Defining parameters
Level: | \( N \) | \(=\) | \( 3344 = 2^{4} \cdot 11 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 3344.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 28 \) | ||
Sturm bound: | \(960\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(3\), \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(3344))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 492 | 90 | 402 |
Cusp forms | 469 | 90 | 379 |
Eisenstein series | 23 | 0 | 23 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(11\) | \(19\) | Fricke | Dim |
---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(10\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(15\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(12\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(7\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(14\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(9\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(9\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(14\) |
Plus space | \(+\) | \(35\) | ||
Minus space | \(-\) | \(55\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(3344))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(3344))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(3344)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(38))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(44))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(76))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(88))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(152))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(176))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(209))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(304))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(418))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(836))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1672))\)\(^{\oplus 2}\)