Properties

Label 3332.2.a.u.1.6
Level $3332$
Weight $2$
Character 3332.1
Self dual yes
Analytic conductor $26.606$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3332,2,Mod(1,3332)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3332, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3332.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3332 = 2^{2} \cdot 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3332.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.6061539535\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} - 8x^{6} + 36x^{5} + 17x^{4} - 76x^{3} - 20x^{2} + 44x + 17 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(1.27952\) of defining polynomial
Character \(\chi\) \(=\) 3332.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.27952 q^{3} +4.13895 q^{5} -1.36282 q^{9} +1.53680 q^{11} +0.0160623 q^{13} +5.29588 q^{15} -1.00000 q^{17} +0.519822 q^{19} +0.958750 q^{23} +12.1309 q^{25} -5.58233 q^{27} +5.79146 q^{29} +1.29639 q^{31} +1.96637 q^{33} +2.76827 q^{37} +0.0205521 q^{39} -0.769697 q^{41} -4.93770 q^{43} -5.64063 q^{45} -1.60825 q^{47} -1.27952 q^{51} +5.00816 q^{53} +6.36074 q^{55} +0.665125 q^{57} +5.50390 q^{59} +14.5818 q^{61} +0.0664811 q^{65} +5.13657 q^{67} +1.22674 q^{69} +13.4293 q^{71} -3.16522 q^{73} +15.5218 q^{75} -10.3220 q^{79} -3.05428 q^{81} +16.1399 q^{83} -4.13895 q^{85} +7.41032 q^{87} -10.5848 q^{89} +1.65876 q^{93} +2.15152 q^{95} +10.0542 q^{97} -2.09438 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{3} + 4 q^{5} + 8 q^{9} - 4 q^{11} + 20 q^{13} + 12 q^{15} - 8 q^{17} + 8 q^{19} + 4 q^{23} + 8 q^{25} + 28 q^{27} - 16 q^{29} - 8 q^{31} + 16 q^{33} + 8 q^{37} + 20 q^{39} + 12 q^{41} - 4 q^{43}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.27952 0.738734 0.369367 0.929284i \(-0.379575\pi\)
0.369367 + 0.929284i \(0.379575\pi\)
\(4\) 0 0
\(5\) 4.13895 1.85099 0.925497 0.378756i \(-0.123648\pi\)
0.925497 + 0.378756i \(0.123648\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −1.36282 −0.454272
\(10\) 0 0
\(11\) 1.53680 0.463363 0.231681 0.972792i \(-0.425577\pi\)
0.231681 + 0.972792i \(0.425577\pi\)
\(12\) 0 0
\(13\) 0.0160623 0.00445489 0.00222744 0.999998i \(-0.499291\pi\)
0.00222744 + 0.999998i \(0.499291\pi\)
\(14\) 0 0
\(15\) 5.29588 1.36739
\(16\) 0 0
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) 0.519822 0.119255 0.0596277 0.998221i \(-0.481009\pi\)
0.0596277 + 0.998221i \(0.481009\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.958750 0.199913 0.0999566 0.994992i \(-0.468130\pi\)
0.0999566 + 0.994992i \(0.468130\pi\)
\(24\) 0 0
\(25\) 12.1309 2.42618
\(26\) 0 0
\(27\) −5.58233 −1.07432
\(28\) 0 0
\(29\) 5.79146 1.07545 0.537724 0.843121i \(-0.319284\pi\)
0.537724 + 0.843121i \(0.319284\pi\)
\(30\) 0 0
\(31\) 1.29639 0.232838 0.116419 0.993200i \(-0.462859\pi\)
0.116419 + 0.993200i \(0.462859\pi\)
\(32\) 0 0
\(33\) 1.96637 0.342302
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 2.76827 0.455101 0.227550 0.973766i \(-0.426928\pi\)
0.227550 + 0.973766i \(0.426928\pi\)
\(38\) 0 0
\(39\) 0.0205521 0.00329098
\(40\) 0 0
\(41\) −0.769697 −0.120207 −0.0601033 0.998192i \(-0.519143\pi\)
−0.0601033 + 0.998192i \(0.519143\pi\)
\(42\) 0 0
\(43\) −4.93770 −0.752992 −0.376496 0.926418i \(-0.622871\pi\)
−0.376496 + 0.926418i \(0.622871\pi\)
\(44\) 0 0
\(45\) −5.64063 −0.840855
\(46\) 0 0
\(47\) −1.60825 −0.234587 −0.117294 0.993097i \(-0.537422\pi\)
−0.117294 + 0.993097i \(0.537422\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −1.27952 −0.179169
\(52\) 0 0
\(53\) 5.00816 0.687923 0.343962 0.938984i \(-0.388231\pi\)
0.343962 + 0.938984i \(0.388231\pi\)
\(54\) 0 0
\(55\) 6.36074 0.857682
\(56\) 0 0
\(57\) 0.665125 0.0880980
\(58\) 0 0
\(59\) 5.50390 0.716547 0.358273 0.933617i \(-0.383366\pi\)
0.358273 + 0.933617i \(0.383366\pi\)
\(60\) 0 0
\(61\) 14.5818 1.86701 0.933506 0.358562i \(-0.116733\pi\)
0.933506 + 0.358562i \(0.116733\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0.0664811 0.00824597
\(66\) 0 0
\(67\) 5.13657 0.627532 0.313766 0.949500i \(-0.398409\pi\)
0.313766 + 0.949500i \(0.398409\pi\)
\(68\) 0 0
\(69\) 1.22674 0.147683
\(70\) 0 0
\(71\) 13.4293 1.59377 0.796883 0.604133i \(-0.206481\pi\)
0.796883 + 0.604133i \(0.206481\pi\)
\(72\) 0 0
\(73\) −3.16522 −0.370461 −0.185230 0.982695i \(-0.559303\pi\)
−0.185230 + 0.982695i \(0.559303\pi\)
\(74\) 0 0
\(75\) 15.5218 1.79230
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −10.3220 −1.16131 −0.580657 0.814148i \(-0.697204\pi\)
−0.580657 + 0.814148i \(0.697204\pi\)
\(80\) 0 0
\(81\) −3.05428 −0.339364
\(82\) 0 0
\(83\) 16.1399 1.77159 0.885793 0.464080i \(-0.153615\pi\)
0.885793 + 0.464080i \(0.153615\pi\)
\(84\) 0 0
\(85\) −4.13895 −0.448932
\(86\) 0 0
\(87\) 7.41032 0.794470
\(88\) 0 0
\(89\) −10.5848 −1.12199 −0.560995 0.827819i \(-0.689581\pi\)
−0.560995 + 0.827819i \(0.689581\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 1.65876 0.172005
\(94\) 0 0
\(95\) 2.15152 0.220741
\(96\) 0 0
\(97\) 10.0542 1.02085 0.510427 0.859921i \(-0.329487\pi\)
0.510427 + 0.859921i \(0.329487\pi\)
\(98\) 0 0
\(99\) −2.09438 −0.210493
\(100\) 0 0
\(101\) −11.5236 −1.14665 −0.573323 0.819330i \(-0.694346\pi\)
−0.573323 + 0.819330i \(0.694346\pi\)
\(102\) 0 0
\(103\) −7.09694 −0.699283 −0.349641 0.936884i \(-0.613697\pi\)
−0.349641 + 0.936884i \(0.613697\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −12.9252 −1.24953 −0.624764 0.780814i \(-0.714805\pi\)
−0.624764 + 0.780814i \(0.714805\pi\)
\(108\) 0 0
\(109\) −8.79060 −0.841987 −0.420993 0.907064i \(-0.638318\pi\)
−0.420993 + 0.907064i \(0.638318\pi\)
\(110\) 0 0
\(111\) 3.54207 0.336198
\(112\) 0 0
\(113\) −8.29520 −0.780347 −0.390174 0.920741i \(-0.627585\pi\)
−0.390174 + 0.920741i \(0.627585\pi\)
\(114\) 0 0
\(115\) 3.96822 0.370038
\(116\) 0 0
\(117\) −0.0218900 −0.00202373
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −8.63824 −0.785295
\(122\) 0 0
\(123\) −0.984846 −0.0888006
\(124\) 0 0
\(125\) 29.5144 2.63984
\(126\) 0 0
\(127\) 11.1242 0.987110 0.493555 0.869715i \(-0.335697\pi\)
0.493555 + 0.869715i \(0.335697\pi\)
\(128\) 0 0
\(129\) −6.31790 −0.556260
\(130\) 0 0
\(131\) −20.2010 −1.76497 −0.882486 0.470338i \(-0.844132\pi\)
−0.882486 + 0.470338i \(0.844132\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −23.1050 −1.98856
\(136\) 0 0
\(137\) 17.9159 1.53066 0.765331 0.643637i \(-0.222575\pi\)
0.765331 + 0.643637i \(0.222575\pi\)
\(138\) 0 0
\(139\) −0.0526564 −0.00446626 −0.00223313 0.999998i \(-0.500711\pi\)
−0.00223313 + 0.999998i \(0.500711\pi\)
\(140\) 0 0
\(141\) −2.05779 −0.173297
\(142\) 0 0
\(143\) 0.0246846 0.00206423
\(144\) 0 0
\(145\) 23.9706 1.99065
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 2.18629 0.179108 0.0895538 0.995982i \(-0.471456\pi\)
0.0895538 + 0.995982i \(0.471456\pi\)
\(150\) 0 0
\(151\) −17.9310 −1.45920 −0.729601 0.683873i \(-0.760294\pi\)
−0.729601 + 0.683873i \(0.760294\pi\)
\(152\) 0 0
\(153\) 1.36282 0.110177
\(154\) 0 0
\(155\) 5.36567 0.430981
\(156\) 0 0
\(157\) −1.46355 −0.116804 −0.0584020 0.998293i \(-0.518601\pi\)
−0.0584020 + 0.998293i \(0.518601\pi\)
\(158\) 0 0
\(159\) 6.40806 0.508192
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −16.5954 −1.29986 −0.649928 0.759996i \(-0.725201\pi\)
−0.649928 + 0.759996i \(0.725201\pi\)
\(164\) 0 0
\(165\) 8.13872 0.633599
\(166\) 0 0
\(167\) 13.3783 1.03524 0.517621 0.855610i \(-0.326818\pi\)
0.517621 + 0.855610i \(0.326818\pi\)
\(168\) 0 0
\(169\) −12.9997 −0.999980
\(170\) 0 0
\(171\) −0.708423 −0.0541744
\(172\) 0 0
\(173\) 3.90950 0.297234 0.148617 0.988895i \(-0.452518\pi\)
0.148617 + 0.988895i \(0.452518\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 7.04237 0.529337
\(178\) 0 0
\(179\) −24.4163 −1.82496 −0.912480 0.409121i \(-0.865835\pi\)
−0.912480 + 0.409121i \(0.865835\pi\)
\(180\) 0 0
\(181\) 15.2516 1.13364 0.566821 0.823841i \(-0.308173\pi\)
0.566821 + 0.823841i \(0.308173\pi\)
\(182\) 0 0
\(183\) 18.6578 1.37922
\(184\) 0 0
\(185\) 11.4577 0.842389
\(186\) 0 0
\(187\) −1.53680 −0.112382
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1.35507 0.0980492 0.0490246 0.998798i \(-0.484389\pi\)
0.0490246 + 0.998798i \(0.484389\pi\)
\(192\) 0 0
\(193\) −21.5938 −1.55436 −0.777178 0.629281i \(-0.783349\pi\)
−0.777178 + 0.629281i \(0.783349\pi\)
\(194\) 0 0
\(195\) 0.0850642 0.00609158
\(196\) 0 0
\(197\) 0.342141 0.0243765 0.0121883 0.999926i \(-0.496120\pi\)
0.0121883 + 0.999926i \(0.496120\pi\)
\(198\) 0 0
\(199\) −18.5461 −1.31470 −0.657348 0.753587i \(-0.728322\pi\)
−0.657348 + 0.753587i \(0.728322\pi\)
\(200\) 0 0
\(201\) 6.57237 0.463579
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −3.18574 −0.222501
\(206\) 0 0
\(207\) −1.30660 −0.0908150
\(208\) 0 0
\(209\) 0.798863 0.0552585
\(210\) 0 0
\(211\) 3.63388 0.250166 0.125083 0.992146i \(-0.460080\pi\)
0.125083 + 0.992146i \(0.460080\pi\)
\(212\) 0 0
\(213\) 17.1831 1.17737
\(214\) 0 0
\(215\) −20.4369 −1.39378
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −4.04997 −0.273672
\(220\) 0 0
\(221\) −0.0160623 −0.00108047
\(222\) 0 0
\(223\) −22.8440 −1.52975 −0.764875 0.644179i \(-0.777199\pi\)
−0.764875 + 0.644179i \(0.777199\pi\)
\(224\) 0 0
\(225\) −16.5322 −1.10215
\(226\) 0 0
\(227\) 6.58399 0.436995 0.218497 0.975838i \(-0.429884\pi\)
0.218497 + 0.975838i \(0.429884\pi\)
\(228\) 0 0
\(229\) 5.61189 0.370844 0.185422 0.982659i \(-0.440635\pi\)
0.185422 + 0.982659i \(0.440635\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −18.8916 −1.23763 −0.618817 0.785536i \(-0.712388\pi\)
−0.618817 + 0.785536i \(0.712388\pi\)
\(234\) 0 0
\(235\) −6.65646 −0.434219
\(236\) 0 0
\(237\) −13.2072 −0.857902
\(238\) 0 0
\(239\) 6.79748 0.439693 0.219846 0.975535i \(-0.429444\pi\)
0.219846 + 0.975535i \(0.429444\pi\)
\(240\) 0 0
\(241\) 15.8682 1.02216 0.511082 0.859532i \(-0.329245\pi\)
0.511082 + 0.859532i \(0.329245\pi\)
\(242\) 0 0
\(243\) 12.8390 0.823620
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0.00834956 0.000531270 0
\(248\) 0 0
\(249\) 20.6514 1.30873
\(250\) 0 0
\(251\) −8.71087 −0.549825 −0.274913 0.961469i \(-0.588649\pi\)
−0.274913 + 0.961469i \(0.588649\pi\)
\(252\) 0 0
\(253\) 1.47341 0.0926324
\(254\) 0 0
\(255\) −5.29588 −0.331641
\(256\) 0 0
\(257\) −7.07610 −0.441395 −0.220697 0.975342i \(-0.570833\pi\)
−0.220697 + 0.975342i \(0.570833\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −7.89271 −0.488546
\(262\) 0 0
\(263\) 18.4753 1.13923 0.569617 0.821910i \(-0.307092\pi\)
0.569617 + 0.821910i \(0.307092\pi\)
\(264\) 0 0
\(265\) 20.7285 1.27334
\(266\) 0 0
\(267\) −13.5435 −0.828851
\(268\) 0 0
\(269\) 18.8617 1.15002 0.575010 0.818146i \(-0.304998\pi\)
0.575010 + 0.818146i \(0.304998\pi\)
\(270\) 0 0
\(271\) −29.0252 −1.76316 −0.881579 0.472037i \(-0.843519\pi\)
−0.881579 + 0.472037i \(0.843519\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 18.6428 1.12420
\(276\) 0 0
\(277\) −0.756258 −0.0454391 −0.0227196 0.999742i \(-0.507232\pi\)
−0.0227196 + 0.999742i \(0.507232\pi\)
\(278\) 0 0
\(279\) −1.76674 −0.105772
\(280\) 0 0
\(281\) 20.2702 1.20922 0.604609 0.796523i \(-0.293330\pi\)
0.604609 + 0.796523i \(0.293330\pi\)
\(282\) 0 0
\(283\) −10.9667 −0.651902 −0.325951 0.945387i \(-0.605684\pi\)
−0.325951 + 0.945387i \(0.605684\pi\)
\(284\) 0 0
\(285\) 2.75292 0.163069
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 12.8646 0.754139
\(292\) 0 0
\(293\) −5.00489 −0.292389 −0.146194 0.989256i \(-0.546702\pi\)
−0.146194 + 0.989256i \(0.546702\pi\)
\(294\) 0 0
\(295\) 22.7804 1.32632
\(296\) 0 0
\(297\) −8.57893 −0.497800
\(298\) 0 0
\(299\) 0.0153998 0.000890591 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −14.7448 −0.847066
\(304\) 0 0
\(305\) 60.3534 3.45583
\(306\) 0 0
\(307\) −23.1563 −1.32160 −0.660799 0.750563i \(-0.729783\pi\)
−0.660799 + 0.750563i \(0.729783\pi\)
\(308\) 0 0
\(309\) −9.08071 −0.516584
\(310\) 0 0
\(311\) 27.4088 1.55421 0.777105 0.629371i \(-0.216687\pi\)
0.777105 + 0.629371i \(0.216687\pi\)
\(312\) 0 0
\(313\) 22.8081 1.28919 0.644595 0.764524i \(-0.277026\pi\)
0.644595 + 0.764524i \(0.277026\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −22.6005 −1.26937 −0.634685 0.772771i \(-0.718870\pi\)
−0.634685 + 0.772771i \(0.718870\pi\)
\(318\) 0 0
\(319\) 8.90033 0.498323
\(320\) 0 0
\(321\) −16.5381 −0.923069
\(322\) 0 0
\(323\) −0.519822 −0.0289237
\(324\) 0 0
\(325\) 0.194850 0.0108083
\(326\) 0 0
\(327\) −11.2478 −0.622004
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −25.5591 −1.40486 −0.702428 0.711755i \(-0.747901\pi\)
−0.702428 + 0.711755i \(0.747901\pi\)
\(332\) 0 0
\(333\) −3.77265 −0.206740
\(334\) 0 0
\(335\) 21.2600 1.16156
\(336\) 0 0
\(337\) 23.1633 1.26179 0.630893 0.775870i \(-0.282689\pi\)
0.630893 + 0.775870i \(0.282689\pi\)
\(338\) 0 0
\(339\) −10.6139 −0.576469
\(340\) 0 0
\(341\) 1.99229 0.107888
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 5.07743 0.273360
\(346\) 0 0
\(347\) −36.4373 −1.95606 −0.978029 0.208468i \(-0.933152\pi\)
−0.978029 + 0.208468i \(0.933152\pi\)
\(348\) 0 0
\(349\) −0.0585067 −0.00313179 −0.00156590 0.999999i \(-0.500498\pi\)
−0.00156590 + 0.999999i \(0.500498\pi\)
\(350\) 0 0
\(351\) −0.0896653 −0.00478598
\(352\) 0 0
\(353\) 23.5207 1.25188 0.625939 0.779872i \(-0.284716\pi\)
0.625939 + 0.779872i \(0.284716\pi\)
\(354\) 0 0
\(355\) 55.5832 2.95005
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 10.6575 0.562483 0.281242 0.959637i \(-0.409254\pi\)
0.281242 + 0.959637i \(0.409254\pi\)
\(360\) 0 0
\(361\) −18.7298 −0.985778
\(362\) 0 0
\(363\) −11.0528 −0.580124
\(364\) 0 0
\(365\) −13.1007 −0.685721
\(366\) 0 0
\(367\) 29.9738 1.56462 0.782309 0.622890i \(-0.214042\pi\)
0.782309 + 0.622890i \(0.214042\pi\)
\(368\) 0 0
\(369\) 1.04896 0.0546065
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −12.7252 −0.658888 −0.329444 0.944175i \(-0.606861\pi\)
−0.329444 + 0.944175i \(0.606861\pi\)
\(374\) 0 0
\(375\) 37.7643 1.95014
\(376\) 0 0
\(377\) 0.0930244 0.00479100
\(378\) 0 0
\(379\) 16.3107 0.837824 0.418912 0.908027i \(-0.362411\pi\)
0.418912 + 0.908027i \(0.362411\pi\)
\(380\) 0 0
\(381\) 14.2336 0.729211
\(382\) 0 0
\(383\) −23.8797 −1.22020 −0.610099 0.792325i \(-0.708870\pi\)
−0.610099 + 0.792325i \(0.708870\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 6.72918 0.342063
\(388\) 0 0
\(389\) −2.75525 −0.139697 −0.0698485 0.997558i \(-0.522252\pi\)
−0.0698485 + 0.997558i \(0.522252\pi\)
\(390\) 0 0
\(391\) −0.958750 −0.0484861
\(392\) 0 0
\(393\) −25.8477 −1.30384
\(394\) 0 0
\(395\) −42.7222 −2.14959
\(396\) 0 0
\(397\) 21.4903 1.07857 0.539283 0.842124i \(-0.318695\pi\)
0.539283 + 0.842124i \(0.318695\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 35.3195 1.76377 0.881886 0.471462i \(-0.156274\pi\)
0.881886 + 0.471462i \(0.156274\pi\)
\(402\) 0 0
\(403\) 0.0208230 0.00103727
\(404\) 0 0
\(405\) −12.6415 −0.628161
\(406\) 0 0
\(407\) 4.25428 0.210877
\(408\) 0 0
\(409\) 3.10362 0.153464 0.0767321 0.997052i \(-0.475551\pi\)
0.0767321 + 0.997052i \(0.475551\pi\)
\(410\) 0 0
\(411\) 22.9239 1.13075
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 66.8023 3.27919
\(416\) 0 0
\(417\) −0.0673752 −0.00329938
\(418\) 0 0
\(419\) −34.8546 −1.70276 −0.851379 0.524551i \(-0.824233\pi\)
−0.851379 + 0.524551i \(0.824233\pi\)
\(420\) 0 0
\(421\) −20.4225 −0.995334 −0.497667 0.867368i \(-0.665810\pi\)
−0.497667 + 0.867368i \(0.665810\pi\)
\(422\) 0 0
\(423\) 2.19175 0.106566
\(424\) 0 0
\(425\) −12.1309 −0.588434
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0.0315846 0.00152492
\(430\) 0 0
\(431\) 3.36333 0.162006 0.0810030 0.996714i \(-0.474188\pi\)
0.0810030 + 0.996714i \(0.474188\pi\)
\(432\) 0 0
\(433\) −11.1308 −0.534914 −0.267457 0.963570i \(-0.586183\pi\)
−0.267457 + 0.963570i \(0.586183\pi\)
\(434\) 0 0
\(435\) 30.6709 1.47056
\(436\) 0 0
\(437\) 0.498379 0.0238407
\(438\) 0 0
\(439\) −8.96569 −0.427909 −0.213955 0.976844i \(-0.568634\pi\)
−0.213955 + 0.976844i \(0.568634\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 3.94610 0.187485 0.0937423 0.995596i \(-0.470117\pi\)
0.0937423 + 0.995596i \(0.470117\pi\)
\(444\) 0 0
\(445\) −43.8100 −2.07679
\(446\) 0 0
\(447\) 2.79741 0.132313
\(448\) 0 0
\(449\) 23.8289 1.12455 0.562277 0.826949i \(-0.309926\pi\)
0.562277 + 0.826949i \(0.309926\pi\)
\(450\) 0 0
\(451\) −1.18287 −0.0556992
\(452\) 0 0
\(453\) −22.9431 −1.07796
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −3.01424 −0.141000 −0.0705000 0.997512i \(-0.522459\pi\)
−0.0705000 + 0.997512i \(0.522459\pi\)
\(458\) 0 0
\(459\) 5.58233 0.260561
\(460\) 0 0
\(461\) 8.45569 0.393821 0.196910 0.980421i \(-0.436909\pi\)
0.196910 + 0.980421i \(0.436909\pi\)
\(462\) 0 0
\(463\) −24.2074 −1.12501 −0.562506 0.826793i \(-0.690163\pi\)
−0.562506 + 0.826793i \(0.690163\pi\)
\(464\) 0 0
\(465\) 6.86551 0.318380
\(466\) 0 0
\(467\) −8.28824 −0.383534 −0.191767 0.981440i \(-0.561422\pi\)
−0.191767 + 0.981440i \(0.561422\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −1.87265 −0.0862871
\(472\) 0 0
\(473\) −7.58826 −0.348908
\(474\) 0 0
\(475\) 6.30590 0.289335
\(476\) 0 0
\(477\) −6.82520 −0.312505
\(478\) 0 0
\(479\) −22.1591 −1.01248 −0.506238 0.862394i \(-0.668964\pi\)
−0.506238 + 0.862394i \(0.668964\pi\)
\(480\) 0 0
\(481\) 0.0444649 0.00202742
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 41.6140 1.88959
\(486\) 0 0
\(487\) 31.3324 1.41981 0.709904 0.704298i \(-0.248738\pi\)
0.709904 + 0.704298i \(0.248738\pi\)
\(488\) 0 0
\(489\) −21.2343 −0.960247
\(490\) 0 0
\(491\) 5.58409 0.252007 0.126003 0.992030i \(-0.459785\pi\)
0.126003 + 0.992030i \(0.459785\pi\)
\(492\) 0 0
\(493\) −5.79146 −0.260834
\(494\) 0 0
\(495\) −8.66852 −0.389621
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −2.27863 −0.102005 −0.0510027 0.998699i \(-0.516242\pi\)
−0.0510027 + 0.998699i \(0.516242\pi\)
\(500\) 0 0
\(501\) 17.1178 0.764768
\(502\) 0 0
\(503\) 36.8357 1.64242 0.821212 0.570624i \(-0.193299\pi\)
0.821212 + 0.570624i \(0.193299\pi\)
\(504\) 0 0
\(505\) −47.6958 −2.12243
\(506\) 0 0
\(507\) −16.6335 −0.738719
\(508\) 0 0
\(509\) −39.3753 −1.74528 −0.872641 0.488363i \(-0.837594\pi\)
−0.872641 + 0.488363i \(0.837594\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −2.90182 −0.128118
\(514\) 0 0
\(515\) −29.3739 −1.29437
\(516\) 0 0
\(517\) −2.47156 −0.108699
\(518\) 0 0
\(519\) 5.00231 0.219577
\(520\) 0 0
\(521\) 6.78449 0.297234 0.148617 0.988895i \(-0.452518\pi\)
0.148617 + 0.988895i \(0.452518\pi\)
\(522\) 0 0
\(523\) 35.5401 1.55406 0.777030 0.629464i \(-0.216726\pi\)
0.777030 + 0.629464i \(0.216726\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1.29639 −0.0564714
\(528\) 0 0
\(529\) −22.0808 −0.960035
\(530\) 0 0
\(531\) −7.50081 −0.325507
\(532\) 0 0
\(533\) −0.0123631 −0.000535507 0
\(534\) 0 0
\(535\) −53.4968 −2.31287
\(536\) 0 0
\(537\) −31.2413 −1.34816
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 28.3887 1.22053 0.610263 0.792199i \(-0.291064\pi\)
0.610263 + 0.792199i \(0.291064\pi\)
\(542\) 0 0
\(543\) 19.5148 0.837460
\(544\) 0 0
\(545\) −36.3838 −1.55851
\(546\) 0 0
\(547\) −25.3338 −1.08320 −0.541598 0.840638i \(-0.682180\pi\)
−0.541598 + 0.840638i \(0.682180\pi\)
\(548\) 0 0
\(549\) −19.8724 −0.848132
\(550\) 0 0
\(551\) 3.01053 0.128253
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 14.6604 0.622301
\(556\) 0 0
\(557\) −35.0713 −1.48602 −0.743010 0.669280i \(-0.766603\pi\)
−0.743010 + 0.669280i \(0.766603\pi\)
\(558\) 0 0
\(559\) −0.0793109 −0.00335449
\(560\) 0 0
\(561\) −1.96637 −0.0830204
\(562\) 0 0
\(563\) −37.1770 −1.56682 −0.783412 0.621503i \(-0.786523\pi\)
−0.783412 + 0.621503i \(0.786523\pi\)
\(564\) 0 0
\(565\) −34.3334 −1.44442
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −30.7661 −1.28978 −0.644891 0.764275i \(-0.723097\pi\)
−0.644891 + 0.764275i \(0.723097\pi\)
\(570\) 0 0
\(571\) −17.1129 −0.716154 −0.358077 0.933692i \(-0.616568\pi\)
−0.358077 + 0.933692i \(0.616568\pi\)
\(572\) 0 0
\(573\) 1.73384 0.0724322
\(574\) 0 0
\(575\) 11.6305 0.485025
\(576\) 0 0
\(577\) 18.7692 0.781372 0.390686 0.920524i \(-0.372238\pi\)
0.390686 + 0.920524i \(0.372238\pi\)
\(578\) 0 0
\(579\) −27.6298 −1.14825
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 7.69654 0.318758
\(584\) 0 0
\(585\) −0.0906016 −0.00374592
\(586\) 0 0
\(587\) 22.6989 0.936884 0.468442 0.883494i \(-0.344816\pi\)
0.468442 + 0.883494i \(0.344816\pi\)
\(588\) 0 0
\(589\) 0.673890 0.0277671
\(590\) 0 0
\(591\) 0.437778 0.0180078
\(592\) 0 0
\(593\) 36.9707 1.51821 0.759103 0.650970i \(-0.225638\pi\)
0.759103 + 0.650970i \(0.225638\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −23.7302 −0.971211
\(598\) 0 0
\(599\) 1.40362 0.0573505 0.0286753 0.999589i \(-0.490871\pi\)
0.0286753 + 0.999589i \(0.490871\pi\)
\(600\) 0 0
\(601\) 27.7980 1.13390 0.566951 0.823751i \(-0.308123\pi\)
0.566951 + 0.823751i \(0.308123\pi\)
\(602\) 0 0
\(603\) −7.00021 −0.285070
\(604\) 0 0
\(605\) −35.7532 −1.45358
\(606\) 0 0
\(607\) −10.4113 −0.422580 −0.211290 0.977423i \(-0.567766\pi\)
−0.211290 + 0.977423i \(0.567766\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −0.0258322 −0.00104506
\(612\) 0 0
\(613\) 18.6101 0.751655 0.375828 0.926690i \(-0.377358\pi\)
0.375828 + 0.926690i \(0.377358\pi\)
\(614\) 0 0
\(615\) −4.07623 −0.164369
\(616\) 0 0
\(617\) −16.8106 −0.676771 −0.338386 0.941008i \(-0.609881\pi\)
−0.338386 + 0.941008i \(0.609881\pi\)
\(618\) 0 0
\(619\) 38.9688 1.56629 0.783145 0.621839i \(-0.213614\pi\)
0.783145 + 0.621839i \(0.213614\pi\)
\(620\) 0 0
\(621\) −5.35206 −0.214771
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 61.5039 2.46016
\(626\) 0 0
\(627\) 1.02217 0.0408213
\(628\) 0 0
\(629\) −2.76827 −0.110378
\(630\) 0 0
\(631\) 2.53283 0.100830 0.0504152 0.998728i \(-0.483946\pi\)
0.0504152 + 0.998728i \(0.483946\pi\)
\(632\) 0 0
\(633\) 4.64963 0.184806
\(634\) 0 0
\(635\) 46.0423 1.82713
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −18.3017 −0.724004
\(640\) 0 0
\(641\) −3.61319 −0.142713 −0.0713563 0.997451i \(-0.522733\pi\)
−0.0713563 + 0.997451i \(0.522733\pi\)
\(642\) 0 0
\(643\) −3.55385 −0.140150 −0.0700750 0.997542i \(-0.522324\pi\)
−0.0700750 + 0.997542i \(0.522324\pi\)
\(644\) 0 0
\(645\) −26.1495 −1.02963
\(646\) 0 0
\(647\) −38.9319 −1.53057 −0.765285 0.643692i \(-0.777402\pi\)
−0.765285 + 0.643692i \(0.777402\pi\)
\(648\) 0 0
\(649\) 8.45840 0.332021
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 23.5910 0.923189 0.461594 0.887091i \(-0.347278\pi\)
0.461594 + 0.887091i \(0.347278\pi\)
\(654\) 0 0
\(655\) −83.6110 −3.26695
\(656\) 0 0
\(657\) 4.31361 0.168290
\(658\) 0 0
\(659\) 3.43190 0.133688 0.0668439 0.997763i \(-0.478707\pi\)
0.0668439 + 0.997763i \(0.478707\pi\)
\(660\) 0 0
\(661\) 38.1243 1.48286 0.741431 0.671029i \(-0.234147\pi\)
0.741431 + 0.671029i \(0.234147\pi\)
\(662\) 0 0
\(663\) −0.0205521 −0.000798179 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 5.55256 0.214996
\(668\) 0 0
\(669\) −29.2295 −1.13008
\(670\) 0 0
\(671\) 22.4094 0.865104
\(672\) 0 0
\(673\) −9.27831 −0.357653 −0.178826 0.983881i \(-0.557230\pi\)
−0.178826 + 0.983881i \(0.557230\pi\)
\(674\) 0 0
\(675\) −67.7186 −2.60649
\(676\) 0 0
\(677\) −10.4284 −0.400797 −0.200398 0.979715i \(-0.564224\pi\)
−0.200398 + 0.979715i \(0.564224\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 8.42438 0.322823
\(682\) 0 0
\(683\) −33.6376 −1.28711 −0.643554 0.765401i \(-0.722541\pi\)
−0.643554 + 0.765401i \(0.722541\pi\)
\(684\) 0 0
\(685\) 74.1532 2.83325
\(686\) 0 0
\(687\) 7.18055 0.273955
\(688\) 0 0
\(689\) 0.0804427 0.00306462
\(690\) 0 0
\(691\) −5.83824 −0.222097 −0.111049 0.993815i \(-0.535421\pi\)
−0.111049 + 0.993815i \(0.535421\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −0.217942 −0.00826702
\(696\) 0 0
\(697\) 0.769697 0.0291544
\(698\) 0 0
\(699\) −24.1723 −0.914281
\(700\) 0 0
\(701\) −46.7733 −1.76660 −0.883302 0.468805i \(-0.844685\pi\)
−0.883302 + 0.468805i \(0.844685\pi\)
\(702\) 0 0
\(703\) 1.43901 0.0542732
\(704\) 0 0
\(705\) −8.51710 −0.320772
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −5.15814 −0.193718 −0.0968590 0.995298i \(-0.530880\pi\)
−0.0968590 + 0.995298i \(0.530880\pi\)
\(710\) 0 0
\(711\) 14.0670 0.527553
\(712\) 0 0
\(713\) 1.24291 0.0465473
\(714\) 0 0
\(715\) 0.102168 0.00382088
\(716\) 0 0
\(717\) 8.69755 0.324816
\(718\) 0 0
\(719\) −41.4647 −1.54637 −0.773186 0.634179i \(-0.781338\pi\)
−0.773186 + 0.634179i \(0.781338\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 20.3038 0.755107
\(724\) 0 0
\(725\) 70.2556 2.60923
\(726\) 0 0
\(727\) −2.82479 −0.104766 −0.0523828 0.998627i \(-0.516682\pi\)
−0.0523828 + 0.998627i \(0.516682\pi\)
\(728\) 0 0
\(729\) 25.5906 0.947800
\(730\) 0 0
\(731\) 4.93770 0.182627
\(732\) 0 0
\(733\) −15.3118 −0.565556 −0.282778 0.959185i \(-0.591256\pi\)
−0.282778 + 0.959185i \(0.591256\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 7.89389 0.290775
\(738\) 0 0
\(739\) −25.0298 −0.920737 −0.460369 0.887728i \(-0.652283\pi\)
−0.460369 + 0.887728i \(0.652283\pi\)
\(740\) 0 0
\(741\) 0.0106835 0.000392467 0
\(742\) 0 0
\(743\) −16.1647 −0.593027 −0.296513 0.955029i \(-0.595824\pi\)
−0.296513 + 0.955029i \(0.595824\pi\)
\(744\) 0 0
\(745\) 9.04893 0.331527
\(746\) 0 0
\(747\) −21.9958 −0.804783
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 44.4820 1.62317 0.811586 0.584233i \(-0.198604\pi\)
0.811586 + 0.584233i \(0.198604\pi\)
\(752\) 0 0
\(753\) −11.1458 −0.406174
\(754\) 0 0
\(755\) −74.2154 −2.70097
\(756\) 0 0
\(757\) 4.00941 0.145724 0.0728622 0.997342i \(-0.476787\pi\)
0.0728622 + 0.997342i \(0.476787\pi\)
\(758\) 0 0
\(759\) 1.88526 0.0684306
\(760\) 0 0
\(761\) −30.0752 −1.09023 −0.545113 0.838363i \(-0.683513\pi\)
−0.545113 + 0.838363i \(0.683513\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 5.64063 0.203937
\(766\) 0 0
\(767\) 0.0884055 0.00319214
\(768\) 0 0
\(769\) −38.3403 −1.38259 −0.691293 0.722575i \(-0.742959\pi\)
−0.691293 + 0.722575i \(0.742959\pi\)
\(770\) 0 0
\(771\) −9.05404 −0.326073
\(772\) 0 0
\(773\) 32.6953 1.17597 0.587983 0.808873i \(-0.299922\pi\)
0.587983 + 0.808873i \(0.299922\pi\)
\(774\) 0 0
\(775\) 15.7263 0.564905
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −0.400106 −0.0143353
\(780\) 0 0
\(781\) 20.6382 0.738492
\(782\) 0 0
\(783\) −32.3299 −1.15538
\(784\) 0 0
\(785\) −6.05756 −0.216204
\(786\) 0 0
\(787\) −19.8276 −0.706778 −0.353389 0.935476i \(-0.614971\pi\)
−0.353389 + 0.935476i \(0.614971\pi\)
\(788\) 0 0
\(789\) 23.6396 0.841591
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0.234218 0.00831733
\(794\) 0 0
\(795\) 26.5226 0.940660
\(796\) 0 0
\(797\) −21.6470 −0.766775 −0.383387 0.923588i \(-0.625243\pi\)
−0.383387 + 0.923588i \(0.625243\pi\)
\(798\) 0 0
\(799\) 1.60825 0.0568957
\(800\) 0 0
\(801\) 14.4252 0.509689
\(802\) 0 0
\(803\) −4.86431 −0.171658
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 24.1341 0.849559
\(808\) 0 0
\(809\) −2.54896 −0.0896166 −0.0448083 0.998996i \(-0.514268\pi\)
−0.0448083 + 0.998996i \(0.514268\pi\)
\(810\) 0 0
\(811\) 15.4648 0.543042 0.271521 0.962432i \(-0.412473\pi\)
0.271521 + 0.962432i \(0.412473\pi\)
\(812\) 0 0
\(813\) −37.1385 −1.30250
\(814\) 0 0
\(815\) −68.6877 −2.40602
\(816\) 0 0
\(817\) −2.56672 −0.0897983
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −43.2553 −1.50962 −0.754811 0.655942i \(-0.772271\pi\)
−0.754811 + 0.655942i \(0.772271\pi\)
\(822\) 0 0
\(823\) −2.18064 −0.0760124 −0.0380062 0.999278i \(-0.512101\pi\)
−0.0380062 + 0.999278i \(0.512101\pi\)
\(824\) 0 0
\(825\) 23.8539 0.830485
\(826\) 0 0
\(827\) 2.33083 0.0810508 0.0405254 0.999179i \(-0.487097\pi\)
0.0405254 + 0.999179i \(0.487097\pi\)
\(828\) 0 0
\(829\) −10.6090 −0.368466 −0.184233 0.982883i \(-0.558980\pi\)
−0.184233 + 0.982883i \(0.558980\pi\)
\(830\) 0 0
\(831\) −0.967650 −0.0335674
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 55.3719 1.91623
\(836\) 0 0
\(837\) −7.23685 −0.250142
\(838\) 0 0
\(839\) 11.5111 0.397408 0.198704 0.980060i \(-0.436327\pi\)
0.198704 + 0.980060i \(0.436327\pi\)
\(840\) 0 0
\(841\) 4.54104 0.156588
\(842\) 0 0
\(843\) 25.9362 0.893290
\(844\) 0 0
\(845\) −53.8052 −1.85096
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −14.0321 −0.481582
\(850\) 0 0
\(851\) 2.65408 0.0909807
\(852\) 0 0
\(853\) 3.81565 0.130646 0.0653228 0.997864i \(-0.479192\pi\)
0.0653228 + 0.997864i \(0.479192\pi\)
\(854\) 0 0
\(855\) −2.93212 −0.100277
\(856\) 0 0
\(857\) 28.4078 0.970393 0.485197 0.874405i \(-0.338748\pi\)
0.485197 + 0.874405i \(0.338748\pi\)
\(858\) 0 0
\(859\) 21.7166 0.740961 0.370481 0.928840i \(-0.379193\pi\)
0.370481 + 0.928840i \(0.379193\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −41.4622 −1.41139 −0.705694 0.708516i \(-0.749365\pi\)
−0.705694 + 0.708516i \(0.749365\pi\)
\(864\) 0 0
\(865\) 16.1812 0.550178
\(866\) 0 0
\(867\) 1.27952 0.0434549
\(868\) 0 0
\(869\) −15.8628 −0.538110
\(870\) 0 0
\(871\) 0.0825053 0.00279559
\(872\) 0 0
\(873\) −13.7021 −0.463746
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 20.6058 0.695809 0.347905 0.937530i \(-0.386893\pi\)
0.347905 + 0.937530i \(0.386893\pi\)
\(878\) 0 0
\(879\) −6.40388 −0.215997
\(880\) 0 0
\(881\) −35.1391 −1.18387 −0.591934 0.805987i \(-0.701635\pi\)
−0.591934 + 0.805987i \(0.701635\pi\)
\(882\) 0 0
\(883\) 2.56154 0.0862027 0.0431014 0.999071i \(-0.486276\pi\)
0.0431014 + 0.999071i \(0.486276\pi\)
\(884\) 0 0
\(885\) 29.1480 0.979800
\(886\) 0 0
\(887\) −37.6761 −1.26504 −0.632520 0.774544i \(-0.717979\pi\)
−0.632520 + 0.774544i \(0.717979\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −4.69382 −0.157249
\(892\) 0 0
\(893\) −0.836003 −0.0279758
\(894\) 0 0
\(895\) −101.058 −3.37799
\(896\) 0 0
\(897\) 0.0197044 0.000657910 0
\(898\) 0 0
\(899\) 7.50797 0.250405
\(900\) 0 0
\(901\) −5.00816 −0.166846
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 63.1256 2.09836
\(906\) 0 0
\(907\) −28.4367 −0.944224 −0.472112 0.881539i \(-0.656508\pi\)
−0.472112 + 0.881539i \(0.656508\pi\)
\(908\) 0 0
\(909\) 15.7046 0.520889
\(910\) 0 0
\(911\) −9.68890 −0.321008 −0.160504 0.987035i \(-0.551312\pi\)
−0.160504 + 0.987035i \(0.551312\pi\)
\(912\) 0 0
\(913\) 24.8038 0.820887
\(914\) 0 0
\(915\) 77.2237 2.55294
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 1.22717 0.0404807 0.0202404 0.999795i \(-0.493557\pi\)
0.0202404 + 0.999795i \(0.493557\pi\)
\(920\) 0 0
\(921\) −29.6290 −0.976310
\(922\) 0 0
\(923\) 0.215706 0.00710005
\(924\) 0 0
\(925\) 33.5816 1.10416
\(926\) 0 0
\(927\) 9.67184 0.317665
\(928\) 0 0
\(929\) 37.3244 1.22457 0.612287 0.790635i \(-0.290250\pi\)
0.612287 + 0.790635i \(0.290250\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 35.0702 1.14815
\(934\) 0 0
\(935\) −6.36074 −0.208018
\(936\) 0 0
\(937\) 11.8297 0.386459 0.193229 0.981154i \(-0.438104\pi\)
0.193229 + 0.981154i \(0.438104\pi\)
\(938\) 0 0
\(939\) 29.1835 0.952368
\(940\) 0 0
\(941\) −1.74652 −0.0569348 −0.0284674 0.999595i \(-0.509063\pi\)
−0.0284674 + 0.999595i \(0.509063\pi\)
\(942\) 0 0
\(943\) −0.737947 −0.0240309
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −18.3949 −0.597754 −0.298877 0.954292i \(-0.596612\pi\)
−0.298877 + 0.954292i \(0.596612\pi\)
\(948\) 0 0
\(949\) −0.0508408 −0.00165036
\(950\) 0 0
\(951\) −28.9179 −0.937727
\(952\) 0 0
\(953\) −34.8806 −1.12989 −0.564947 0.825127i \(-0.691103\pi\)
−0.564947 + 0.825127i \(0.691103\pi\)
\(954\) 0 0
\(955\) 5.60855 0.181488
\(956\) 0 0
\(957\) 11.3882 0.368128
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −29.3194 −0.945787
\(962\) 0 0
\(963\) 17.6147 0.567626
\(964\) 0 0
\(965\) −89.3756 −2.87710
\(966\) 0 0
\(967\) 45.2995 1.45674 0.728368 0.685187i \(-0.240279\pi\)
0.728368 + 0.685187i \(0.240279\pi\)
\(968\) 0 0
\(969\) −0.665125 −0.0213669
\(970\) 0 0
\(971\) −8.93181 −0.286635 −0.143318 0.989677i \(-0.545777\pi\)
−0.143318 + 0.989677i \(0.545777\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0.249316 0.00798449
\(976\) 0 0
\(977\) 24.4223 0.781338 0.390669 0.920531i \(-0.372244\pi\)
0.390669 + 0.920531i \(0.372244\pi\)
\(978\) 0 0
\(979\) −16.2668 −0.519888
\(980\) 0 0
\(981\) 11.9800 0.382491
\(982\) 0 0
\(983\) 40.0513 1.27744 0.638719 0.769440i \(-0.279465\pi\)
0.638719 + 0.769440i \(0.279465\pi\)
\(984\) 0 0
\(985\) 1.41610 0.0451208
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −4.73402 −0.150533
\(990\) 0 0
\(991\) −23.4318 −0.744335 −0.372168 0.928166i \(-0.621385\pi\)
−0.372168 + 0.928166i \(0.621385\pi\)
\(992\) 0 0
\(993\) −32.7035 −1.03781
\(994\) 0 0
\(995\) −76.7613 −2.43350
\(996\) 0 0
\(997\) 25.5055 0.807768 0.403884 0.914810i \(-0.367660\pi\)
0.403884 + 0.914810i \(0.367660\pi\)
\(998\) 0 0
\(999\) −15.4534 −0.488924
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3332.2.a.u.1.6 yes 8
7.6 odd 2 3332.2.a.t.1.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3332.2.a.t.1.3 8 7.6 odd 2
3332.2.a.u.1.6 yes 8 1.1 even 1 trivial