Properties

Label 3332.2.a.u.1.8
Level $3332$
Weight $2$
Character 3332.1
Self dual yes
Analytic conductor $26.606$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3332,2,Mod(1,3332)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3332, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3332.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3332 = 2^{2} \cdot 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3332.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.6061539535\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} - 8x^{6} + 36x^{5} + 17x^{4} - 76x^{3} - 20x^{2} + 44x + 17 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(3.29150\) of defining polynomial
Character \(\chi\) \(=\) 3332.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.29150 q^{3} -0.255523 q^{5} +7.83400 q^{9} +5.29125 q^{11} +5.00619 q^{13} -0.841055 q^{15} -1.00000 q^{17} +4.78151 q^{19} -2.20213 q^{23} -4.93471 q^{25} +15.9112 q^{27} -9.21615 q^{29} -10.4263 q^{31} +17.4162 q^{33} +2.45276 q^{37} +16.4779 q^{39} -3.70185 q^{41} +9.09475 q^{43} -2.00177 q^{45} -3.08561 q^{47} -3.29150 q^{51} -3.01303 q^{53} -1.35204 q^{55} +15.7384 q^{57} -8.02339 q^{59} -1.32586 q^{61} -1.27920 q^{65} -2.39116 q^{67} -7.24832 q^{69} -4.46967 q^{71} -10.1506 q^{73} -16.2426 q^{75} +3.14157 q^{79} +28.8696 q^{81} +7.79613 q^{83} +0.255523 q^{85} -30.3350 q^{87} +12.3043 q^{89} -34.3184 q^{93} -1.22179 q^{95} +11.4156 q^{97} +41.4517 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{3} + 4 q^{5} + 8 q^{9} - 4 q^{11} + 20 q^{13} + 12 q^{15} - 8 q^{17} + 8 q^{19} + 4 q^{23} + 8 q^{25} + 28 q^{27} - 16 q^{29} - 8 q^{31} + 16 q^{33} + 8 q^{37} + 20 q^{39} + 12 q^{41} - 4 q^{43}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.29150 1.90035 0.950176 0.311715i \(-0.100903\pi\)
0.950176 + 0.311715i \(0.100903\pi\)
\(4\) 0 0
\(5\) −0.255523 −0.114273 −0.0571367 0.998366i \(-0.518197\pi\)
−0.0571367 + 0.998366i \(0.518197\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 7.83400 2.61133
\(10\) 0 0
\(11\) 5.29125 1.59537 0.797686 0.603073i \(-0.206057\pi\)
0.797686 + 0.603073i \(0.206057\pi\)
\(12\) 0 0
\(13\) 5.00619 1.38847 0.694234 0.719749i \(-0.255743\pi\)
0.694234 + 0.719749i \(0.255743\pi\)
\(14\) 0 0
\(15\) −0.841055 −0.217159
\(16\) 0 0
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) 4.78151 1.09695 0.548477 0.836166i \(-0.315208\pi\)
0.548477 + 0.836166i \(0.315208\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.20213 −0.459176 −0.229588 0.973288i \(-0.573738\pi\)
−0.229588 + 0.973288i \(0.573738\pi\)
\(24\) 0 0
\(25\) −4.93471 −0.986942
\(26\) 0 0
\(27\) 15.9112 3.06210
\(28\) 0 0
\(29\) −9.21615 −1.71140 −0.855698 0.517475i \(-0.826872\pi\)
−0.855698 + 0.517475i \(0.826872\pi\)
\(30\) 0 0
\(31\) −10.4263 −1.87263 −0.936313 0.351166i \(-0.885785\pi\)
−0.936313 + 0.351166i \(0.885785\pi\)
\(32\) 0 0
\(33\) 17.4162 3.03177
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 2.45276 0.403231 0.201616 0.979465i \(-0.435381\pi\)
0.201616 + 0.979465i \(0.435381\pi\)
\(38\) 0 0
\(39\) 16.4779 2.63858
\(40\) 0 0
\(41\) −3.70185 −0.578131 −0.289066 0.957309i \(-0.593345\pi\)
−0.289066 + 0.957309i \(0.593345\pi\)
\(42\) 0 0
\(43\) 9.09475 1.38694 0.693468 0.720487i \(-0.256082\pi\)
0.693468 + 0.720487i \(0.256082\pi\)
\(44\) 0 0
\(45\) −2.00177 −0.298406
\(46\) 0 0
\(47\) −3.08561 −0.450083 −0.225041 0.974349i \(-0.572252\pi\)
−0.225041 + 0.974349i \(0.572252\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −3.29150 −0.460903
\(52\) 0 0
\(53\) −3.01303 −0.413872 −0.206936 0.978355i \(-0.566349\pi\)
−0.206936 + 0.978355i \(0.566349\pi\)
\(54\) 0 0
\(55\) −1.35204 −0.182308
\(56\) 0 0
\(57\) 15.7384 2.08460
\(58\) 0 0
\(59\) −8.02339 −1.04456 −0.522278 0.852775i \(-0.674918\pi\)
−0.522278 + 0.852775i \(0.674918\pi\)
\(60\) 0 0
\(61\) −1.32586 −0.169759 −0.0848796 0.996391i \(-0.527051\pi\)
−0.0848796 + 0.996391i \(0.527051\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.27920 −0.158665
\(66\) 0 0
\(67\) −2.39116 −0.292126 −0.146063 0.989275i \(-0.546660\pi\)
−0.146063 + 0.989275i \(0.546660\pi\)
\(68\) 0 0
\(69\) −7.24832 −0.872596
\(70\) 0 0
\(71\) −4.46967 −0.530452 −0.265226 0.964186i \(-0.585447\pi\)
−0.265226 + 0.964186i \(0.585447\pi\)
\(72\) 0 0
\(73\) −10.1506 −1.18804 −0.594018 0.804451i \(-0.702459\pi\)
−0.594018 + 0.804451i \(0.702459\pi\)
\(74\) 0 0
\(75\) −16.2426 −1.87554
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 3.14157 0.353454 0.176727 0.984260i \(-0.443449\pi\)
0.176727 + 0.984260i \(0.443449\pi\)
\(80\) 0 0
\(81\) 28.8696 3.20773
\(82\) 0 0
\(83\) 7.79613 0.855736 0.427868 0.903841i \(-0.359265\pi\)
0.427868 + 0.903841i \(0.359265\pi\)
\(84\) 0 0
\(85\) 0.255523 0.0277153
\(86\) 0 0
\(87\) −30.3350 −3.25225
\(88\) 0 0
\(89\) 12.3043 1.30425 0.652126 0.758111i \(-0.273877\pi\)
0.652126 + 0.758111i \(0.273877\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −34.3184 −3.55865
\(94\) 0 0
\(95\) −1.22179 −0.125353
\(96\) 0 0
\(97\) 11.4156 1.15907 0.579537 0.814946i \(-0.303233\pi\)
0.579537 + 0.814946i \(0.303233\pi\)
\(98\) 0 0
\(99\) 41.4517 4.16605
\(100\) 0 0
\(101\) 8.00013 0.796042 0.398021 0.917376i \(-0.369697\pi\)
0.398021 + 0.917376i \(0.369697\pi\)
\(102\) 0 0
\(103\) 0.452364 0.0445728 0.0222864 0.999752i \(-0.492905\pi\)
0.0222864 + 0.999752i \(0.492905\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −5.74202 −0.555102 −0.277551 0.960711i \(-0.589523\pi\)
−0.277551 + 0.960711i \(0.589523\pi\)
\(108\) 0 0
\(109\) −17.6002 −1.68579 −0.842895 0.538077i \(-0.819151\pi\)
−0.842895 + 0.538077i \(0.819151\pi\)
\(110\) 0 0
\(111\) 8.07327 0.766281
\(112\) 0 0
\(113\) −16.3542 −1.53848 −0.769238 0.638963i \(-0.779364\pi\)
−0.769238 + 0.638963i \(0.779364\pi\)
\(114\) 0 0
\(115\) 0.562695 0.0524716
\(116\) 0 0
\(117\) 39.2185 3.62575
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 16.9973 1.54521
\(122\) 0 0
\(123\) −12.1846 −1.09865
\(124\) 0 0
\(125\) 2.53855 0.227054
\(126\) 0 0
\(127\) 4.13314 0.366757 0.183378 0.983042i \(-0.441297\pi\)
0.183378 + 0.983042i \(0.441297\pi\)
\(128\) 0 0
\(129\) 29.9354 2.63567
\(130\) 0 0
\(131\) −4.49275 −0.392534 −0.196267 0.980551i \(-0.562882\pi\)
−0.196267 + 0.980551i \(0.562882\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −4.06566 −0.349917
\(136\) 0 0
\(137\) −1.05831 −0.0904179 −0.0452090 0.998978i \(-0.514395\pi\)
−0.0452090 + 0.998978i \(0.514395\pi\)
\(138\) 0 0
\(139\) 1.49349 0.126676 0.0633380 0.997992i \(-0.479825\pi\)
0.0633380 + 0.997992i \(0.479825\pi\)
\(140\) 0 0
\(141\) −10.1563 −0.855315
\(142\) 0 0
\(143\) 26.4890 2.21512
\(144\) 0 0
\(145\) 2.35494 0.195567
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 12.7843 1.04733 0.523667 0.851923i \(-0.324564\pi\)
0.523667 + 0.851923i \(0.324564\pi\)
\(150\) 0 0
\(151\) 18.2850 1.48801 0.744005 0.668175i \(-0.232924\pi\)
0.744005 + 0.668175i \(0.232924\pi\)
\(152\) 0 0
\(153\) −7.83400 −0.633342
\(154\) 0 0
\(155\) 2.66417 0.213991
\(156\) 0 0
\(157\) −4.11005 −0.328018 −0.164009 0.986459i \(-0.552443\pi\)
−0.164009 + 0.986459i \(0.552443\pi\)
\(158\) 0 0
\(159\) −9.91740 −0.786501
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −21.8718 −1.71313 −0.856564 0.516040i \(-0.827406\pi\)
−0.856564 + 0.516040i \(0.827406\pi\)
\(164\) 0 0
\(165\) −4.45023 −0.346450
\(166\) 0 0
\(167\) 17.8923 1.38455 0.692273 0.721636i \(-0.256609\pi\)
0.692273 + 0.721636i \(0.256609\pi\)
\(168\) 0 0
\(169\) 12.0620 0.927843
\(170\) 0 0
\(171\) 37.4584 2.86452
\(172\) 0 0
\(173\) −20.3589 −1.54786 −0.773930 0.633271i \(-0.781712\pi\)
−0.773930 + 0.633271i \(0.781712\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −26.4090 −1.98502
\(178\) 0 0
\(179\) 2.89511 0.216391 0.108195 0.994130i \(-0.465493\pi\)
0.108195 + 0.994130i \(0.465493\pi\)
\(180\) 0 0
\(181\) 10.9778 0.815971 0.407985 0.912988i \(-0.366231\pi\)
0.407985 + 0.912988i \(0.366231\pi\)
\(182\) 0 0
\(183\) −4.36408 −0.322602
\(184\) 0 0
\(185\) −0.626736 −0.0460786
\(186\) 0 0
\(187\) −5.29125 −0.386935
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 17.8151 1.28905 0.644527 0.764581i \(-0.277054\pi\)
0.644527 + 0.764581i \(0.277054\pi\)
\(192\) 0 0
\(193\) 8.99469 0.647452 0.323726 0.946151i \(-0.395064\pi\)
0.323726 + 0.946151i \(0.395064\pi\)
\(194\) 0 0
\(195\) −4.21048 −0.301519
\(196\) 0 0
\(197\) −4.01138 −0.285799 −0.142899 0.989737i \(-0.545643\pi\)
−0.142899 + 0.989737i \(0.545643\pi\)
\(198\) 0 0
\(199\) 26.8656 1.90445 0.952225 0.305396i \(-0.0987888\pi\)
0.952225 + 0.305396i \(0.0987888\pi\)
\(200\) 0 0
\(201\) −7.87050 −0.555142
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0.945907 0.0660650
\(206\) 0 0
\(207\) −17.2515 −1.19906
\(208\) 0 0
\(209\) 25.3002 1.75005
\(210\) 0 0
\(211\) −18.5159 −1.27468 −0.637342 0.770581i \(-0.719966\pi\)
−0.637342 + 0.770581i \(0.719966\pi\)
\(212\) 0 0
\(213\) −14.7119 −1.00804
\(214\) 0 0
\(215\) −2.32392 −0.158490
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −33.4107 −2.25769
\(220\) 0 0
\(221\) −5.00619 −0.336753
\(222\) 0 0
\(223\) −9.55003 −0.639517 −0.319759 0.947499i \(-0.603602\pi\)
−0.319759 + 0.947499i \(0.603602\pi\)
\(224\) 0 0
\(225\) −38.6585 −2.57724
\(226\) 0 0
\(227\) 12.8950 0.855874 0.427937 0.903809i \(-0.359241\pi\)
0.427937 + 0.903809i \(0.359241\pi\)
\(228\) 0 0
\(229\) 1.20514 0.0796382 0.0398191 0.999207i \(-0.487322\pi\)
0.0398191 + 0.999207i \(0.487322\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −21.0554 −1.37939 −0.689693 0.724102i \(-0.742254\pi\)
−0.689693 + 0.724102i \(0.742254\pi\)
\(234\) 0 0
\(235\) 0.788445 0.0514325
\(236\) 0 0
\(237\) 10.3405 0.671687
\(238\) 0 0
\(239\) 10.5525 0.682587 0.341293 0.939957i \(-0.389135\pi\)
0.341293 + 0.939957i \(0.389135\pi\)
\(240\) 0 0
\(241\) −3.70049 −0.238369 −0.119185 0.992872i \(-0.538028\pi\)
−0.119185 + 0.992872i \(0.538028\pi\)
\(242\) 0 0
\(243\) 47.2910 3.03372
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 23.9372 1.52309
\(248\) 0 0
\(249\) 25.6610 1.62620
\(250\) 0 0
\(251\) 4.78860 0.302254 0.151127 0.988514i \(-0.451710\pi\)
0.151127 + 0.988514i \(0.451710\pi\)
\(252\) 0 0
\(253\) −11.6520 −0.732556
\(254\) 0 0
\(255\) 0.841055 0.0526689
\(256\) 0 0
\(257\) 20.3277 1.26801 0.634003 0.773331i \(-0.281411\pi\)
0.634003 + 0.773331i \(0.281411\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −72.1994 −4.46903
\(262\) 0 0
\(263\) −17.1048 −1.05473 −0.527364 0.849640i \(-0.676819\pi\)
−0.527364 + 0.849640i \(0.676819\pi\)
\(264\) 0 0
\(265\) 0.769898 0.0472945
\(266\) 0 0
\(267\) 40.4996 2.47854
\(268\) 0 0
\(269\) −23.7142 −1.44588 −0.722940 0.690911i \(-0.757210\pi\)
−0.722940 + 0.690911i \(0.757210\pi\)
\(270\) 0 0
\(271\) −16.9424 −1.02917 −0.514587 0.857438i \(-0.672055\pi\)
−0.514587 + 0.857438i \(0.672055\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −26.1108 −1.57454
\(276\) 0 0
\(277\) −17.5139 −1.05231 −0.526153 0.850390i \(-0.676366\pi\)
−0.526153 + 0.850390i \(0.676366\pi\)
\(278\) 0 0
\(279\) −81.6800 −4.89005
\(280\) 0 0
\(281\) −10.5755 −0.630884 −0.315442 0.948945i \(-0.602153\pi\)
−0.315442 + 0.948945i \(0.602153\pi\)
\(282\) 0 0
\(283\) 20.9052 1.24268 0.621342 0.783539i \(-0.286588\pi\)
0.621342 + 0.783539i \(0.286588\pi\)
\(284\) 0 0
\(285\) −4.02152 −0.238214
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 37.5744 2.20265
\(292\) 0 0
\(293\) −2.20380 −0.128747 −0.0643737 0.997926i \(-0.520505\pi\)
−0.0643737 + 0.997926i \(0.520505\pi\)
\(294\) 0 0
\(295\) 2.05016 0.119365
\(296\) 0 0
\(297\) 84.1899 4.88519
\(298\) 0 0
\(299\) −11.0243 −0.637551
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 26.3325 1.51276
\(304\) 0 0
\(305\) 0.338788 0.0193990
\(306\) 0 0
\(307\) −5.88810 −0.336051 −0.168026 0.985783i \(-0.553739\pi\)
−0.168026 + 0.985783i \(0.553739\pi\)
\(308\) 0 0
\(309\) 1.48896 0.0847039
\(310\) 0 0
\(311\) −22.7831 −1.29191 −0.645956 0.763375i \(-0.723541\pi\)
−0.645956 + 0.763375i \(0.723541\pi\)
\(312\) 0 0
\(313\) 13.5499 0.765886 0.382943 0.923772i \(-0.374911\pi\)
0.382943 + 0.923772i \(0.374911\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 3.36188 0.188822 0.0944111 0.995533i \(-0.469903\pi\)
0.0944111 + 0.995533i \(0.469903\pi\)
\(318\) 0 0
\(319\) −48.7650 −2.73031
\(320\) 0 0
\(321\) −18.8999 −1.05489
\(322\) 0 0
\(323\) −4.78151 −0.266051
\(324\) 0 0
\(325\) −24.7041 −1.37034
\(326\) 0 0
\(327\) −57.9311 −3.20359
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −22.8510 −1.25600 −0.628002 0.778212i \(-0.716127\pi\)
−0.628002 + 0.778212i \(0.716127\pi\)
\(332\) 0 0
\(333\) 19.2149 1.05297
\(334\) 0 0
\(335\) 0.610995 0.0333822
\(336\) 0 0
\(337\) −16.5430 −0.901156 −0.450578 0.892737i \(-0.648782\pi\)
−0.450578 + 0.892737i \(0.648782\pi\)
\(338\) 0 0
\(339\) −53.8300 −2.92364
\(340\) 0 0
\(341\) −55.1684 −2.98754
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 1.85211 0.0997144
\(346\) 0 0
\(347\) −19.6541 −1.05509 −0.527545 0.849527i \(-0.676887\pi\)
−0.527545 + 0.849527i \(0.676887\pi\)
\(348\) 0 0
\(349\) 21.8638 1.17034 0.585170 0.810911i \(-0.301028\pi\)
0.585170 + 0.810911i \(0.301028\pi\)
\(350\) 0 0
\(351\) 79.6543 4.25163
\(352\) 0 0
\(353\) −23.3142 −1.24089 −0.620445 0.784250i \(-0.713048\pi\)
−0.620445 + 0.784250i \(0.713048\pi\)
\(354\) 0 0
\(355\) 1.14210 0.0606165
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 5.94855 0.313953 0.156976 0.987602i \(-0.449825\pi\)
0.156976 + 0.987602i \(0.449825\pi\)
\(360\) 0 0
\(361\) 3.86287 0.203309
\(362\) 0 0
\(363\) 55.9468 2.93645
\(364\) 0 0
\(365\) 2.59371 0.135761
\(366\) 0 0
\(367\) −2.56655 −0.133973 −0.0669864 0.997754i \(-0.521338\pi\)
−0.0669864 + 0.997754i \(0.521338\pi\)
\(368\) 0 0
\(369\) −29.0003 −1.50969
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −20.3016 −1.05118 −0.525589 0.850738i \(-0.676155\pi\)
−0.525589 + 0.850738i \(0.676155\pi\)
\(374\) 0 0
\(375\) 8.35563 0.431483
\(376\) 0 0
\(377\) −46.1378 −2.37622
\(378\) 0 0
\(379\) 0.288606 0.0148247 0.00741234 0.999973i \(-0.497641\pi\)
0.00741234 + 0.999973i \(0.497641\pi\)
\(380\) 0 0
\(381\) 13.6043 0.696967
\(382\) 0 0
\(383\) 13.5337 0.691540 0.345770 0.938319i \(-0.387618\pi\)
0.345770 + 0.938319i \(0.387618\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 71.2483 3.62175
\(388\) 0 0
\(389\) −18.1386 −0.919663 −0.459832 0.888006i \(-0.652090\pi\)
−0.459832 + 0.888006i \(0.652090\pi\)
\(390\) 0 0
\(391\) 2.20213 0.111367
\(392\) 0 0
\(393\) −14.7879 −0.745952
\(394\) 0 0
\(395\) −0.802743 −0.0403904
\(396\) 0 0
\(397\) 13.2468 0.664839 0.332420 0.943132i \(-0.392135\pi\)
0.332420 + 0.943132i \(0.392135\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −35.3660 −1.76609 −0.883046 0.469286i \(-0.844511\pi\)
−0.883046 + 0.469286i \(0.844511\pi\)
\(402\) 0 0
\(403\) −52.1963 −2.60008
\(404\) 0 0
\(405\) −7.37685 −0.366559
\(406\) 0 0
\(407\) 12.9782 0.643304
\(408\) 0 0
\(409\) 17.9248 0.886323 0.443162 0.896442i \(-0.353857\pi\)
0.443162 + 0.896442i \(0.353857\pi\)
\(410\) 0 0
\(411\) −3.48345 −0.171826
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −1.99209 −0.0977878
\(416\) 0 0
\(417\) 4.91582 0.240729
\(418\) 0 0
\(419\) 24.6696 1.20519 0.602596 0.798047i \(-0.294133\pi\)
0.602596 + 0.798047i \(0.294133\pi\)
\(420\) 0 0
\(421\) 32.7692 1.59707 0.798537 0.601945i \(-0.205608\pi\)
0.798537 + 0.601945i \(0.205608\pi\)
\(422\) 0 0
\(423\) −24.1727 −1.17532
\(424\) 0 0
\(425\) 4.93471 0.239369
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 87.1887 4.20951
\(430\) 0 0
\(431\) 15.5168 0.747416 0.373708 0.927546i \(-0.378086\pi\)
0.373708 + 0.927546i \(0.378086\pi\)
\(432\) 0 0
\(433\) 29.5889 1.42195 0.710976 0.703216i \(-0.248253\pi\)
0.710976 + 0.703216i \(0.248253\pi\)
\(434\) 0 0
\(435\) 7.75129 0.371646
\(436\) 0 0
\(437\) −10.5295 −0.503695
\(438\) 0 0
\(439\) 37.5900 1.79407 0.897037 0.441955i \(-0.145715\pi\)
0.897037 + 0.441955i \(0.145715\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0.483922 0.0229918 0.0114959 0.999934i \(-0.496341\pi\)
0.0114959 + 0.999934i \(0.496341\pi\)
\(444\) 0 0
\(445\) −3.14403 −0.149041
\(446\) 0 0
\(447\) 42.0797 1.99030
\(448\) 0 0
\(449\) −17.6601 −0.833430 −0.416715 0.909037i \(-0.636819\pi\)
−0.416715 + 0.909037i \(0.636819\pi\)
\(450\) 0 0
\(451\) −19.5874 −0.922335
\(452\) 0 0
\(453\) 60.1850 2.82774
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −4.07859 −0.190789 −0.0953943 0.995440i \(-0.530411\pi\)
−0.0953943 + 0.995440i \(0.530411\pi\)
\(458\) 0 0
\(459\) −15.9112 −0.742669
\(460\) 0 0
\(461\) 16.9506 0.789467 0.394733 0.918796i \(-0.370837\pi\)
0.394733 + 0.918796i \(0.370837\pi\)
\(462\) 0 0
\(463\) −30.0505 −1.39657 −0.698283 0.715821i \(-0.746052\pi\)
−0.698283 + 0.715821i \(0.746052\pi\)
\(464\) 0 0
\(465\) 8.76913 0.406659
\(466\) 0 0
\(467\) 23.9501 1.10828 0.554140 0.832424i \(-0.313047\pi\)
0.554140 + 0.832424i \(0.313047\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −13.5283 −0.623349
\(472\) 0 0
\(473\) 48.1226 2.21268
\(474\) 0 0
\(475\) −23.5954 −1.08263
\(476\) 0 0
\(477\) −23.6041 −1.08076
\(478\) 0 0
\(479\) −31.5188 −1.44013 −0.720066 0.693905i \(-0.755889\pi\)
−0.720066 + 0.693905i \(0.755889\pi\)
\(480\) 0 0
\(481\) 12.2790 0.559874
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2.91694 −0.132451
\(486\) 0 0
\(487\) −14.2754 −0.646879 −0.323440 0.946249i \(-0.604839\pi\)
−0.323440 + 0.946249i \(0.604839\pi\)
\(488\) 0 0
\(489\) −71.9910 −3.25555
\(490\) 0 0
\(491\) 19.3575 0.873591 0.436795 0.899561i \(-0.356113\pi\)
0.436795 + 0.899561i \(0.356113\pi\)
\(492\) 0 0
\(493\) 9.21615 0.415075
\(494\) 0 0
\(495\) −10.5919 −0.476068
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 18.3827 0.822925 0.411462 0.911427i \(-0.365018\pi\)
0.411462 + 0.911427i \(0.365018\pi\)
\(500\) 0 0
\(501\) 58.8925 2.63112
\(502\) 0 0
\(503\) −35.4690 −1.58149 −0.790743 0.612148i \(-0.790306\pi\)
−0.790743 + 0.612148i \(0.790306\pi\)
\(504\) 0 0
\(505\) −2.04422 −0.0909664
\(506\) 0 0
\(507\) 39.7020 1.76323
\(508\) 0 0
\(509\) 7.15587 0.317178 0.158589 0.987345i \(-0.449305\pi\)
0.158589 + 0.987345i \(0.449305\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 76.0794 3.35899
\(514\) 0 0
\(515\) −0.115589 −0.00509348
\(516\) 0 0
\(517\) −16.3267 −0.718050
\(518\) 0 0
\(519\) −67.0115 −2.94148
\(520\) 0 0
\(521\) −4.73937 −0.207636 −0.103818 0.994596i \(-0.533106\pi\)
−0.103818 + 0.994596i \(0.533106\pi\)
\(522\) 0 0
\(523\) 1.38107 0.0603899 0.0301949 0.999544i \(-0.490387\pi\)
0.0301949 + 0.999544i \(0.490387\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 10.4263 0.454179
\(528\) 0 0
\(529\) −18.1506 −0.789157
\(530\) 0 0
\(531\) −62.8553 −2.72769
\(532\) 0 0
\(533\) −18.5322 −0.802717
\(534\) 0 0
\(535\) 1.46722 0.0634333
\(536\) 0 0
\(537\) 9.52927 0.411218
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 22.1805 0.953613 0.476806 0.879008i \(-0.341794\pi\)
0.476806 + 0.879008i \(0.341794\pi\)
\(542\) 0 0
\(543\) 36.1334 1.55063
\(544\) 0 0
\(545\) 4.49725 0.192641
\(546\) 0 0
\(547\) −2.69279 −0.115135 −0.0575676 0.998342i \(-0.518334\pi\)
−0.0575676 + 0.998342i \(0.518334\pi\)
\(548\) 0 0
\(549\) −10.3868 −0.443298
\(550\) 0 0
\(551\) −44.0671 −1.87732
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −2.06291 −0.0875655
\(556\) 0 0
\(557\) 19.0733 0.808163 0.404082 0.914723i \(-0.367591\pi\)
0.404082 + 0.914723i \(0.367591\pi\)
\(558\) 0 0
\(559\) 45.5301 1.92572
\(560\) 0 0
\(561\) −17.4162 −0.735312
\(562\) 0 0
\(563\) −4.39308 −0.185146 −0.0925732 0.995706i \(-0.529509\pi\)
−0.0925732 + 0.995706i \(0.529509\pi\)
\(564\) 0 0
\(565\) 4.17888 0.175807
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 22.6424 0.949219 0.474610 0.880196i \(-0.342589\pi\)
0.474610 + 0.880196i \(0.342589\pi\)
\(570\) 0 0
\(571\) −19.7741 −0.827522 −0.413761 0.910386i \(-0.635785\pi\)
−0.413761 + 0.910386i \(0.635785\pi\)
\(572\) 0 0
\(573\) 58.6385 2.44966
\(574\) 0 0
\(575\) 10.8669 0.453180
\(576\) 0 0
\(577\) 23.8616 0.993372 0.496686 0.867930i \(-0.334550\pi\)
0.496686 + 0.867930i \(0.334550\pi\)
\(578\) 0 0
\(579\) 29.6061 1.23039
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −15.9427 −0.660279
\(584\) 0 0
\(585\) −10.0212 −0.414327
\(586\) 0 0
\(587\) 19.4335 0.802105 0.401052 0.916055i \(-0.368645\pi\)
0.401052 + 0.916055i \(0.368645\pi\)
\(588\) 0 0
\(589\) −49.8537 −2.05419
\(590\) 0 0
\(591\) −13.2035 −0.543118
\(592\) 0 0
\(593\) 15.1125 0.620597 0.310299 0.950639i \(-0.399571\pi\)
0.310299 + 0.950639i \(0.399571\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 88.4282 3.61913
\(598\) 0 0
\(599\) −8.84472 −0.361385 −0.180693 0.983540i \(-0.557834\pi\)
−0.180693 + 0.983540i \(0.557834\pi\)
\(600\) 0 0
\(601\) 48.2247 1.96713 0.983563 0.180568i \(-0.0577936\pi\)
0.983563 + 0.180568i \(0.0577936\pi\)
\(602\) 0 0
\(603\) −18.7323 −0.762839
\(604\) 0 0
\(605\) −4.34321 −0.176576
\(606\) 0 0
\(607\) −1.32394 −0.0537371 −0.0268685 0.999639i \(-0.508554\pi\)
−0.0268685 + 0.999639i \(0.508554\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −15.4472 −0.624925
\(612\) 0 0
\(613\) −19.0413 −0.769073 −0.384536 0.923110i \(-0.625639\pi\)
−0.384536 + 0.923110i \(0.625639\pi\)
\(614\) 0 0
\(615\) 3.11346 0.125547
\(616\) 0 0
\(617\) 42.7409 1.72068 0.860342 0.509717i \(-0.170250\pi\)
0.860342 + 0.509717i \(0.170250\pi\)
\(618\) 0 0
\(619\) −2.62071 −0.105335 −0.0526676 0.998612i \(-0.516772\pi\)
−0.0526676 + 0.998612i \(0.516772\pi\)
\(620\) 0 0
\(621\) −35.0384 −1.40604
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 24.0249 0.960995
\(626\) 0 0
\(627\) 83.2757 3.32571
\(628\) 0 0
\(629\) −2.45276 −0.0977980
\(630\) 0 0
\(631\) −7.47445 −0.297553 −0.148777 0.988871i \(-0.547534\pi\)
−0.148777 + 0.988871i \(0.547534\pi\)
\(632\) 0 0
\(633\) −60.9450 −2.42235
\(634\) 0 0
\(635\) −1.05611 −0.0419105
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −35.0154 −1.38519
\(640\) 0 0
\(641\) 8.26131 0.326302 0.163151 0.986601i \(-0.447834\pi\)
0.163151 + 0.986601i \(0.447834\pi\)
\(642\) 0 0
\(643\) 16.2308 0.640082 0.320041 0.947404i \(-0.396303\pi\)
0.320041 + 0.947404i \(0.396303\pi\)
\(644\) 0 0
\(645\) −7.64918 −0.301186
\(646\) 0 0
\(647\) −35.3766 −1.39080 −0.695398 0.718624i \(-0.744772\pi\)
−0.695398 + 0.718624i \(0.744772\pi\)
\(648\) 0 0
\(649\) −42.4538 −1.66646
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 50.3818 1.97159 0.985797 0.167943i \(-0.0537125\pi\)
0.985797 + 0.167943i \(0.0537125\pi\)
\(654\) 0 0
\(655\) 1.14800 0.0448561
\(656\) 0 0
\(657\) −79.5198 −3.10236
\(658\) 0 0
\(659\) −28.7225 −1.11887 −0.559435 0.828874i \(-0.688982\pi\)
−0.559435 + 0.828874i \(0.688982\pi\)
\(660\) 0 0
\(661\) 8.34260 0.324490 0.162245 0.986751i \(-0.448127\pi\)
0.162245 + 0.986751i \(0.448127\pi\)
\(662\) 0 0
\(663\) −16.4779 −0.639949
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 20.2952 0.785832
\(668\) 0 0
\(669\) −31.4340 −1.21531
\(670\) 0 0
\(671\) −7.01547 −0.270829
\(672\) 0 0
\(673\) 28.5636 1.10105 0.550523 0.834820i \(-0.314428\pi\)
0.550523 + 0.834820i \(0.314428\pi\)
\(674\) 0 0
\(675\) −78.5169 −3.02212
\(676\) 0 0
\(677\) −19.3306 −0.742936 −0.371468 0.928446i \(-0.621146\pi\)
−0.371468 + 0.928446i \(0.621146\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 42.4441 1.62646
\(682\) 0 0
\(683\) −29.9730 −1.14688 −0.573442 0.819246i \(-0.694392\pi\)
−0.573442 + 0.819246i \(0.694392\pi\)
\(684\) 0 0
\(685\) 0.270424 0.0103324
\(686\) 0 0
\(687\) 3.96674 0.151340
\(688\) 0 0
\(689\) −15.0838 −0.574647
\(690\) 0 0
\(691\) −22.6758 −0.862628 −0.431314 0.902202i \(-0.641950\pi\)
−0.431314 + 0.902202i \(0.641950\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −0.381620 −0.0144757
\(696\) 0 0
\(697\) 3.70185 0.140217
\(698\) 0 0
\(699\) −69.3040 −2.62132
\(700\) 0 0
\(701\) −44.0361 −1.66322 −0.831610 0.555361i \(-0.812580\pi\)
−0.831610 + 0.555361i \(0.812580\pi\)
\(702\) 0 0
\(703\) 11.7279 0.442326
\(704\) 0 0
\(705\) 2.59517 0.0977397
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −29.1743 −1.09567 −0.547833 0.836588i \(-0.684547\pi\)
−0.547833 + 0.836588i \(0.684547\pi\)
\(710\) 0 0
\(711\) 24.6111 0.922988
\(712\) 0 0
\(713\) 22.9602 0.859865
\(714\) 0 0
\(715\) −6.76855 −0.253129
\(716\) 0 0
\(717\) 34.7337 1.29715
\(718\) 0 0
\(719\) 15.2578 0.569021 0.284510 0.958673i \(-0.408169\pi\)
0.284510 + 0.958673i \(0.408169\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −12.1802 −0.452985
\(724\) 0 0
\(725\) 45.4790 1.68905
\(726\) 0 0
\(727\) −26.5752 −0.985619 −0.492810 0.870137i \(-0.664030\pi\)
−0.492810 + 0.870137i \(0.664030\pi\)
\(728\) 0 0
\(729\) 69.0498 2.55740
\(730\) 0 0
\(731\) −9.09475 −0.336381
\(732\) 0 0
\(733\) −11.1377 −0.411382 −0.205691 0.978617i \(-0.565944\pi\)
−0.205691 + 0.978617i \(0.565944\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −12.6522 −0.466050
\(738\) 0 0
\(739\) −15.4519 −0.568406 −0.284203 0.958764i \(-0.591729\pi\)
−0.284203 + 0.958764i \(0.591729\pi\)
\(740\) 0 0
\(741\) 78.7893 2.89440
\(742\) 0 0
\(743\) −41.8225 −1.53432 −0.767159 0.641457i \(-0.778330\pi\)
−0.767159 + 0.641457i \(0.778330\pi\)
\(744\) 0 0
\(745\) −3.26669 −0.119682
\(746\) 0 0
\(747\) 61.0749 2.23461
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 38.7262 1.41314 0.706569 0.707644i \(-0.250242\pi\)
0.706569 + 0.707644i \(0.250242\pi\)
\(752\) 0 0
\(753\) 15.7617 0.574388
\(754\) 0 0
\(755\) −4.67223 −0.170040
\(756\) 0 0
\(757\) 49.8361 1.81132 0.905662 0.424001i \(-0.139375\pi\)
0.905662 + 0.424001i \(0.139375\pi\)
\(758\) 0 0
\(759\) −38.3527 −1.39211
\(760\) 0 0
\(761\) −40.2881 −1.46044 −0.730222 0.683210i \(-0.760583\pi\)
−0.730222 + 0.683210i \(0.760583\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 2.00177 0.0723741
\(766\) 0 0
\(767\) −40.1666 −1.45033
\(768\) 0 0
\(769\) −6.37384 −0.229847 −0.114923 0.993374i \(-0.536662\pi\)
−0.114923 + 0.993374i \(0.536662\pi\)
\(770\) 0 0
\(771\) 66.9087 2.40966
\(772\) 0 0
\(773\) −48.3293 −1.73828 −0.869142 0.494562i \(-0.835329\pi\)
−0.869142 + 0.494562i \(0.835329\pi\)
\(774\) 0 0
\(775\) 51.4510 1.84817
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −17.7004 −0.634184
\(780\) 0 0
\(781\) −23.6501 −0.846268
\(782\) 0 0
\(783\) −146.640 −5.24047
\(784\) 0 0
\(785\) 1.05021 0.0374837
\(786\) 0 0
\(787\) −3.70691 −0.132137 −0.0660685 0.997815i \(-0.521046\pi\)
−0.0660685 + 0.997815i \(0.521046\pi\)
\(788\) 0 0
\(789\) −56.3006 −2.00435
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −6.63752 −0.235705
\(794\) 0 0
\(795\) 2.53412 0.0898761
\(796\) 0 0
\(797\) 14.8274 0.525212 0.262606 0.964903i \(-0.415418\pi\)
0.262606 + 0.964903i \(0.415418\pi\)
\(798\) 0 0
\(799\) 3.08561 0.109161
\(800\) 0 0
\(801\) 96.3918 3.40584
\(802\) 0 0
\(803\) −53.7093 −1.89536
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −78.0554 −2.74768
\(808\) 0 0
\(809\) −44.6936 −1.57134 −0.785671 0.618644i \(-0.787682\pi\)
−0.785671 + 0.618644i \(0.787682\pi\)
\(810\) 0 0
\(811\) −25.2292 −0.885916 −0.442958 0.896542i \(-0.646071\pi\)
−0.442958 + 0.896542i \(0.646071\pi\)
\(812\) 0 0
\(813\) −55.7658 −1.95579
\(814\) 0 0
\(815\) 5.58874 0.195765
\(816\) 0 0
\(817\) 43.4867 1.52141
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −15.7191 −0.548601 −0.274300 0.961644i \(-0.588446\pi\)
−0.274300 + 0.961644i \(0.588446\pi\)
\(822\) 0 0
\(823\) 43.9415 1.53170 0.765852 0.643017i \(-0.222318\pi\)
0.765852 + 0.643017i \(0.222318\pi\)
\(824\) 0 0
\(825\) −85.9437 −2.99218
\(826\) 0 0
\(827\) 9.09896 0.316402 0.158201 0.987407i \(-0.449431\pi\)
0.158201 + 0.987407i \(0.449431\pi\)
\(828\) 0 0
\(829\) 27.8080 0.965813 0.482907 0.875672i \(-0.339581\pi\)
0.482907 + 0.875672i \(0.339581\pi\)
\(830\) 0 0
\(831\) −57.6469 −1.99975
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −4.57189 −0.158217
\(836\) 0 0
\(837\) −165.895 −5.73417
\(838\) 0 0
\(839\) 27.5344 0.950595 0.475297 0.879825i \(-0.342340\pi\)
0.475297 + 0.879825i \(0.342340\pi\)
\(840\) 0 0
\(841\) 55.9374 1.92888
\(842\) 0 0
\(843\) −34.8094 −1.19890
\(844\) 0 0
\(845\) −3.08211 −0.106028
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 68.8095 2.36154
\(850\) 0 0
\(851\) −5.40130 −0.185154
\(852\) 0 0
\(853\) 25.7996 0.883362 0.441681 0.897172i \(-0.354382\pi\)
0.441681 + 0.897172i \(0.354382\pi\)
\(854\) 0 0
\(855\) −9.57148 −0.327338
\(856\) 0 0
\(857\) −19.0031 −0.649134 −0.324567 0.945863i \(-0.605219\pi\)
−0.324567 + 0.945863i \(0.605219\pi\)
\(858\) 0 0
\(859\) −52.1273 −1.77856 −0.889280 0.457363i \(-0.848794\pi\)
−0.889280 + 0.457363i \(0.848794\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −52.8951 −1.80057 −0.900286 0.435300i \(-0.856642\pi\)
−0.900286 + 0.435300i \(0.856642\pi\)
\(864\) 0 0
\(865\) 5.20217 0.176879
\(866\) 0 0
\(867\) 3.29150 0.111785
\(868\) 0 0
\(869\) 16.6228 0.563891
\(870\) 0 0
\(871\) −11.9706 −0.405608
\(872\) 0 0
\(873\) 89.4296 3.02673
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 29.4672 0.995038 0.497519 0.867453i \(-0.334245\pi\)
0.497519 + 0.867453i \(0.334245\pi\)
\(878\) 0 0
\(879\) −7.25382 −0.244665
\(880\) 0 0
\(881\) −6.31211 −0.212661 −0.106330 0.994331i \(-0.533910\pi\)
−0.106330 + 0.994331i \(0.533910\pi\)
\(882\) 0 0
\(883\) −15.1891 −0.511153 −0.255576 0.966789i \(-0.582265\pi\)
−0.255576 + 0.966789i \(0.582265\pi\)
\(884\) 0 0
\(885\) 6.74811 0.226835
\(886\) 0 0
\(887\) 5.32298 0.178728 0.0893640 0.995999i \(-0.471517\pi\)
0.0893640 + 0.995999i \(0.471517\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 152.756 5.11753
\(892\) 0 0
\(893\) −14.7539 −0.493720
\(894\) 0 0
\(895\) −0.739767 −0.0247277
\(896\) 0 0
\(897\) −36.2865 −1.21157
\(898\) 0 0
\(899\) 96.0907 3.20481
\(900\) 0 0
\(901\) 3.01303 0.100379
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −2.80507 −0.0932437
\(906\) 0 0
\(907\) 3.37784 0.112159 0.0560797 0.998426i \(-0.482140\pi\)
0.0560797 + 0.998426i \(0.482140\pi\)
\(908\) 0 0
\(909\) 62.6730 2.07873
\(910\) 0 0
\(911\) 6.94277 0.230024 0.115012 0.993364i \(-0.463309\pi\)
0.115012 + 0.993364i \(0.463309\pi\)
\(912\) 0 0
\(913\) 41.2513 1.36522
\(914\) 0 0
\(915\) 1.11512 0.0368648
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −9.78363 −0.322732 −0.161366 0.986895i \(-0.551590\pi\)
−0.161366 + 0.986895i \(0.551590\pi\)
\(920\) 0 0
\(921\) −19.3807 −0.638616
\(922\) 0 0
\(923\) −22.3760 −0.736515
\(924\) 0 0
\(925\) −12.1037 −0.397966
\(926\) 0 0
\(927\) 3.54382 0.116394
\(928\) 0 0
\(929\) 22.9106 0.751671 0.375835 0.926686i \(-0.377356\pi\)
0.375835 + 0.926686i \(0.377356\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −74.9907 −2.45509
\(934\) 0 0
\(935\) 1.35204 0.0442163
\(936\) 0 0
\(937\) −35.4355 −1.15763 −0.578814 0.815460i \(-0.696484\pi\)
−0.578814 + 0.815460i \(0.696484\pi\)
\(938\) 0 0
\(939\) 44.5996 1.45545
\(940\) 0 0
\(941\) −8.49272 −0.276855 −0.138427 0.990373i \(-0.544205\pi\)
−0.138427 + 0.990373i \(0.544205\pi\)
\(942\) 0 0
\(943\) 8.15195 0.265464
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 37.2286 1.20977 0.604883 0.796314i \(-0.293220\pi\)
0.604883 + 0.796314i \(0.293220\pi\)
\(948\) 0 0
\(949\) −50.8158 −1.64955
\(950\) 0 0
\(951\) 11.0657 0.358829
\(952\) 0 0
\(953\) 44.9065 1.45466 0.727332 0.686286i \(-0.240760\pi\)
0.727332 + 0.686286i \(0.240760\pi\)
\(954\) 0 0
\(955\) −4.55216 −0.147305
\(956\) 0 0
\(957\) −160.510 −5.18855
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 77.7086 2.50673
\(962\) 0 0
\(963\) −44.9830 −1.44956
\(964\) 0 0
\(965\) −2.29835 −0.0739865
\(966\) 0 0
\(967\) 36.4187 1.17115 0.585574 0.810619i \(-0.300869\pi\)
0.585574 + 0.810619i \(0.300869\pi\)
\(968\) 0 0
\(969\) −15.7384 −0.505589
\(970\) 0 0
\(971\) 18.3370 0.588463 0.294231 0.955734i \(-0.404936\pi\)
0.294231 + 0.955734i \(0.404936\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −81.3137 −2.60412
\(976\) 0 0
\(977\) 42.8743 1.37167 0.685835 0.727757i \(-0.259437\pi\)
0.685835 + 0.727757i \(0.259437\pi\)
\(978\) 0 0
\(979\) 65.1051 2.08077
\(980\) 0 0
\(981\) −137.880 −4.40216
\(982\) 0 0
\(983\) −7.18466 −0.229155 −0.114577 0.993414i \(-0.536551\pi\)
−0.114577 + 0.993414i \(0.536551\pi\)
\(984\) 0 0
\(985\) 1.02500 0.0326592
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −20.0278 −0.636848
\(990\) 0 0
\(991\) 16.2920 0.517531 0.258766 0.965940i \(-0.416684\pi\)
0.258766 + 0.965940i \(0.416684\pi\)
\(992\) 0 0
\(993\) −75.2142 −2.38685
\(994\) 0 0
\(995\) −6.86477 −0.217628
\(996\) 0 0
\(997\) 55.1284 1.74593 0.872967 0.487779i \(-0.162193\pi\)
0.872967 + 0.487779i \(0.162193\pi\)
\(998\) 0 0
\(999\) 39.0262 1.23474
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3332.2.a.u.1.8 yes 8
7.6 odd 2 3332.2.a.t.1.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3332.2.a.t.1.1 8 7.6 odd 2
3332.2.a.u.1.8 yes 8 1.1 even 1 trivial