Defining parameters
Level: | \( N \) | \(=\) | \( 3344 = 2^{4} \cdot 11 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 3344.bc (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 836 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(480\) | ||
Trace bound: | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(3344, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 28 | 4 | 24 |
Cusp forms | 4 | 4 | 0 |
Eisenstein series | 24 | 0 | 24 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 4 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(3344, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
3344.1.bc.a | $2$ | $1.669$ | \(\Q(\sqrt{-3}) \) | $D_{6}$ | None | \(\Q(\sqrt{11}) \) | \(0\) | \(0\) | \(-1\) | \(-2\) | \(q+\zeta_{6}^{2}q^{5}-q^{7}+\zeta_{6}q^{9}+q^{11}-\zeta_{6}^{2}q^{19}+\cdots\) |
3344.1.bc.b | $2$ | $1.669$ | \(\Q(\sqrt{-3}) \) | $D_{6}$ | None | \(\Q(\sqrt{11}) \) | \(0\) | \(0\) | \(-1\) | \(2\) | \(q+\zeta_{6}^{2}q^{5}+q^{7}+\zeta_{6}q^{9}-q^{11}+\zeta_{6}^{2}q^{19}+\cdots\) |