Properties

Label 3332.2.b.c.2549.1
Level $3332$
Weight $2$
Character 3332.2549
Analytic conductor $26.606$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3332,2,Mod(2549,3332)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3332, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3332.2549");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3332 = 2^{2} \cdot 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3332.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.6061539535\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.12960000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{6} + 8x^{4} - 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{8}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2549.1
Root \(-1.40126 - 0.809017i\) of defining polynomial
Character \(\chi\) \(=\) 3332.2549
Dual form 3332.2.b.c.2549.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.61803i q^{3} +0.381966i q^{5} -3.85410 q^{9} +O(q^{10})\) \(q-2.61803i q^{3} +0.381966i q^{5} -3.85410 q^{9} -3.46410i q^{11} +5.60503 q^{13} +1.00000 q^{15} +(-3.46410 + 2.23607i) q^{17} +2.14093 q^{19} -2.14093i q^{23} +4.85410 q^{25} +2.23607i q^{27} -7.74597i q^{29} -4.85410i q^{31} -9.06914 q^{33} +9.06914i q^{37} -14.6742i q^{39} +2.61803i q^{41} +5.85410 q^{43} -1.47214i q^{45} -3.46410 q^{47} +(5.85410 + 9.06914i) q^{51} +4.85410 q^{53} +1.32317 q^{55} -5.60503i q^{57} -6.92820 q^{59} -11.5623i q^{61} +2.14093i q^{65} +12.5623 q^{67} -5.60503 q^{69} -9.06914i q^{71} +4.14590i q^{73} -12.7082i q^{75} -7.74597i q^{79} -5.70820 q^{81} -9.88690 q^{83} +(-0.854102 - 1.32317i) q^{85} -20.2792 q^{87} -10.3923 q^{89} -12.7082 q^{93} +0.817763i q^{95} -1.14590i q^{97} +13.3510i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 4 q^{9} + 8 q^{15} + 12 q^{25} + 20 q^{43} + 20 q^{51} + 12 q^{53} + 20 q^{67} + 8 q^{81} + 20 q^{85} - 48 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3332\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(885\) \(1667\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.61803i 1.51152i −0.654847 0.755761i \(-0.727267\pi\)
0.654847 0.755761i \(-0.272733\pi\)
\(4\) 0 0
\(5\) 0.381966i 0.170820i 0.996346 + 0.0854102i \(0.0272201\pi\)
−0.996346 + 0.0854102i \(0.972780\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −3.85410 −1.28470
\(10\) 0 0
\(11\) 3.46410i 1.04447i −0.852803 0.522233i \(-0.825099\pi\)
0.852803 0.522233i \(-0.174901\pi\)
\(12\) 0 0
\(13\) 5.60503 1.55456 0.777278 0.629157i \(-0.216600\pi\)
0.777278 + 0.629157i \(0.216600\pi\)
\(14\) 0 0
\(15\) 1.00000 0.258199
\(16\) 0 0
\(17\) −3.46410 + 2.23607i −0.840168 + 0.542326i
\(18\) 0 0
\(19\) 2.14093 0.491164 0.245582 0.969376i \(-0.421021\pi\)
0.245582 + 0.969376i \(0.421021\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.14093i 0.446415i −0.974771 0.223208i \(-0.928347\pi\)
0.974771 0.223208i \(-0.0716528\pi\)
\(24\) 0 0
\(25\) 4.85410 0.970820
\(26\) 0 0
\(27\) 2.23607i 0.430331i
\(28\) 0 0
\(29\) 7.74597i 1.43839i −0.694808 0.719195i \(-0.744511\pi\)
0.694808 0.719195i \(-0.255489\pi\)
\(30\) 0 0
\(31\) 4.85410i 0.871822i −0.899990 0.435911i \(-0.856426\pi\)
0.899990 0.435911i \(-0.143574\pi\)
\(32\) 0 0
\(33\) −9.06914 −1.57873
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 9.06914i 1.49096i 0.666530 + 0.745478i \(0.267779\pi\)
−0.666530 + 0.745478i \(0.732221\pi\)
\(38\) 0 0
\(39\) 14.6742i 2.34975i
\(40\) 0 0
\(41\) 2.61803i 0.408868i 0.978880 + 0.204434i \(0.0655354\pi\)
−0.978880 + 0.204434i \(0.934465\pi\)
\(42\) 0 0
\(43\) 5.85410 0.892742 0.446371 0.894848i \(-0.352716\pi\)
0.446371 + 0.894848i \(0.352716\pi\)
\(44\) 0 0
\(45\) 1.47214i 0.219453i
\(46\) 0 0
\(47\) −3.46410 −0.505291 −0.252646 0.967559i \(-0.581301\pi\)
−0.252646 + 0.967559i \(0.581301\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 5.85410 + 9.06914i 0.819738 + 1.26993i
\(52\) 0 0
\(53\) 4.85410 0.666762 0.333381 0.942792i \(-0.391810\pi\)
0.333381 + 0.942792i \(0.391810\pi\)
\(54\) 0 0
\(55\) 1.32317 0.178416
\(56\) 0 0
\(57\) 5.60503i 0.742405i
\(58\) 0 0
\(59\) −6.92820 −0.901975 −0.450988 0.892530i \(-0.648928\pi\)
−0.450988 + 0.892530i \(0.648928\pi\)
\(60\) 0 0
\(61\) 11.5623i 1.48040i −0.672386 0.740201i \(-0.734730\pi\)
0.672386 0.740201i \(-0.265270\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.14093i 0.265550i
\(66\) 0 0
\(67\) 12.5623 1.53473 0.767365 0.641211i \(-0.221567\pi\)
0.767365 + 0.641211i \(0.221567\pi\)
\(68\) 0 0
\(69\) −5.60503 −0.674767
\(70\) 0 0
\(71\) 9.06914i 1.07631i −0.842846 0.538154i \(-0.819122\pi\)
0.842846 0.538154i \(-0.180878\pi\)
\(72\) 0 0
\(73\) 4.14590i 0.485241i 0.970121 + 0.242620i \(0.0780069\pi\)
−0.970121 + 0.242620i \(0.921993\pi\)
\(74\) 0 0
\(75\) 12.7082i 1.46742i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 7.74597i 0.871489i −0.900070 0.435745i \(-0.856485\pi\)
0.900070 0.435745i \(-0.143515\pi\)
\(80\) 0 0
\(81\) −5.70820 −0.634245
\(82\) 0 0
\(83\) −9.88690 −1.08523 −0.542614 0.839982i \(-0.682565\pi\)
−0.542614 + 0.839982i \(0.682565\pi\)
\(84\) 0 0
\(85\) −0.854102 1.32317i −0.0926404 0.143518i
\(86\) 0 0
\(87\) −20.2792 −2.17416
\(88\) 0 0
\(89\) −10.3923 −1.10158 −0.550791 0.834643i \(-0.685674\pi\)
−0.550791 + 0.834643i \(0.685674\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −12.7082 −1.31778
\(94\) 0 0
\(95\) 0.817763i 0.0839008i
\(96\) 0 0
\(97\) 1.14590i 0.116348i −0.998306 0.0581742i \(-0.981472\pi\)
0.998306 0.0581742i \(-0.0185279\pi\)
\(98\) 0 0
\(99\) 13.3510i 1.34183i
\(100\) 0 0
\(101\) 6.42280 0.639092 0.319546 0.947571i \(-0.396470\pi\)
0.319546 + 0.947571i \(0.396470\pi\)
\(102\) 0 0
\(103\) −12.5332 −1.23494 −0.617468 0.786596i \(-0.711842\pi\)
−0.617468 + 0.786596i \(0.711842\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 8.25137i 0.797690i −0.917018 0.398845i \(-0.869411\pi\)
0.917018 0.398845i \(-0.130589\pi\)
\(108\) 0 0
\(109\) 2.64634i 0.253473i 0.991936 + 0.126737i \(0.0404503\pi\)
−0.991936 + 0.126737i \(0.959550\pi\)
\(110\) 0 0
\(111\) 23.7433 2.25361
\(112\) 0 0
\(113\) 3.46410i 0.325875i −0.986636 0.162938i \(-0.947903\pi\)
0.986636 0.162938i \(-0.0520969\pi\)
\(114\) 0 0
\(115\) 0.817763 0.0762568
\(116\) 0 0
\(117\) −21.6024 −1.99714
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −1.00000 −0.0909091
\(122\) 0 0
\(123\) 6.85410 0.618014
\(124\) 0 0
\(125\) 3.76393i 0.336656i
\(126\) 0 0
\(127\) 4.56231 0.404839 0.202420 0.979299i \(-0.435120\pi\)
0.202420 + 0.979299i \(0.435120\pi\)
\(128\) 0 0
\(129\) 15.3262i 1.34940i
\(130\) 0 0
\(131\) 1.52786i 0.133490i 0.997770 + 0.0667451i \(0.0212614\pi\)
−0.997770 + 0.0667451i \(0.978739\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −0.854102 −0.0735094
\(136\) 0 0
\(137\) −21.2705 −1.81726 −0.908631 0.417600i \(-0.862871\pi\)
−0.908631 + 0.417600i \(0.862871\pi\)
\(138\) 0 0
\(139\) 2.56231i 0.217332i 0.994078 + 0.108666i \(0.0346579\pi\)
−0.994078 + 0.108666i \(0.965342\pi\)
\(140\) 0 0
\(141\) 9.06914i 0.763759i
\(142\) 0 0
\(143\) 19.4164i 1.62368i
\(144\) 0 0
\(145\) 2.95870 0.245706
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 5.56231 0.455682 0.227841 0.973698i \(-0.426833\pi\)
0.227841 + 0.973698i \(0.426833\pi\)
\(150\) 0 0
\(151\) −13.5623 −1.10368 −0.551842 0.833948i \(-0.686075\pi\)
−0.551842 + 0.833948i \(0.686075\pi\)
\(152\) 0 0
\(153\) 13.3510 8.61803i 1.07936 0.696727i
\(154\) 0 0
\(155\) 1.85410 0.148925
\(156\) 0 0
\(157\) −7.74597 −0.618195 −0.309098 0.951030i \(-0.600027\pi\)
−0.309098 + 0.951030i \(0.600027\pi\)
\(158\) 0 0
\(159\) 12.7082i 1.00783i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 19.4614i 1.52434i −0.647378 0.762169i \(-0.724135\pi\)
0.647378 0.762169i \(-0.275865\pi\)
\(164\) 0 0
\(165\) 3.46410i 0.269680i
\(166\) 0 0
\(167\) 16.7984i 1.29990i 0.759978 + 0.649949i \(0.225210\pi\)
−0.759978 + 0.649949i \(0.774790\pi\)
\(168\) 0 0
\(169\) 18.4164 1.41665
\(170\) 0 0
\(171\) −8.25137 −0.630998
\(172\) 0 0
\(173\) 5.67376i 0.431368i 0.976463 + 0.215684i \(0.0691981\pi\)
−0.976463 + 0.215684i \(0.930802\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 18.1383i 1.36336i
\(178\) 0 0
\(179\) 5.56231 0.415746 0.207873 0.978156i \(-0.433346\pi\)
0.207873 + 0.978156i \(0.433346\pi\)
\(180\) 0 0
\(181\) 6.00000i 0.445976i 0.974821 + 0.222988i \(0.0715812\pi\)
−0.974821 + 0.222988i \(0.928419\pi\)
\(182\) 0 0
\(183\) −30.2705 −2.23766
\(184\) 0 0
\(185\) −3.46410 −0.254686
\(186\) 0 0
\(187\) 7.74597 + 12.0000i 0.566441 + 0.877527i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 8.56231 0.619547 0.309773 0.950810i \(-0.399747\pi\)
0.309773 + 0.950810i \(0.399747\pi\)
\(192\) 0 0
\(193\) 19.4614i 1.40087i 0.713719 + 0.700433i \(0.247010\pi\)
−0.713719 + 0.700433i \(0.752990\pi\)
\(194\) 0 0
\(195\) 5.60503 0.401385
\(196\) 0 0
\(197\) 12.5332i 0.892956i 0.894795 + 0.446478i \(0.147322\pi\)
−0.894795 + 0.446478i \(0.852678\pi\)
\(198\) 0 0
\(199\) 4.14590i 0.293895i −0.989144 0.146947i \(-0.953055\pi\)
0.989144 0.146947i \(-0.0469448\pi\)
\(200\) 0 0
\(201\) 32.8885i 2.31978i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −1.00000 −0.0698430
\(206\) 0 0
\(207\) 8.25137i 0.573510i
\(208\) 0 0
\(209\) 7.41641i 0.513004i
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) −23.7433 −1.62686
\(214\) 0 0
\(215\) 2.23607i 0.152499i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 10.8541 0.733452
\(220\) 0 0
\(221\) −19.4164 + 12.5332i −1.30609 + 0.843077i
\(222\) 0 0
\(223\) 22.9255 1.53521 0.767604 0.640924i \(-0.221449\pi\)
0.767604 + 0.640924i \(0.221449\pi\)
\(224\) 0 0
\(225\) −18.7082 −1.24721
\(226\) 0 0
\(227\) 11.5066i 0.763718i −0.924221 0.381859i \(-0.875284\pi\)
0.924221 0.381859i \(-0.124716\pi\)
\(228\) 0 0
\(229\) −17.3205 −1.14457 −0.572286 0.820054i \(-0.693943\pi\)
−0.572286 + 0.820054i \(0.693943\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 22.9255i 1.50190i −0.660358 0.750951i \(-0.729595\pi\)
0.660358 0.750951i \(-0.270405\pi\)
\(234\) 0 0
\(235\) 1.32317i 0.0863140i
\(236\) 0 0
\(237\) −20.2792 −1.31728
\(238\) 0 0
\(239\) −21.2705 −1.37587 −0.687937 0.725770i \(-0.741484\pi\)
−0.687937 + 0.725770i \(0.741484\pi\)
\(240\) 0 0
\(241\) 18.2705i 1.17691i 0.808531 + 0.588453i \(0.200263\pi\)
−0.808531 + 0.588453i \(0.799737\pi\)
\(242\) 0 0
\(243\) 21.6525i 1.38901i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 12.0000 0.763542
\(248\) 0 0
\(249\) 25.8842i 1.64035i
\(250\) 0 0
\(251\) 20.2792 1.28001 0.640006 0.768370i \(-0.278932\pi\)
0.640006 + 0.768370i \(0.278932\pi\)
\(252\) 0 0
\(253\) −7.41641 −0.466266
\(254\) 0 0
\(255\) −3.46410 + 2.23607i −0.216930 + 0.140028i
\(256\) 0 0
\(257\) 6.42280 0.400643 0.200322 0.979730i \(-0.435801\pi\)
0.200322 + 0.979730i \(0.435801\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 29.8537i 1.84790i
\(262\) 0 0
\(263\) 19.4164 1.19727 0.598633 0.801023i \(-0.295711\pi\)
0.598633 + 0.801023i \(0.295711\pi\)
\(264\) 0 0
\(265\) 1.85410i 0.113897i
\(266\) 0 0
\(267\) 27.2074i 1.66507i
\(268\) 0 0
\(269\) 26.9443i 1.64282i −0.570337 0.821411i \(-0.693187\pi\)
0.570337 0.821411i \(-0.306813\pi\)
\(270\) 0 0
\(271\) −24.5611 −1.49198 −0.745989 0.665958i \(-0.768023\pi\)
−0.745989 + 0.665958i \(0.768023\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 16.8151i 1.01399i
\(276\) 0 0
\(277\) 24.5611i 1.47573i 0.674947 + 0.737866i \(0.264166\pi\)
−0.674947 + 0.737866i \(0.735834\pi\)
\(278\) 0 0
\(279\) 18.7082i 1.12003i
\(280\) 0 0
\(281\) 26.5623 1.58457 0.792287 0.610148i \(-0.208890\pi\)
0.792287 + 0.610148i \(0.208890\pi\)
\(282\) 0 0
\(283\) 19.1459i 1.13811i 0.822301 + 0.569053i \(0.192690\pi\)
−0.822301 + 0.569053i \(0.807310\pi\)
\(284\) 0 0
\(285\) 2.14093 0.126818
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 7.00000 15.4919i 0.411765 0.911290i
\(290\) 0 0
\(291\) −3.00000 −0.175863
\(292\) 0 0
\(293\) −20.2792 −1.18472 −0.592362 0.805672i \(-0.701804\pi\)
−0.592362 + 0.805672i \(0.701804\pi\)
\(294\) 0 0
\(295\) 2.64634i 0.154076i
\(296\) 0 0
\(297\) 7.74597 0.449467
\(298\) 0 0
\(299\) 12.0000i 0.693978i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 16.8151i 0.966002i
\(304\) 0 0
\(305\) 4.41641 0.252883
\(306\) 0 0
\(307\) −2.95870 −0.168862 −0.0844308 0.996429i \(-0.526907\pi\)
−0.0844308 + 0.996429i \(0.526907\pi\)
\(308\) 0 0
\(309\) 32.8124i 1.86663i
\(310\) 0 0
\(311\) 30.3820i 1.72280i 0.507924 + 0.861402i \(0.330413\pi\)
−0.507924 + 0.861402i \(0.669587\pi\)
\(312\) 0 0
\(313\) 30.2705i 1.71099i −0.517811 0.855495i \(-0.673253\pi\)
0.517811 0.855495i \(-0.326747\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 24.5611i 1.37949i 0.724054 + 0.689744i \(0.242277\pi\)
−0.724054 + 0.689744i \(0.757723\pi\)
\(318\) 0 0
\(319\) −26.8328 −1.50235
\(320\) 0 0
\(321\) −21.6024 −1.20573
\(322\) 0 0
\(323\) −7.41641 + 4.78727i −0.412660 + 0.266371i
\(324\) 0 0
\(325\) 27.2074 1.50920
\(326\) 0 0
\(327\) 6.92820 0.383131
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −14.8541 −0.816455 −0.408228 0.912880i \(-0.633853\pi\)
−0.408228 + 0.912880i \(0.633853\pi\)
\(332\) 0 0
\(333\) 34.9534i 1.91543i
\(334\) 0 0
\(335\) 4.79837i 0.262163i
\(336\) 0 0
\(337\) 30.9839i 1.68780i −0.536501 0.843899i \(-0.680254\pi\)
0.536501 0.843899i \(-0.319746\pi\)
\(338\) 0 0
\(339\) −9.06914 −0.492568
\(340\) 0 0
\(341\) −16.8151 −0.910589
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 2.14093i 0.115264i
\(346\) 0 0
\(347\) 15.4919i 0.831651i 0.909445 + 0.415825i \(0.136507\pi\)
−0.909445 + 0.415825i \(0.863493\pi\)
\(348\) 0 0
\(349\) −12.5332 −0.670889 −0.335444 0.942060i \(-0.608886\pi\)
−0.335444 + 0.942060i \(0.608886\pi\)
\(350\) 0 0
\(351\) 12.5332i 0.668975i
\(352\) 0 0
\(353\) −30.1661 −1.60558 −0.802790 0.596262i \(-0.796652\pi\)
−0.802790 + 0.596262i \(0.796652\pi\)
\(354\) 0 0
\(355\) 3.46410 0.183855
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1.14590 0.0604782 0.0302391 0.999543i \(-0.490373\pi\)
0.0302391 + 0.999543i \(0.490373\pi\)
\(360\) 0 0
\(361\) −14.4164 −0.758758
\(362\) 0 0
\(363\) 2.61803i 0.137411i
\(364\) 0 0
\(365\) −1.58359 −0.0828890
\(366\) 0 0
\(367\) 12.4377i 0.649242i −0.945844 0.324621i \(-0.894763\pi\)
0.945844 0.324621i \(-0.105237\pi\)
\(368\) 0 0
\(369\) 10.0902i 0.525273i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −1.56231 −0.0808931 −0.0404466 0.999182i \(-0.512878\pi\)
−0.0404466 + 0.999182i \(0.512878\pi\)
\(374\) 0 0
\(375\) 9.85410 0.508864
\(376\) 0 0
\(377\) 43.4164i 2.23606i
\(378\) 0 0
\(379\) 5.09963i 0.261950i −0.991386 0.130975i \(-0.958189\pi\)
0.991386 0.130975i \(-0.0418108\pi\)
\(380\) 0 0
\(381\) 11.9443i 0.611924i
\(382\) 0 0
\(383\) 17.3205 0.885037 0.442518 0.896759i \(-0.354085\pi\)
0.442518 + 0.896759i \(0.354085\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −22.5623 −1.14691
\(388\) 0 0
\(389\) −7.14590 −0.362311 −0.181156 0.983454i \(-0.557984\pi\)
−0.181156 + 0.983454i \(0.557984\pi\)
\(390\) 0 0
\(391\) 4.78727 + 7.41641i 0.242103 + 0.375064i
\(392\) 0 0
\(393\) 4.00000 0.201773
\(394\) 0 0
\(395\) 2.95870 0.148868
\(396\) 0 0
\(397\) 10.8541i 0.544752i −0.962191 0.272376i \(-0.912191\pi\)
0.962191 0.272376i \(-0.0878094\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 4.78727i 0.239065i −0.992830 0.119532i \(-0.961860\pi\)
0.992830 0.119532i \(-0.0381396\pi\)
\(402\) 0 0
\(403\) 27.2074i 1.35530i
\(404\) 0 0
\(405\) 2.18034i 0.108342i
\(406\) 0 0
\(407\) 31.4164 1.55725
\(408\) 0 0
\(409\) 31.9947 1.58204 0.791018 0.611794i \(-0.209552\pi\)
0.791018 + 0.611794i \(0.209552\pi\)
\(410\) 0 0
\(411\) 55.6869i 2.74683i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 3.77646i 0.185379i
\(416\) 0 0
\(417\) 6.70820 0.328502
\(418\) 0 0
\(419\) 21.2148i 1.03641i −0.855256 0.518205i \(-0.826600\pi\)
0.855256 0.518205i \(-0.173400\pi\)
\(420\) 0 0
\(421\) −21.5623 −1.05088 −0.525441 0.850830i \(-0.676100\pi\)
−0.525441 + 0.850830i \(0.676100\pi\)
\(422\) 0 0
\(423\) 13.3510 0.649148
\(424\) 0 0
\(425\) −16.8151 + 10.8541i −0.815652 + 0.526501i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −50.8328 −2.45423
\(430\) 0 0
\(431\) 1.32317i 0.0637348i 0.999492 + 0.0318674i \(0.0101454\pi\)
−0.999492 + 0.0318674i \(0.989855\pi\)
\(432\) 0 0
\(433\) 14.6742 0.705196 0.352598 0.935775i \(-0.385298\pi\)
0.352598 + 0.935775i \(0.385298\pi\)
\(434\) 0 0
\(435\) 7.74597i 0.371391i
\(436\) 0 0
\(437\) 4.58359i 0.219263i
\(438\) 0 0
\(439\) 39.2705i 1.87428i −0.348955 0.937140i \(-0.613463\pi\)
0.348955 0.937140i \(-0.386537\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 26.8328 1.27487 0.637433 0.770506i \(-0.279996\pi\)
0.637433 + 0.770506i \(0.279996\pi\)
\(444\) 0 0
\(445\) 3.96951i 0.188173i
\(446\) 0 0
\(447\) 14.5623i 0.688773i
\(448\) 0 0
\(449\) 37.5997i 1.77444i −0.461346 0.887220i \(-0.652633\pi\)
0.461346 0.887220i \(-0.347367\pi\)
\(450\) 0 0
\(451\) 9.06914 0.427049
\(452\) 0 0
\(453\) 35.5066i 1.66824i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 30.5623 1.42964 0.714822 0.699306i \(-0.246508\pi\)
0.714822 + 0.699306i \(0.246508\pi\)
\(458\) 0 0
\(459\) −5.00000 7.74597i −0.233380 0.361551i
\(460\) 0 0
\(461\) 9.38149 0.436940 0.218470 0.975844i \(-0.429893\pi\)
0.218470 + 0.975844i \(0.429893\pi\)
\(462\) 0 0
\(463\) −2.43769 −0.113289 −0.0566446 0.998394i \(-0.518040\pi\)
−0.0566446 + 0.998394i \(0.518040\pi\)
\(464\) 0 0
\(465\) 4.85410i 0.225104i
\(466\) 0 0
\(467\) 31.1769 1.44270 0.721348 0.692573i \(-0.243523\pi\)
0.721348 + 0.692573i \(0.243523\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 20.2792i 0.934416i
\(472\) 0 0
\(473\) 20.2792i 0.932439i
\(474\) 0 0
\(475\) 10.3923 0.476832
\(476\) 0 0
\(477\) −18.7082 −0.856590
\(478\) 0 0
\(479\) 17.4508i 0.797350i 0.917092 + 0.398675i \(0.130530\pi\)
−0.917092 + 0.398675i \(0.869470\pi\)
\(480\) 0 0
\(481\) 50.8328i 2.31778i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0.437694 0.0198747
\(486\) 0 0
\(487\) 29.6607i 1.34405i −0.740526 0.672027i \(-0.765424\pi\)
0.740526 0.672027i \(-0.234576\pi\)
\(488\) 0 0
\(489\) −50.9507 −2.30407
\(490\) 0 0
\(491\) 34.8541 1.57294 0.786472 0.617626i \(-0.211906\pi\)
0.786472 + 0.617626i \(0.211906\pi\)
\(492\) 0 0
\(493\) 17.3205 + 26.8328i 0.780076 + 1.20849i
\(494\) 0 0
\(495\) −5.09963 −0.229211
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 11.5224i 0.515815i 0.966170 + 0.257907i \(0.0830329\pi\)
−0.966170 + 0.257907i \(0.916967\pi\)
\(500\) 0 0
\(501\) 43.9787 1.96482
\(502\) 0 0
\(503\) 33.2148i 1.48097i 0.672071 + 0.740487i \(0.265405\pi\)
−0.672071 + 0.740487i \(0.734595\pi\)
\(504\) 0 0
\(505\) 2.45329i 0.109170i
\(506\) 0 0
\(507\) 48.2148i 2.14129i
\(508\) 0 0
\(509\) 36.5889 1.62177 0.810887 0.585202i \(-0.198985\pi\)
0.810887 + 0.585202i \(0.198985\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 4.78727i 0.211363i
\(514\) 0 0
\(515\) 4.78727i 0.210952i
\(516\) 0 0
\(517\) 12.0000i 0.527759i
\(518\) 0 0
\(519\) 14.8541 0.652023
\(520\) 0 0
\(521\) 21.3820i 0.936761i 0.883527 + 0.468380i \(0.155162\pi\)
−0.883527 + 0.468380i \(0.844838\pi\)
\(522\) 0 0
\(523\) 27.2074 1.18970 0.594848 0.803838i \(-0.297212\pi\)
0.594848 + 0.803838i \(0.297212\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 10.8541 + 16.8151i 0.472812 + 0.732477i
\(528\) 0 0
\(529\) 18.4164 0.800713
\(530\) 0 0
\(531\) 26.7020 1.15877
\(532\) 0 0
\(533\) 14.6742i 0.635609i
\(534\) 0 0
\(535\) 3.15174 0.136262
\(536\) 0 0
\(537\) 14.5623i 0.628410i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 9.06914i 0.389913i 0.980812 + 0.194956i \(0.0624565\pi\)
−0.980812 + 0.194956i \(0.937543\pi\)
\(542\) 0 0
\(543\) 15.7082 0.674104
\(544\) 0 0
\(545\) −1.01081 −0.0432984
\(546\) 0 0
\(547\) 46.6688i 1.99542i −0.0676676 0.997708i \(-0.521556\pi\)
0.0676676 0.997708i \(-0.478444\pi\)
\(548\) 0 0
\(549\) 44.5623i 1.90187i
\(550\) 0 0
\(551\) 16.5836i 0.706485i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 9.06914i 0.384963i
\(556\) 0 0
\(557\) 25.4164 1.07693 0.538464 0.842649i \(-0.319005\pi\)
0.538464 + 0.842649i \(0.319005\pi\)
\(558\) 0 0
\(559\) 32.8124 1.38782
\(560\) 0 0
\(561\) 31.4164 20.2792i 1.32640 0.856189i
\(562\) 0 0
\(563\) −10.3923 −0.437983 −0.218992 0.975727i \(-0.570277\pi\)
−0.218992 + 0.975727i \(0.570277\pi\)
\(564\) 0 0
\(565\) 1.32317 0.0556661
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −2.72949 −0.114426 −0.0572131 0.998362i \(-0.518221\pi\)
−0.0572131 + 0.998362i \(0.518221\pi\)
\(570\) 0 0
\(571\) 9.06914i 0.379532i 0.981829 + 0.189766i \(0.0607729\pi\)
−0.981829 + 0.189766i \(0.939227\pi\)
\(572\) 0 0
\(573\) 22.4164i 0.936459i
\(574\) 0 0
\(575\) 10.3923i 0.433389i
\(576\) 0 0
\(577\) 6.61585 0.275421 0.137711 0.990473i \(-0.456026\pi\)
0.137711 + 0.990473i \(0.456026\pi\)
\(578\) 0 0
\(579\) 50.9507 2.11744
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 16.8151i 0.696410i
\(584\) 0 0
\(585\) 8.25137i 0.341152i
\(586\) 0 0
\(587\) −10.3923 −0.428936 −0.214468 0.976731i \(-0.568802\pi\)
−0.214468 + 0.976731i \(0.568802\pi\)
\(588\) 0 0
\(589\) 10.3923i 0.428207i
\(590\) 0 0
\(591\) 32.8124 1.34972
\(592\) 0 0
\(593\) 7.43361 0.305262 0.152631 0.988283i \(-0.451225\pi\)
0.152631 + 0.988283i \(0.451225\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −10.8541 −0.444229
\(598\) 0 0
\(599\) 25.8541 1.05637 0.528185 0.849129i \(-0.322873\pi\)
0.528185 + 0.849129i \(0.322873\pi\)
\(600\) 0 0
\(601\) 30.0000i 1.22373i 0.790964 + 0.611863i \(0.209580\pi\)
−0.790964 + 0.611863i \(0.790420\pi\)
\(602\) 0 0
\(603\) −48.4164 −1.97167
\(604\) 0 0
\(605\) 0.381966i 0.0155291i
\(606\) 0 0
\(607\) 28.8541i 1.17115i 0.810618 + 0.585576i \(0.199132\pi\)
−0.810618 + 0.585576i \(0.800868\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −19.4164 −0.785504
\(612\) 0 0
\(613\) 3.14590 0.127062 0.0635308 0.997980i \(-0.479764\pi\)
0.0635308 + 0.997980i \(0.479764\pi\)
\(614\) 0 0
\(615\) 2.61803i 0.105569i
\(616\) 0 0
\(617\) 13.0386i 0.524916i −0.964943 0.262458i \(-0.915467\pi\)
0.964943 0.262458i \(-0.0845331\pi\)
\(618\) 0 0
\(619\) 24.0000i 0.964641i −0.875995 0.482321i \(-0.839794\pi\)
0.875995 0.482321i \(-0.160206\pi\)
\(620\) 0 0
\(621\) 4.78727 0.192107
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 22.8328 0.913313
\(626\) 0 0
\(627\) −19.4164 −0.775417
\(628\) 0 0
\(629\) −20.2792 31.4164i −0.808585 1.25265i
\(630\) 0 0
\(631\) 26.2705 1.04581 0.522906 0.852390i \(-0.324848\pi\)
0.522906 + 0.852390i \(0.324848\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 1.74265i 0.0691548i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 34.9534i 1.38273i
\(640\) 0 0
\(641\) 28.0252i 1.10693i 0.832873 + 0.553464i \(0.186694\pi\)
−0.832873 + 0.553464i \(0.813306\pi\)
\(642\) 0 0
\(643\) 30.9787i 1.22168i 0.791754 + 0.610841i \(0.209168\pi\)
−0.791754 + 0.610841i \(0.790832\pi\)
\(644\) 0 0
\(645\) 5.85410 0.230505
\(646\) 0 0
\(647\) −23.2379 −0.913576 −0.456788 0.889576i \(-0.651000\pi\)
−0.456788 + 0.889576i \(0.651000\pi\)
\(648\) 0 0
\(649\) 24.0000i 0.942082i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 27.7128i 1.08449i −0.840222 0.542243i \(-0.817575\pi\)
0.840222 0.542243i \(-0.182425\pi\)
\(654\) 0 0
\(655\) −0.583592 −0.0228028
\(656\) 0 0
\(657\) 15.9787i 0.623389i
\(658\) 0 0
\(659\) 15.9787 0.622442 0.311221 0.950338i \(-0.399262\pi\)
0.311221 + 0.950338i \(0.399262\pi\)
\(660\) 0 0
\(661\) 18.6437 0.725155 0.362577 0.931954i \(-0.381897\pi\)
0.362577 + 0.931954i \(0.381897\pi\)
\(662\) 0 0
\(663\) 32.8124 + 50.8328i 1.27433 + 1.97418i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −16.5836 −0.642119
\(668\) 0 0
\(669\) 60.0198i 2.32050i
\(670\) 0 0
\(671\) −40.0530 −1.54623
\(672\) 0 0
\(673\) 10.3923i 0.400594i −0.979735 0.200297i \(-0.935809\pi\)
0.979735 0.200297i \(-0.0641907\pi\)
\(674\) 0 0
\(675\) 10.8541i 0.417775i
\(676\) 0 0
\(677\) 38.9443i 1.49675i −0.663276 0.748375i \(-0.730834\pi\)
0.663276 0.748375i \(-0.269166\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −30.1246 −1.15438
\(682\) 0 0
\(683\) 2.95870i 0.113211i −0.998397 0.0566057i \(-0.981972\pi\)
0.998397 0.0566057i \(-0.0180278\pi\)
\(684\) 0 0
\(685\) 8.12461i 0.310425i
\(686\) 0 0
\(687\) 45.3457i 1.73005i
\(688\) 0 0
\(689\) 27.2074 1.03652
\(690\) 0 0
\(691\) 6.97871i 0.265483i 0.991151 + 0.132741i \(0.0423780\pi\)
−0.991151 + 0.132741i \(0.957622\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −0.978714 −0.0371247
\(696\) 0 0
\(697\) −5.85410 9.06914i −0.221740 0.343518i
\(698\) 0 0
\(699\) −60.0198 −2.27016
\(700\) 0 0
\(701\) −22.5836 −0.852971 −0.426485 0.904495i \(-0.640248\pi\)
−0.426485 + 0.904495i \(0.640248\pi\)
\(702\) 0 0
\(703\) 19.4164i 0.732304i
\(704\) 0 0
\(705\) −3.46410 −0.130466
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 19.4614i 0.730890i 0.930833 + 0.365445i \(0.119083\pi\)
−0.930833 + 0.365445i \(0.880917\pi\)
\(710\) 0 0
\(711\) 29.8537i 1.11960i
\(712\) 0 0
\(713\) −10.3923 −0.389195
\(714\) 0 0
\(715\) 7.41641 0.277358
\(716\) 0 0
\(717\) 55.6869i 2.07967i
\(718\) 0 0
\(719\) 36.2148i 1.35058i 0.737551 + 0.675292i \(0.235982\pi\)
−0.737551 + 0.675292i \(0.764018\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 47.8328 1.77892
\(724\) 0 0
\(725\) 37.5997i 1.39642i
\(726\) 0 0
\(727\) 17.8259 0.661127 0.330563 0.943784i \(-0.392761\pi\)
0.330563 + 0.943784i \(0.392761\pi\)
\(728\) 0 0
\(729\) 39.5623 1.46527
\(730\) 0 0
\(731\) −20.2792 + 13.0902i −0.750053 + 0.484157i
\(732\) 0 0
\(733\) −16.3097 −0.602412 −0.301206 0.953559i \(-0.597389\pi\)
−0.301206 + 0.953559i \(0.597389\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 43.5171i 1.60297i
\(738\) 0 0
\(739\) −5.27051 −0.193879 −0.0969394 0.995290i \(-0.530905\pi\)
−0.0969394 + 0.995290i \(0.530905\pi\)
\(740\) 0 0
\(741\) 31.4164i 1.15411i
\(742\) 0 0
\(743\) 33.6302i 1.23377i −0.787052 0.616886i \(-0.788394\pi\)
0.787052 0.616886i \(-0.211606\pi\)
\(744\) 0 0
\(745\) 2.12461i 0.0778398i
\(746\) 0 0
\(747\) 38.1051 1.39419
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 40.0530i 1.46155i 0.682616 + 0.730777i \(0.260842\pi\)
−0.682616 + 0.730777i \(0.739158\pi\)
\(752\) 0 0
\(753\) 53.0916i 1.93477i
\(754\) 0 0
\(755\) 5.18034i 0.188532i
\(756\) 0 0
\(757\) 10.7295 0.389970 0.194985 0.980806i \(-0.437534\pi\)
0.194985 + 0.980806i \(0.437534\pi\)
\(758\) 0 0
\(759\) 19.4164i 0.704771i
\(760\) 0 0
\(761\) −19.7738 −0.716800 −0.358400 0.933568i \(-0.616678\pi\)
−0.358400 + 0.933568i \(0.616678\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 3.29180 + 5.09963i 0.119015 + 0.184377i
\(766\) 0 0
\(767\) −38.8328 −1.40217
\(768\) 0 0
\(769\) −1.82857 −0.0659401 −0.0329700 0.999456i \(-0.510497\pi\)
−0.0329700 + 0.999456i \(0.510497\pi\)
\(770\) 0 0
\(771\) 16.8151i 0.605581i
\(772\) 0 0
\(773\) 30.1661 1.08500 0.542500 0.840056i \(-0.317478\pi\)
0.542500 + 0.840056i \(0.317478\pi\)
\(774\) 0 0
\(775\) 23.5623i 0.846383i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 5.60503i 0.200821i
\(780\) 0 0
\(781\) −31.4164 −1.12417
\(782\) 0 0
\(783\) 17.3205 0.618984
\(784\) 0 0
\(785\) 2.95870i 0.105600i
\(786\) 0 0
\(787\) 43.4164i 1.54763i 0.633413 + 0.773814i \(0.281653\pi\)
−0.633413 + 0.773814i \(0.718347\pi\)
\(788\) 0 0
\(789\) 50.8328i 1.80970i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 64.8071i 2.30137i
\(794\) 0 0
\(795\) 4.85410 0.172157
\(796\) 0 0
\(797\) 29.6607 1.05064 0.525318 0.850906i \(-0.323946\pi\)
0.525318 + 0.850906i \(0.323946\pi\)
\(798\) 0 0
\(799\) 12.0000 7.74597i 0.424529 0.274033i
\(800\) 0 0
\(801\) 40.0530