pi\)
0.837712 + 0.546112i \(0.183893\pi\)
\(542\) 0 0
\(543\) −7.20750 −0.309304
\(544\) 0 0
\(545\) −5.89025 −0.252311
\(546\) 0 0
\(547\) −37.7503 −1.61409 −0.807043 0.590492i \(-0.798934\pi\)
−0.807043 + 0.590492i \(0.798934\pi\)
\(548\) 0 0
\(549\) 10.1971 0.435204
\(550\) 0 0
\(551\) −1.02535 −0.0436814
\(552\) 0 0
\(553\) 49.4713 2.10373
\(554\) 0 0
\(555\) 32.7310 1.38935
\(556\) 0 0
\(557\) −3.17436 −0.134502 −0.0672511 0.997736i \(-0.521423\pi\)
−0.0672511 + 0.997736i \(0.521423\pi\)
\(558\) 0 0
\(559\) 7.95637 0.336519
\(560\) 0 0
\(561\) 3.91093 0.165120
\(562\) 0 0
\(563\) 19.9431 0.840503 0.420252 0.907408i \(-0.361942\pi\)
0.420252 + 0.907408i \(0.361942\pi\)
\(564\) 0 0
\(565\) −49.0721 −2.06448
\(566\) 0 0
\(567\) 6.61255 0.277701
\(568\) 0 0
\(569\) 36.6424 1.53613 0.768064 0.640374i \(-0.221220\pi\)
0.768064 + 0.640374i \(0.221220\pi\)
\(570\) 0 0
\(571\) −11.5300 −0.482515 −0.241258 0.970461i \(-0.577560\pi\)
−0.241258 + 0.970461i \(0.577560\pi\)
\(572\) 0 0
\(573\) 21.1773 0.884694
\(574\) 0 0
\(575\) 86.6634 3.61411
\(576\) 0 0
\(577\) 28.5590 1.18893 0.594463 0.804123i \(-0.297365\pi\)
0.594463 + 0.804123i \(0.297365\pi\)
\(578\) 0 0
\(579\) −4.41737 −0.183580
\(580\) 0 0
\(581\) 19.6857 0.816701
\(582\) 0 0
\(583\) −0.102902 −0.00426176
\(584\) 0 0
\(585\) 9.46131 0.391177
\(586\) 0 0
\(587\) −18.1461 −0.748969 −0.374484 0.927233i \(-0.622180\pi\)
−0.374484 + 0.927233i \(0.622180\pi\)
\(588\) 0 0
\(589\) 1.64921 0.0679546
\(590\) 0 0
\(591\) 30.8314 1.26823
\(592\) 0 0
\(593\) 15.3085 0.628644 0.314322 0.949316i \(-0.398223\pi\)
0.314322 + 0.949316i \(0.398223\pi\)
\(594\) 0 0
\(595\) 48.2364 1.97750
\(596\) 0 0
\(597\) 22.5986 0.924900
\(598\) 0 0
\(599\) −17.8806 −0.730580 −0.365290 0.930894i \(-0.619030\pi\)
−0.365290 + 0.930894i \(0.619030\pi\)
\(600\) 0 0
\(601\) −32.5803 −1.32898 −0.664489 0.747298i \(-0.731351\pi\)
−0.664489 + 0.747298i \(0.731351\pi\)
\(602\) 0 0
\(603\) −5.82306 −0.237133
\(604\) 0 0
\(605\) 4.07680 0.165746
\(606\) 0 0
\(607\) −43.6494 −1.77167 −0.885837 0.463997i \(-0.846415\pi\)
−0.885837 + 0.463997i \(0.846415\pi\)
\(608\) 0 0
\(609\) 4.43715 0.179802
\(610\) 0 0
\(611\) −5.49432 −0.222276
\(612\) 0 0
\(613\) 0.843061 0.0340509 0.0170254 0.999855i \(-0.494580\pi\)
0.0170254 + 0.999855i \(0.494580\pi\)
\(614\) 0 0
\(615\) 19.1352 0.771606
\(616\) 0 0
\(617\) 4.89882 0.197219 0.0986094 0.995126i \(-0.468561\pi\)
0.0986094 + 0.995126i \(0.468561\pi\)
\(618\) 0 0
\(619\) 14.8704 0.597691 0.298846 0.954301i \(-0.403398\pi\)
0.298846 + 0.954301i \(0.403398\pi\)
\(620\) 0 0
\(621\) 40.7591 1.63561
\(622\) 0 0
\(623\) −43.9105 −1.75924
\(624\) 0 0
\(625\) 51.9299 2.07720
\(626\) 0 0
\(627\) 1.19599 0.0477633
\(628\) 0 0
\(629\) 21.9515 0.875263
\(630\) 0 0
\(631\) −2.83922 −0.113027 −0.0565137 0.998402i \(-0.517998\pi\)
−0.0565137 + 0.998402i \(0.517998\pi\)
\(632\) 0 0
\(633\) −12.1983 −0.484839
\(634\) 0 0
\(635\) 19.1484 0.759881
\(636\) 0 0
\(637\) −9.00751 −0.356891
\(638\) 0 0
\(639\) 9.93508 0.393026
\(640\) 0 0
\(641\) 20.6746 0.816599 0.408299 0.912848i \(-0.366122\pi\)
0.408299 + 0.912848i \(0.366122\pi\)
\(642\) 0 0
\(643\) 24.6254 0.971130 0.485565 0.874201i \(-0.338614\pi\)
0.485565 + 0.874201i \(0.338614\pi\)
\(644\) 0 0
\(645\) 26.2374 1.03310
\(646\) 0 0
\(647\) −45.3626 −1.78339 −0.891693 0.452640i \(-0.850482\pi\)
−0.891693 + 0.452640i \(0.850482\pi\)
\(648\) 0 0
\(649\) −13.2986 −0.522017
\(650\) 0 0
\(651\) −7.13688 −0.279716
\(652\) 0 0
\(653\) 26.1012 1.02142 0.510710 0.859753i \(-0.329383\pi\)
0.510710 + 0.859753i \(0.329383\pi\)
\(654\) 0 0
\(655\) −15.2662 −0.596501
\(656\) 0 0
\(657\) 2.16227 0.0843582
\(658\) 0 0
\(659\) 45.8507 1.78609 0.893045 0.449967i \(-0.148564\pi\)
0.893045 + 0.449967i \(0.148564\pi\)
\(660\) 0 0
\(661\) −15.4225 −0.599864 −0.299932 0.953961i \(-0.596964\pi\)
−0.299932 + 0.953961i \(0.596964\pi\)
\(662\) 0 0
\(663\) −5.78258 −0.224577
\(664\) 0 0
\(665\) 14.7511 0.572022
\(666\) 0 0
\(667\) 7.64698 0.296092
\(668\) 0 0
\(669\) −0.314187 −0.0121472
\(670\) 0 0
\(671\) −6.49664 −0.250800
\(672\) 0 0
\(673\) −37.8633 −1.45952 −0.729762 0.683702i \(-0.760369\pi\)
−0.729762 + 0.683702i \(0.760369\pi\)
\(674\) 0 0
\(675\) 63.5074 2.44440
\(676\) 0 0
\(677\) −25.3510 −0.974320 −0.487160 0.873313i \(-0.661967\pi\)
−0.487160 + 0.873313i \(0.661967\pi\)
\(678\) 0 0
\(679\) 49.8998 1.91498
\(680\) 0 0
\(681\) 32.6812 1.25235
\(682\) 0 0
\(683\) 21.7513 0.832290 0.416145 0.909298i \(-0.363381\pi\)
0.416145 + 0.909298i \(0.363381\pi\)
\(684\) 0 0
\(685\) −64.2484 −2.45480
\(686\) 0 0
\(687\) 6.61588 0.252412
\(688\) 0 0
\(689\) 0.152147 0.00579636
\(690\) 0 0
\(691\) −17.3051 −0.658318 −0.329159 0.944275i \(-0.606765\pi\)
−0.329159 + 0.944275i \(0.606765\pi\)
\(692\) 0 0
\(693\) 5.67929 0.215738
\(694\) 0 0
\(695\) 10.3070 0.390968
\(696\) 0 0
\(697\) 12.8333 0.486095
\(698\) 0 0
\(699\) −32.8578 −1.24280
\(700\) 0 0
\(701\) −29.6923 −1.12146 −0.560732 0.827997i \(-0.689480\pi\)
−0.560732 + 0.827997i \(0.689480\pi\)
\(702\) 0 0
\(703\) 6.71293 0.253183
\(704\) 0 0
\(705\) −18.1184 −0.682378
\(706\) 0 0
\(707\) 39.8116 1.49727
\(708\) 0 0
\(709\) −21.4898 −0.807067 −0.403534 0.914965i \(-0.632218\pi\)
−0.403534 + 0.914965i \(0.632218\pi\)
\(710\) 0 0
\(711\) 21.4605 0.804831
\(712\) 0 0
\(713\) −12.2997 −0.460627
\(714\) 0 0
\(715\) −6.02783 −0.225428
\(716\) 0 0
\(717\) 1.67845 0.0626828
\(718\) 0 0
\(719\) −9.61388 −0.358537 −0.179269 0.983800i \(-0.557373\pi\)
−0.179269 + 0.983800i \(0.557373\pi\)
\(720\) 0 0
\(721\) −18.0622 −0.672671
\(722\) 0 0
\(723\) 24.8403 0.923821
\(724\) 0 0
\(725\) 11.9149 0.442507
\(726\) 0 0
\(727\) −6.84046 −0.253699 −0.126849 0.991922i \(-0.540486\pi\)
−0.126849 + 0.991922i \(0.540486\pi\)
\(728\) 0 0
\(729\) 22.4775 0.832501
\(730\) 0 0
\(731\) 17.5965 0.650828
\(732\) 0 0
\(733\) 38.2277 1.41197 0.705987 0.708225i \(-0.250504\pi\)
0.705987 + 0.708225i \(0.250504\pi\)
\(734\) 0 0
\(735\) −29.7037 −1.09564
\(736\) 0 0
\(737\) 3.70989 0.136656
\(738\) 0 0
\(739\) 17.7157 0.651682 0.325841 0.945425i \(-0.394353\pi\)
0.325841 + 0.945425i \(0.394353\pi\)
\(740\) 0 0
\(741\) −1.76836 −0.0649622
\(742\) 0 0
\(743\) −21.3028 −0.781525 −0.390763 0.920491i \(-0.627789\pi\)
−0.390763 + 0.920491i \(0.627789\pi\)
\(744\) 0 0
\(745\) 7.53808 0.276174
\(746\) 0 0
\(747\) 8.53960 0.312447
\(748\) 0 0
\(749\) 26.4622 0.966908
\(750\) 0 0
\(751\) −25.1552 −0.917926 −0.458963 0.888455i \(-0.651779\pi\)
−0.458963 + 0.888455i \(0.651779\pi\)
\(752\) 0 0
\(753\) −1.55402 −0.0566317
\(754\) 0 0
\(755\) 62.4499 2.27279
\(756\) 0 0
\(757\) 15.5116 0.563780 0.281890 0.959447i \(-0.409039\pi\)
0.281890 + 0.959447i \(0.409039\pi\)
\(758\) 0 0
\(759\) −8.91962 −0.323762
\(760\) 0 0
\(761\) 35.2085 1.27631 0.638154 0.769908i \(-0.279698\pi\)
0.638154 + 0.769908i \(0.279698\pi\)
\(762\) 0 0
\(763\) 5.22779 0.189259
\(764\) 0 0
\(765\) 20.9248 0.756538
\(766\) 0 0
\(767\) 19.6630 0.709988
\(768\) 0 0
\(769\) −5.57667 −0.201100 −0.100550 0.994932i \(-0.532060\pi\)
−0.100550 + 0.994932i \(0.532060\pi\)
\(770\) 0 0
\(771\) −4.08095 −0.146972
\(772\) 0 0
\(773\) 35.9175 1.29186 0.645931 0.763396i \(-0.276469\pi\)
0.645931 + 0.763396i \(0.276469\pi\)
\(774\) 0 0
\(775\) −19.1643 −0.688403
\(776\) 0 0
\(777\) −29.0499 −1.04216
\(778\) 0 0
\(779\) 3.92451 0.140610
\(780\) 0 0
\(781\) −6.32968 −0.226494
\(782\) 0 0
\(783\) 5.60375 0.200262
\(784\) 0 0
\(785\) 100.547 3.58866
\(786\) 0 0
\(787\) −7.53242 −0.268502 −0.134251 0.990947i \(-0.542863\pi\)
−0.134251 + 0.990947i \(0.542863\pi\)
\(788\) 0 0
\(789\) 17.0331 0.606395
\(790\) 0 0
\(791\) 43.5531 1.54857
\(792\) 0 0
\(793\) 9.60573 0.341110
\(794\) 0 0
\(795\) 0.501731 0.0177946
\(796\) 0 0
\(797\) −49.3837 −1.74926 −0.874629 0.484792i \(-0.838895\pi\)
−0.874629 + 0.484792i \(0.838895\pi\)
\(798\) 0 0
\(799\) −12.1513 −0.429883
\(800\) 0 0
\(801\) −19.0482 −0.673036
\(802\) 0 0
\(803\) −1.37759 −0.0486141
\(804\) 0 0
\(805\) −110.012 −3.87743
\(806\) 0 0
\(807\) −6.45210 −0.227125
\(808\) 0 0
\(809\) 34.4637 1.21168 0.605840 0.795587i \(-0.292837\pi\)
0.605840 + 0.795587i \(0.292837\pi\)
\(810\) 0 0
\(811\) −20.0278 −0.703272 −0.351636 0.936137i \(-0.614375\pi\)
−0.351636 + 0.936137i \(0.614375\pi\)
\(812\) 0 0
\(813\) −13.2306 −0.464017
\(814\) 0 0
\(815\) 15.1718 0.531444
\(816\) 0 0
\(817\) 5.38113 0.188262
\(818\) 0 0
\(819\) −8.39722 −0.293423
\(820\) 0 0
\(821\) 6.45245 0.225192 0.112596 0.993641i \(-0.464083\pi\)
0.112596 + 0.993641i \(0.464083\pi\)
\(822\) 0 0
\(823\) 43.0190 1.49955 0.749774 0.661694i \(-0.230162\pi\)
0.749774 + 0.661694i \(0.230162\pi\)
\(824\) 0 0
\(825\) −13.8978 −0.483859
\(826\) 0 0
\(827\) 43.1557 1.50067 0.750335 0.661058i \(-0.229892\pi\)
0.750335 + 0.661058i \(0.229892\pi\)
\(828\) 0 0
\(829\) 13.4937 0.468656 0.234328 0.972158i \(-0.424711\pi\)
0.234328 + 0.972158i \(0.424711\pi\)
\(830\) 0 0
\(831\) −16.8406 −0.584193
\(832\) 0 0
\(833\) −19.9212 −0.690228
\(834\) 0 0
\(835\) −10.7937 −0.373530
\(836\) 0 0
\(837\) −9.01329 −0.311545
\(838\) 0 0
\(839\) 14.6851 0.506988 0.253494 0.967337i \(-0.418420\pi\)
0.253494 + 0.967337i \(0.418420\pi\)
\(840\) 0 0
\(841\) −27.9487 −0.963747
\(842\) 0 0
\(843\) 12.9405 0.445693
\(844\) 0 0
\(845\) −44.0858 −1.51660
\(846\) 0 0
\(847\) −3.61829 −0.124326
\(848\) 0 0
\(849\) 2.28372 0.0783769
\(850\) 0 0
\(851\) −50.0645 −1.71619
\(852\) 0 0
\(853\) −51.5775 −1.76598 −0.882990 0.469392i \(-0.844473\pi\)
−0.882990 + 0.469392i \(0.844473\pi\)
\(854\) 0 0
\(855\) 6.39896 0.218840
\(856\) 0 0
\(857\) −46.6355 −1.59304 −0.796520 0.604612i \(-0.793328\pi\)
−0.796520 + 0.604612i \(0.793328\pi\)
\(858\) 0 0
\(859\) 18.6711 0.637048 0.318524 0.947915i \(-0.396813\pi\)
0.318524 + 0.947915i \(0.396813\pi\)
\(860\) 0 0
\(861\) −16.9831 −0.578783
\(862\) 0 0
\(863\) −43.0160 −1.46428 −0.732141 0.681153i \(-0.761479\pi\)
−0.732141 + 0.681153i \(0.761479\pi\)
\(864\) 0 0
\(865\) 29.9462 1.01820
\(866\) 0 0
\(867\) 7.54300 0.256174
\(868\) 0 0
\(869\) −13.6725 −0.463809
\(870\) 0 0
\(871\) −5.48533 −0.185863
\(872\) 0 0
\(873\) 21.6464 0.732619
\(874\) 0 0
\(875\) −97.6565 −3.30139
\(876\) 0 0
\(877\) 56.0429 1.89243 0.946217 0.323534i \(-0.104871\pi\)
0.946217 + 0.323534i \(0.104871\pi\)
\(878\) 0 0
\(879\) −4.34803 −0.146655
\(880\) 0 0
\(881\) 17.9947 0.606257 0.303128 0.952950i \(-0.401969\pi\)
0.303128 + 0.952950i \(0.401969\pi\)
\(882\) 0 0
\(883\) −1.99550 −0.0671540 −0.0335770 0.999436i \(-0.510690\pi\)
−0.0335770 + 0.999436i \(0.510690\pi\)
\(884\) 0 0
\(885\) 64.8418 2.17963
\(886\) 0 0
\(887\) −7.20927 −0.242063 −0.121032 0.992649i \(-0.538620\pi\)
−0.121032 + 0.992649i \(0.538620\pi\)
\(888\) 0 0
\(889\) −16.9948 −0.569988
\(890\) 0 0
\(891\) −1.82753 −0.0612246
\(892\) 0 0
\(893\) −3.71597 −0.124350
\(894\) 0 0
\(895\) −38.9495 −1.30194
\(896\) 0 0
\(897\) 13.1883 0.440344
\(898\) 0 0
\(899\) −1.69102 −0.0563986
\(900\) 0 0
\(901\) 0.336492 0.0112102
\(902\) 0 0
\(903\) −23.2866 −0.774928
\(904\) 0 0
\(905\) 24.5684 0.816680
\(906\) 0 0
\(907\) 25.7832 0.856116 0.428058 0.903751i \(-0.359198\pi\)
0.428058 + 0.903751i \(0.359198\pi\)
\(908\) 0 0
\(909\) 17.2701 0.572814
\(910\) 0 0
\(911\) −31.1334 −1.03149 −0.515747 0.856741i \(-0.672486\pi\)
−0.515747 + 0.856741i \(0.672486\pi\)
\(912\) 0 0
\(913\) −5.44061 −0.180058
\(914\) 0 0
\(915\) 31.6764 1.04719
\(916\) 0 0
\(917\) 13.5493 0.447437
\(918\) 0 0
\(919\) −5.42725 −0.179029 −0.0895143 0.995986i \(-0.528531\pi\)
−0.0895143 + 0.995986i \(0.528531\pi\)
\(920\) 0 0
\(921\) −28.1452 −0.927416
\(922\) 0 0
\(923\) 9.35887 0.308051
\(924\) 0 0
\(925\) −78.0063 −2.56483
\(926\) 0 0
\(927\) −7.83531 −0.257345
\(928\) 0 0
\(929\) −21.6025 −0.708756 −0.354378 0.935102i \(-0.615307\pi\)
−0.354378 + 0.935102i \(0.615307\pi\)
\(930\) 0 0
\(931\) −6.09205 −0.199659
\(932\) 0 0
\(933\) −19.1390 −0.626583
\(934\) 0 0
\(935\) −13.3313 −0.435979
\(936\) 0 0
\(937\) 31.6840 1.03507 0.517536 0.855661i \(-0.326849\pi\)
0.517536 + 0.855661i \(0.326849\pi\)
\(938\) 0 0
\(939\) −19.1399 −0.624608
\(940\) 0 0
\(941\) −5.63987 −0.183854 −0.0919272 0.995766i \(-0.529303\pi\)
−0.0919272 + 0.995766i \(0.529303\pi\)
\(942\) 0 0
\(943\) −29.2687 −0.953120
\(944\) 0 0
\(945\) −80.6176 −2.62249
\(946\) 0 0
\(947\) 51.7369 1.68122 0.840611 0.541639i \(-0.182196\pi\)
0.840611 + 0.541639i \(0.182196\pi\)
\(948\) 0 0
\(949\) 2.03686 0.0661194
\(950\) 0 0
\(951\) 24.9682 0.809650
\(952\) 0 0
\(953\) −16.2553 −0.526561 −0.263281 0.964719i \(-0.584804\pi\)
−0.263281 + 0.964719i \(0.584804\pi\)
\(954\) 0 0
\(955\) −72.1874 −2.33593
\(956\) 0 0
\(957\) −1.22631 −0.0396410
\(958\) 0 0
\(959\) 57.0225 1.84135
\(960\) 0 0
\(961\) −28.2801 −0.912261
\(962\) 0 0
\(963\) 11.4792 0.369913
\(964\) 0 0
\(965\) 15.0576 0.484721
\(966\) 0 0
\(967\) 54.5004 1.75261 0.876307 0.481754i \(-0.160000\pi\)
0.876307 + 0.481754i \(0.160000\pi\)
\(968\) 0 0
\(969\) −3.91093 −0.125637
\(970\) 0 0
\(971\) 34.2679 1.09971 0.549855 0.835260i \(-0.314683\pi\)
0.549855 + 0.835260i \(0.314683\pi\)
\(972\) 0 0
\(973\) −9.14783 −0.293266
\(974\) 0 0
\(975\) 20.5488 0.658090
\(976\) 0 0
\(977\) 55.5644 1.77766 0.888831 0.458234i \(-0.151518\pi\)
0.888831 + 0.458234i \(0.151518\pi\)
\(978\) 0 0
\(979\) 12.1357 0.387858
\(980\) 0 0
\(981\) 2.26780 0.0724052
\(982\) 0 0
\(983\) 41.3971 1.32036 0.660181 0.751106i \(-0.270479\pi\)
0.660181 + 0.751106i \(0.270479\pi\)
\(984\) 0 0
\(985\) −105.095 −3.34862
\(986\) 0 0
\(987\) 16.0807 0.511853
\(988\) 0 0
\(989\) −40.1321 −1.27613
\(990\) 0 0
\(991\) −60.8219 −1.93207 −0.966036 0.258406i \(-0.916803\pi\)
−0.966036 + 0.258406i \(0.916803\pi\)
\(992\) 0 0
\(993\) 18.0758 0.573618
\(994\) 0 0
\(995\) −77.0324 −2.44209
\(996\) 0 0
\(997\) 26.0627 0.825414 0.412707 0.910864i \(-0.364583\pi\)
0.412707 + 0.910864i \(0.364583\pi\)
\(998\) 0 0
\(999\) −36.6876 −1.16074
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3344.2.a.ba.1.4 7
4.3 odd 2 209.2.a.d.1.2 7
12.11 even 2 1881.2.a.p.1.6 7
20.19 odd 2 5225.2.a.n.1.6 7
44.43 even 2 2299.2.a.q.1.6 7
76.75 even 2 3971.2.a.i.1.6 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
209.2.a.d.1.2 7 4.3 odd 2
1881.2.a.p.1.6 7 12.11 even 2
2299.2.a.q.1.6 7 44.43 even 2
3344.2.a.ba.1.4 7 1.1 even 1 trivial
3971.2.a.i.1.6 7 76.75 even 2
5225.2.a.n.1.6 7 20.19 odd 2