Properties

Label 3332.2.a.u.1.4
Level $3332$
Weight $2$
Character 3332.1
Self dual yes
Analytic conductor $26.606$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3332,2,Mod(1,3332)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3332, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3332.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3332 = 2^{2} \cdot 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3332.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.6061539535\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} - 8x^{6} + 36x^{5} + 17x^{4} - 76x^{3} - 20x^{2} + 44x + 17 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-0.453360\) of defining polynomial
Character \(\chi\) \(=\) 3332.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.453360 q^{3} -3.09710 q^{5} -2.79446 q^{9} -3.54035 q^{11} +6.65819 q^{13} +1.40410 q^{15} -1.00000 q^{17} -3.06981 q^{19} -2.80826 q^{23} +4.59204 q^{25} +2.62698 q^{27} +1.12602 q^{29} -8.64360 q^{31} +1.60505 q^{33} -3.44940 q^{37} -3.01856 q^{39} -4.53841 q^{41} -10.2580 q^{43} +8.65474 q^{45} +6.83631 q^{47} +0.453360 q^{51} -6.24289 q^{53} +10.9648 q^{55} +1.39173 q^{57} +4.06149 q^{59} +12.4207 q^{61} -20.6211 q^{65} -6.60650 q^{67} +1.27315 q^{69} +6.60825 q^{71} +5.57268 q^{73} -2.08185 q^{75} +4.57456 q^{79} +7.19243 q^{81} +8.30865 q^{83} +3.09710 q^{85} -0.510494 q^{87} +2.87836 q^{89} +3.91866 q^{93} +9.50750 q^{95} +4.43114 q^{97} +9.89338 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{3} + 4 q^{5} + 8 q^{9} - 4 q^{11} + 20 q^{13} + 12 q^{15} - 8 q^{17} + 8 q^{19} + 4 q^{23} + 8 q^{25} + 28 q^{27} - 16 q^{29} - 8 q^{31} + 16 q^{33} + 8 q^{37} + 20 q^{39} + 12 q^{41} - 4 q^{43}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.453360 −0.261748 −0.130874 0.991399i \(-0.541778\pi\)
−0.130874 + 0.991399i \(0.541778\pi\)
\(4\) 0 0
\(5\) −3.09710 −1.38507 −0.692533 0.721386i \(-0.743505\pi\)
−0.692533 + 0.721386i \(0.743505\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −2.79446 −0.931488
\(10\) 0 0
\(11\) −3.54035 −1.06746 −0.533728 0.845656i \(-0.679209\pi\)
−0.533728 + 0.845656i \(0.679209\pi\)
\(12\) 0 0
\(13\) 6.65819 1.84665 0.923324 0.384021i \(-0.125461\pi\)
0.923324 + 0.384021i \(0.125461\pi\)
\(14\) 0 0
\(15\) 1.40410 0.362538
\(16\) 0 0
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) −3.06981 −0.704262 −0.352131 0.935951i \(-0.614543\pi\)
−0.352131 + 0.935951i \(0.614543\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.80826 −0.585562 −0.292781 0.956180i \(-0.594581\pi\)
−0.292781 + 0.956180i \(0.594581\pi\)
\(24\) 0 0
\(25\) 4.59204 0.918407
\(26\) 0 0
\(27\) 2.62698 0.505562
\(28\) 0 0
\(29\) 1.12602 0.209097 0.104549 0.994520i \(-0.466660\pi\)
0.104549 + 0.994520i \(0.466660\pi\)
\(30\) 0 0
\(31\) −8.64360 −1.55244 −0.776218 0.630465i \(-0.782864\pi\)
−0.776218 + 0.630465i \(0.782864\pi\)
\(32\) 0 0
\(33\) 1.60505 0.279404
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −3.44940 −0.567079 −0.283539 0.958961i \(-0.591509\pi\)
−0.283539 + 0.958961i \(0.591509\pi\)
\(38\) 0 0
\(39\) −3.01856 −0.483356
\(40\) 0 0
\(41\) −4.53841 −0.708781 −0.354391 0.935097i \(-0.615312\pi\)
−0.354391 + 0.935097i \(0.615312\pi\)
\(42\) 0 0
\(43\) −10.2580 −1.56433 −0.782165 0.623071i \(-0.785885\pi\)
−0.782165 + 0.623071i \(0.785885\pi\)
\(44\) 0 0
\(45\) 8.65474 1.29017
\(46\) 0 0
\(47\) 6.83631 0.997179 0.498589 0.866838i \(-0.333852\pi\)
0.498589 + 0.866838i \(0.333852\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0.453360 0.0634831
\(52\) 0 0
\(53\) −6.24289 −0.857527 −0.428763 0.903417i \(-0.641051\pi\)
−0.428763 + 0.903417i \(0.641051\pi\)
\(54\) 0 0
\(55\) 10.9648 1.47850
\(56\) 0 0
\(57\) 1.39173 0.184339
\(58\) 0 0
\(59\) 4.06149 0.528761 0.264381 0.964418i \(-0.414833\pi\)
0.264381 + 0.964418i \(0.414833\pi\)
\(60\) 0 0
\(61\) 12.4207 1.59031 0.795155 0.606406i \(-0.207389\pi\)
0.795155 + 0.606406i \(0.207389\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −20.6211 −2.55773
\(66\) 0 0
\(67\) −6.60650 −0.807112 −0.403556 0.914955i \(-0.632226\pi\)
−0.403556 + 0.914955i \(0.632226\pi\)
\(68\) 0 0
\(69\) 1.27315 0.153269
\(70\) 0 0
\(71\) 6.60825 0.784255 0.392128 0.919911i \(-0.371739\pi\)
0.392128 + 0.919911i \(0.371739\pi\)
\(72\) 0 0
\(73\) 5.57268 0.652232 0.326116 0.945330i \(-0.394260\pi\)
0.326116 + 0.945330i \(0.394260\pi\)
\(74\) 0 0
\(75\) −2.08185 −0.240391
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 4.57456 0.514678 0.257339 0.966321i \(-0.417154\pi\)
0.257339 + 0.966321i \(0.417154\pi\)
\(80\) 0 0
\(81\) 7.19243 0.799159
\(82\) 0 0
\(83\) 8.30865 0.911993 0.455997 0.889982i \(-0.349283\pi\)
0.455997 + 0.889982i \(0.349283\pi\)
\(84\) 0 0
\(85\) 3.09710 0.335928
\(86\) 0 0
\(87\) −0.510494 −0.0547307
\(88\) 0 0
\(89\) 2.87836 0.305106 0.152553 0.988295i \(-0.451251\pi\)
0.152553 + 0.988295i \(0.451251\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 3.91866 0.406346
\(94\) 0 0
\(95\) 9.50750 0.975449
\(96\) 0 0
\(97\) 4.43114 0.449914 0.224957 0.974369i \(-0.427776\pi\)
0.224957 + 0.974369i \(0.427776\pi\)
\(98\) 0 0
\(99\) 9.89338 0.994322
\(100\) 0 0
\(101\) 3.07544 0.306018 0.153009 0.988225i \(-0.451104\pi\)
0.153009 + 0.988225i \(0.451104\pi\)
\(102\) 0 0
\(103\) 15.6959 1.54656 0.773279 0.634066i \(-0.218615\pi\)
0.773279 + 0.634066i \(0.218615\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −4.32316 −0.417935 −0.208968 0.977923i \(-0.567010\pi\)
−0.208968 + 0.977923i \(0.567010\pi\)
\(108\) 0 0
\(109\) 16.9900 1.62735 0.813674 0.581322i \(-0.197464\pi\)
0.813674 + 0.581322i \(0.197464\pi\)
\(110\) 0 0
\(111\) 1.56382 0.148431
\(112\) 0 0
\(113\) −9.49175 −0.892909 −0.446454 0.894806i \(-0.647313\pi\)
−0.446454 + 0.894806i \(0.647313\pi\)
\(114\) 0 0
\(115\) 8.69745 0.811042
\(116\) 0 0
\(117\) −18.6061 −1.72013
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 1.53408 0.139461
\(122\) 0 0
\(123\) 2.05754 0.185522
\(124\) 0 0
\(125\) 1.26351 0.113011
\(126\) 0 0
\(127\) 14.3430 1.27274 0.636368 0.771386i \(-0.280436\pi\)
0.636368 + 0.771386i \(0.280436\pi\)
\(128\) 0 0
\(129\) 4.65057 0.409460
\(130\) 0 0
\(131\) 6.78080 0.592441 0.296221 0.955120i \(-0.404274\pi\)
0.296221 + 0.955120i \(0.404274\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −8.13602 −0.700237
\(136\) 0 0
\(137\) 9.46127 0.808331 0.404165 0.914686i \(-0.367562\pi\)
0.404165 + 0.914686i \(0.367562\pi\)
\(138\) 0 0
\(139\) −2.03353 −0.172482 −0.0862409 0.996274i \(-0.527485\pi\)
−0.0862409 + 0.996274i \(0.527485\pi\)
\(140\) 0 0
\(141\) −3.09931 −0.261009
\(142\) 0 0
\(143\) −23.5723 −1.97122
\(144\) 0 0
\(145\) −3.48741 −0.289613
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −22.3323 −1.82953 −0.914766 0.403984i \(-0.867625\pi\)
−0.914766 + 0.403984i \(0.867625\pi\)
\(150\) 0 0
\(151\) 19.6431 1.59853 0.799265 0.600979i \(-0.205223\pi\)
0.799265 + 0.600979i \(0.205223\pi\)
\(152\) 0 0
\(153\) 2.79446 0.225919
\(154\) 0 0
\(155\) 26.7701 2.15023
\(156\) 0 0
\(157\) 24.4250 1.94933 0.974664 0.223672i \(-0.0718044\pi\)
0.974664 + 0.223672i \(0.0718044\pi\)
\(158\) 0 0
\(159\) 2.83028 0.224455
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −4.63623 −0.363137 −0.181569 0.983378i \(-0.558117\pi\)
−0.181569 + 0.983378i \(0.558117\pi\)
\(164\) 0 0
\(165\) −4.97101 −0.386993
\(166\) 0 0
\(167\) −18.7982 −1.45465 −0.727323 0.686295i \(-0.759236\pi\)
−0.727323 + 0.686295i \(0.759236\pi\)
\(168\) 0 0
\(169\) 31.3315 2.41011
\(170\) 0 0
\(171\) 8.57847 0.656012
\(172\) 0 0
\(173\) −3.68628 −0.280263 −0.140131 0.990133i \(-0.544752\pi\)
−0.140131 + 0.990133i \(0.544752\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −1.84132 −0.138402
\(178\) 0 0
\(179\) 18.0582 1.34973 0.674865 0.737941i \(-0.264202\pi\)
0.674865 + 0.737941i \(0.264202\pi\)
\(180\) 0 0
\(181\) 8.56085 0.636323 0.318162 0.948036i \(-0.396935\pi\)
0.318162 + 0.948036i \(0.396935\pi\)
\(182\) 0 0
\(183\) −5.63106 −0.416260
\(184\) 0 0
\(185\) 10.6832 0.785441
\(186\) 0 0
\(187\) 3.54035 0.258896
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −3.88693 −0.281248 −0.140624 0.990063i \(-0.544911\pi\)
−0.140624 + 0.990063i \(0.544911\pi\)
\(192\) 0 0
\(193\) −9.12362 −0.656733 −0.328366 0.944550i \(-0.606498\pi\)
−0.328366 + 0.944550i \(0.606498\pi\)
\(194\) 0 0
\(195\) 9.34877 0.669480
\(196\) 0 0
\(197\) −22.2054 −1.58207 −0.791036 0.611770i \(-0.790458\pi\)
−0.791036 + 0.611770i \(0.790458\pi\)
\(198\) 0 0
\(199\) −22.3615 −1.58516 −0.792582 0.609765i \(-0.791264\pi\)
−0.792582 + 0.609765i \(0.791264\pi\)
\(200\) 0 0
\(201\) 2.99512 0.211260
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 14.0559 0.981708
\(206\) 0 0
\(207\) 7.84757 0.545444
\(208\) 0 0
\(209\) 10.8682 0.751769
\(210\) 0 0
\(211\) 19.8752 1.36826 0.684131 0.729359i \(-0.260182\pi\)
0.684131 + 0.729359i \(0.260182\pi\)
\(212\) 0 0
\(213\) −2.99592 −0.205277
\(214\) 0 0
\(215\) 31.7701 2.16670
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −2.52643 −0.170720
\(220\) 0 0
\(221\) −6.65819 −0.447878
\(222\) 0 0
\(223\) −6.56638 −0.439717 −0.219859 0.975532i \(-0.570560\pi\)
−0.219859 + 0.975532i \(0.570560\pi\)
\(224\) 0 0
\(225\) −12.8323 −0.855485
\(226\) 0 0
\(227\) −25.3441 −1.68215 −0.841073 0.540922i \(-0.818076\pi\)
−0.841073 + 0.540922i \(0.818076\pi\)
\(228\) 0 0
\(229\) 15.0996 0.997813 0.498906 0.866656i \(-0.333735\pi\)
0.498906 + 0.866656i \(0.333735\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3.96743 0.259915 0.129957 0.991520i \(-0.458516\pi\)
0.129957 + 0.991520i \(0.458516\pi\)
\(234\) 0 0
\(235\) −21.1727 −1.38116
\(236\) 0 0
\(237\) −2.07392 −0.134716
\(238\) 0 0
\(239\) −12.6784 −0.820100 −0.410050 0.912063i \(-0.634489\pi\)
−0.410050 + 0.912063i \(0.634489\pi\)
\(240\) 0 0
\(241\) −16.8444 −1.08504 −0.542521 0.840042i \(-0.682530\pi\)
−0.542521 + 0.840042i \(0.682530\pi\)
\(242\) 0 0
\(243\) −11.1417 −0.714740
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −20.4394 −1.30052
\(248\) 0 0
\(249\) −3.76681 −0.238712
\(250\) 0 0
\(251\) −29.0437 −1.83322 −0.916610 0.399782i \(-0.869086\pi\)
−0.916610 + 0.399782i \(0.869086\pi\)
\(252\) 0 0
\(253\) 9.94221 0.625061
\(254\) 0 0
\(255\) −1.40410 −0.0879283
\(256\) 0 0
\(257\) 13.2769 0.828193 0.414096 0.910233i \(-0.364098\pi\)
0.414096 + 0.910233i \(0.364098\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −3.14663 −0.194772
\(262\) 0 0
\(263\) −9.26082 −0.571047 −0.285523 0.958372i \(-0.592167\pi\)
−0.285523 + 0.958372i \(0.592167\pi\)
\(264\) 0 0
\(265\) 19.3349 1.18773
\(266\) 0 0
\(267\) −1.30494 −0.0798607
\(268\) 0 0
\(269\) −3.05810 −0.186456 −0.0932278 0.995645i \(-0.529718\pi\)
−0.0932278 + 0.995645i \(0.529718\pi\)
\(270\) 0 0
\(271\) 13.9100 0.844974 0.422487 0.906369i \(-0.361157\pi\)
0.422487 + 0.906369i \(0.361157\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −16.2574 −0.980359
\(276\) 0 0
\(277\) 20.6937 1.24337 0.621683 0.783269i \(-0.286449\pi\)
0.621683 + 0.783269i \(0.286449\pi\)
\(278\) 0 0
\(279\) 24.1542 1.44608
\(280\) 0 0
\(281\) −10.5352 −0.628477 −0.314238 0.949344i \(-0.601749\pi\)
−0.314238 + 0.949344i \(0.601749\pi\)
\(282\) 0 0
\(283\) 20.4887 1.21793 0.608963 0.793199i \(-0.291586\pi\)
0.608963 + 0.793199i \(0.291586\pi\)
\(284\) 0 0
\(285\) −4.31032 −0.255321
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −2.00890 −0.117764
\(292\) 0 0
\(293\) 27.5224 1.60788 0.803938 0.594714i \(-0.202735\pi\)
0.803938 + 0.594714i \(0.202735\pi\)
\(294\) 0 0
\(295\) −12.5788 −0.732369
\(296\) 0 0
\(297\) −9.30042 −0.539665
\(298\) 0 0
\(299\) −18.6979 −1.08133
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −1.39428 −0.0800994
\(304\) 0 0
\(305\) −38.4682 −2.20268
\(306\) 0 0
\(307\) 7.76987 0.443450 0.221725 0.975109i \(-0.428831\pi\)
0.221725 + 0.975109i \(0.428831\pi\)
\(308\) 0 0
\(309\) −7.11587 −0.404808
\(310\) 0 0
\(311\) 22.2882 1.26385 0.631924 0.775030i \(-0.282265\pi\)
0.631924 + 0.775030i \(0.282265\pi\)
\(312\) 0 0
\(313\) −20.1306 −1.13785 −0.568926 0.822389i \(-0.692641\pi\)
−0.568926 + 0.822389i \(0.692641\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 4.82760 0.271145 0.135573 0.990767i \(-0.456713\pi\)
0.135573 + 0.990767i \(0.456713\pi\)
\(318\) 0 0
\(319\) −3.98652 −0.223202
\(320\) 0 0
\(321\) 1.95995 0.109394
\(322\) 0 0
\(323\) 3.06981 0.170809
\(324\) 0 0
\(325\) 30.5746 1.69598
\(326\) 0 0
\(327\) −7.70259 −0.425954
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 25.5175 1.40257 0.701284 0.712882i \(-0.252610\pi\)
0.701284 + 0.712882i \(0.252610\pi\)
\(332\) 0 0
\(333\) 9.63924 0.528227
\(334\) 0 0
\(335\) 20.4610 1.11790
\(336\) 0 0
\(337\) −6.38558 −0.347845 −0.173922 0.984759i \(-0.555644\pi\)
−0.173922 + 0.984759i \(0.555644\pi\)
\(338\) 0 0
\(339\) 4.30318 0.233717
\(340\) 0 0
\(341\) 30.6014 1.65716
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −3.94308 −0.212288
\(346\) 0 0
\(347\) 23.5121 1.26220 0.631098 0.775703i \(-0.282604\pi\)
0.631098 + 0.775703i \(0.282604\pi\)
\(348\) 0 0
\(349\) 6.73510 0.360522 0.180261 0.983619i \(-0.442306\pi\)
0.180261 + 0.983619i \(0.442306\pi\)
\(350\) 0 0
\(351\) 17.4909 0.933596
\(352\) 0 0
\(353\) −5.65720 −0.301102 −0.150551 0.988602i \(-0.548105\pi\)
−0.150551 + 0.988602i \(0.548105\pi\)
\(354\) 0 0
\(355\) −20.4664 −1.08624
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −34.5038 −1.82104 −0.910519 0.413467i \(-0.864318\pi\)
−0.910519 + 0.413467i \(0.864318\pi\)
\(360\) 0 0
\(361\) −9.57628 −0.504015
\(362\) 0 0
\(363\) −0.695488 −0.0365037
\(364\) 0 0
\(365\) −17.2591 −0.903385
\(366\) 0 0
\(367\) −21.1712 −1.10513 −0.552565 0.833470i \(-0.686351\pi\)
−0.552565 + 0.833470i \(0.686351\pi\)
\(368\) 0 0
\(369\) 12.6824 0.660221
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 29.6581 1.53564 0.767819 0.640666i \(-0.221342\pi\)
0.767819 + 0.640666i \(0.221342\pi\)
\(374\) 0 0
\(375\) −0.572823 −0.0295805
\(376\) 0 0
\(377\) 7.49727 0.386129
\(378\) 0 0
\(379\) 8.67022 0.445359 0.222680 0.974892i \(-0.428520\pi\)
0.222680 + 0.974892i \(0.428520\pi\)
\(380\) 0 0
\(381\) −6.50254 −0.333135
\(382\) 0 0
\(383\) −30.2331 −1.54484 −0.772421 0.635111i \(-0.780954\pi\)
−0.772421 + 0.635111i \(0.780954\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 28.6656 1.45716
\(388\) 0 0
\(389\) 15.8089 0.801543 0.400771 0.916178i \(-0.368742\pi\)
0.400771 + 0.916178i \(0.368742\pi\)
\(390\) 0 0
\(391\) 2.80826 0.142020
\(392\) 0 0
\(393\) −3.07414 −0.155070
\(394\) 0 0
\(395\) −14.1679 −0.712863
\(396\) 0 0
\(397\) −14.6825 −0.736893 −0.368446 0.929649i \(-0.620110\pi\)
−0.368446 + 0.929649i \(0.620110\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 39.4024 1.96766 0.983831 0.179097i \(-0.0573176\pi\)
0.983831 + 0.179097i \(0.0573176\pi\)
\(402\) 0 0
\(403\) −57.5507 −2.86680
\(404\) 0 0
\(405\) −22.2757 −1.10689
\(406\) 0 0
\(407\) 12.2121 0.605331
\(408\) 0 0
\(409\) 12.4277 0.614508 0.307254 0.951627i \(-0.400590\pi\)
0.307254 + 0.951627i \(0.400590\pi\)
\(410\) 0 0
\(411\) −4.28936 −0.211579
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −25.7327 −1.26317
\(416\) 0 0
\(417\) 0.921922 0.0451467
\(418\) 0 0
\(419\) −11.5824 −0.565838 −0.282919 0.959144i \(-0.591303\pi\)
−0.282919 + 0.959144i \(0.591303\pi\)
\(420\) 0 0
\(421\) −7.22185 −0.351971 −0.175986 0.984393i \(-0.556311\pi\)
−0.175986 + 0.984393i \(0.556311\pi\)
\(422\) 0 0
\(423\) −19.1038 −0.928860
\(424\) 0 0
\(425\) −4.59204 −0.222746
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 10.6867 0.515961
\(430\) 0 0
\(431\) 37.0625 1.78524 0.892618 0.450813i \(-0.148866\pi\)
0.892618 + 0.450813i \(0.148866\pi\)
\(432\) 0 0
\(433\) 5.21558 0.250645 0.125322 0.992116i \(-0.460003\pi\)
0.125322 + 0.992116i \(0.460003\pi\)
\(434\) 0 0
\(435\) 1.58105 0.0758056
\(436\) 0 0
\(437\) 8.62081 0.412389
\(438\) 0 0
\(439\) −4.68381 −0.223546 −0.111773 0.993734i \(-0.535653\pi\)
−0.111773 + 0.993734i \(0.535653\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −3.16753 −0.150494 −0.0752471 0.997165i \(-0.523975\pi\)
−0.0752471 + 0.997165i \(0.523975\pi\)
\(444\) 0 0
\(445\) −8.91458 −0.422592
\(446\) 0 0
\(447\) 10.1246 0.478876
\(448\) 0 0
\(449\) −7.42717 −0.350510 −0.175255 0.984523i \(-0.556075\pi\)
−0.175255 + 0.984523i \(0.556075\pi\)
\(450\) 0 0
\(451\) 16.0676 0.756592
\(452\) 0 0
\(453\) −8.90538 −0.418411
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0.799652 0.0374061 0.0187031 0.999825i \(-0.494046\pi\)
0.0187031 + 0.999825i \(0.494046\pi\)
\(458\) 0 0
\(459\) −2.62698 −0.122617
\(460\) 0 0
\(461\) 2.54474 0.118520 0.0592602 0.998243i \(-0.481126\pi\)
0.0592602 + 0.998243i \(0.481126\pi\)
\(462\) 0 0
\(463\) −21.5866 −1.00321 −0.501607 0.865096i \(-0.667258\pi\)
−0.501607 + 0.865096i \(0.667258\pi\)
\(464\) 0 0
\(465\) −12.1365 −0.562816
\(466\) 0 0
\(467\) 6.02385 0.278751 0.139375 0.990240i \(-0.455491\pi\)
0.139375 + 0.990240i \(0.455491\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −11.0733 −0.510232
\(472\) 0 0
\(473\) 36.3169 1.66985
\(474\) 0 0
\(475\) −14.0967 −0.646799
\(476\) 0 0
\(477\) 17.4455 0.798776
\(478\) 0 0
\(479\) −25.9297 −1.18476 −0.592378 0.805660i \(-0.701811\pi\)
−0.592378 + 0.805660i \(0.701811\pi\)
\(480\) 0 0
\(481\) −22.9668 −1.04719
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −13.7237 −0.623160
\(486\) 0 0
\(487\) −17.3380 −0.785659 −0.392830 0.919611i \(-0.628504\pi\)
−0.392830 + 0.919611i \(0.628504\pi\)
\(488\) 0 0
\(489\) 2.10188 0.0950503
\(490\) 0 0
\(491\) −16.6262 −0.750332 −0.375166 0.926958i \(-0.622414\pi\)
−0.375166 + 0.926958i \(0.622414\pi\)
\(492\) 0 0
\(493\) −1.12602 −0.0507135
\(494\) 0 0
\(495\) −30.6408 −1.37720
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −11.1886 −0.500872 −0.250436 0.968133i \(-0.580574\pi\)
−0.250436 + 0.968133i \(0.580574\pi\)
\(500\) 0 0
\(501\) 8.52234 0.380750
\(502\) 0 0
\(503\) −33.0057 −1.47165 −0.735826 0.677170i \(-0.763206\pi\)
−0.735826 + 0.677170i \(0.763206\pi\)
\(504\) 0 0
\(505\) −9.52494 −0.423854
\(506\) 0 0
\(507\) −14.2044 −0.630841
\(508\) 0 0
\(509\) 36.1597 1.60275 0.801374 0.598163i \(-0.204102\pi\)
0.801374 + 0.598163i \(0.204102\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −8.06432 −0.356048
\(514\) 0 0
\(515\) −48.6116 −2.14209
\(516\) 0 0
\(517\) −24.2029 −1.06444
\(518\) 0 0
\(519\) 1.67121 0.0733581
\(520\) 0 0
\(521\) 20.2824 0.888589 0.444294 0.895881i \(-0.353454\pi\)
0.444294 + 0.895881i \(0.353454\pi\)
\(522\) 0 0
\(523\) −1.31283 −0.0574062 −0.0287031 0.999588i \(-0.509138\pi\)
−0.0287031 + 0.999588i \(0.509138\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 8.64360 0.376521
\(528\) 0 0
\(529\) −15.1137 −0.657117
\(530\) 0 0
\(531\) −11.3497 −0.492535
\(532\) 0 0
\(533\) −30.2176 −1.30887
\(534\) 0 0
\(535\) 13.3892 0.578868
\(536\) 0 0
\(537\) −8.18685 −0.353288
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 8.89150 0.382275 0.191138 0.981563i \(-0.438782\pi\)
0.191138 + 0.981563i \(0.438782\pi\)
\(542\) 0 0
\(543\) −3.88115 −0.166556
\(544\) 0 0
\(545\) −52.6198 −2.25398
\(546\) 0 0
\(547\) 10.5467 0.450944 0.225472 0.974250i \(-0.427608\pi\)
0.225472 + 0.974250i \(0.427608\pi\)
\(548\) 0 0
\(549\) −34.7093 −1.48136
\(550\) 0 0
\(551\) −3.45667 −0.147259
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −4.84331 −0.205587
\(556\) 0 0
\(557\) 36.6686 1.55370 0.776850 0.629686i \(-0.216816\pi\)
0.776850 + 0.629686i \(0.216816\pi\)
\(558\) 0 0
\(559\) −68.2997 −2.88877
\(560\) 0 0
\(561\) −1.60505 −0.0677654
\(562\) 0 0
\(563\) −0.626188 −0.0263907 −0.0131953 0.999913i \(-0.504200\pi\)
−0.0131953 + 0.999913i \(0.504200\pi\)
\(564\) 0 0
\(565\) 29.3969 1.23674
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 16.9728 0.711539 0.355769 0.934574i \(-0.384219\pi\)
0.355769 + 0.934574i \(0.384219\pi\)
\(570\) 0 0
\(571\) −26.3060 −1.10087 −0.550437 0.834877i \(-0.685539\pi\)
−0.550437 + 0.834877i \(0.685539\pi\)
\(572\) 0 0
\(573\) 1.76218 0.0736160
\(574\) 0 0
\(575\) −12.8956 −0.537784
\(576\) 0 0
\(577\) 36.2699 1.50994 0.754968 0.655762i \(-0.227653\pi\)
0.754968 + 0.655762i \(0.227653\pi\)
\(578\) 0 0
\(579\) 4.13629 0.171898
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 22.1020 0.915371
\(584\) 0 0
\(585\) 57.6249 2.38250
\(586\) 0 0
\(587\) 12.5726 0.518928 0.259464 0.965753i \(-0.416454\pi\)
0.259464 + 0.965753i \(0.416454\pi\)
\(588\) 0 0
\(589\) 26.5342 1.09332
\(590\) 0 0
\(591\) 10.0671 0.414103
\(592\) 0 0
\(593\) 16.1797 0.664420 0.332210 0.943205i \(-0.392206\pi\)
0.332210 + 0.943205i \(0.392206\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 10.1378 0.414913
\(598\) 0 0
\(599\) −42.6737 −1.74360 −0.871801 0.489861i \(-0.837048\pi\)
−0.871801 + 0.489861i \(0.837048\pi\)
\(600\) 0 0
\(601\) −0.499863 −0.0203898 −0.0101949 0.999948i \(-0.503245\pi\)
−0.0101949 + 0.999948i \(0.503245\pi\)
\(602\) 0 0
\(603\) 18.4616 0.751815
\(604\) 0 0
\(605\) −4.75119 −0.193163
\(606\) 0 0
\(607\) 33.5454 1.36157 0.680783 0.732486i \(-0.261640\pi\)
0.680783 + 0.732486i \(0.261640\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 45.5174 1.84144
\(612\) 0 0
\(613\) −8.38832 −0.338801 −0.169401 0.985547i \(-0.554183\pi\)
−0.169401 + 0.985547i \(0.554183\pi\)
\(614\) 0 0
\(615\) −6.37240 −0.256960
\(616\) 0 0
\(617\) −22.1742 −0.892698 −0.446349 0.894859i \(-0.647276\pi\)
−0.446349 + 0.894859i \(0.647276\pi\)
\(618\) 0 0
\(619\) 8.15864 0.327924 0.163962 0.986467i \(-0.447573\pi\)
0.163962 + 0.986467i \(0.447573\pi\)
\(620\) 0 0
\(621\) −7.37723 −0.296038
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −26.8734 −1.07494
\(626\) 0 0
\(627\) −4.92720 −0.196774
\(628\) 0 0
\(629\) 3.44940 0.137537
\(630\) 0 0
\(631\) −24.4102 −0.971754 −0.485877 0.874027i \(-0.661500\pi\)
−0.485877 + 0.874027i \(0.661500\pi\)
\(632\) 0 0
\(633\) −9.01060 −0.358139
\(634\) 0 0
\(635\) −44.4217 −1.76282
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −18.4665 −0.730524
\(640\) 0 0
\(641\) −14.7994 −0.584541 −0.292271 0.956336i \(-0.594411\pi\)
−0.292271 + 0.956336i \(0.594411\pi\)
\(642\) 0 0
\(643\) 19.2503 0.759157 0.379578 0.925160i \(-0.376069\pi\)
0.379578 + 0.925160i \(0.376069\pi\)
\(644\) 0 0
\(645\) −14.4033 −0.567129
\(646\) 0 0
\(647\) 13.4065 0.527064 0.263532 0.964651i \(-0.415113\pi\)
0.263532 + 0.964651i \(0.415113\pi\)
\(648\) 0 0
\(649\) −14.3791 −0.564429
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 45.2896 1.77232 0.886160 0.463379i \(-0.153363\pi\)
0.886160 + 0.463379i \(0.153363\pi\)
\(654\) 0 0
\(655\) −21.0008 −0.820570
\(656\) 0 0
\(657\) −15.5726 −0.607547
\(658\) 0 0
\(659\) 12.8324 0.499878 0.249939 0.968262i \(-0.419589\pi\)
0.249939 + 0.968262i \(0.419589\pi\)
\(660\) 0 0
\(661\) 12.1691 0.473322 0.236661 0.971592i \(-0.423947\pi\)
0.236661 + 0.971592i \(0.423947\pi\)
\(662\) 0 0
\(663\) 3.01856 0.117231
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −3.16216 −0.122439
\(668\) 0 0
\(669\) 2.97693 0.115095
\(670\) 0 0
\(671\) −43.9737 −1.69759
\(672\) 0 0
\(673\) 30.8271 1.18830 0.594148 0.804356i \(-0.297489\pi\)
0.594148 + 0.804356i \(0.297489\pi\)
\(674\) 0 0
\(675\) 12.0632 0.464312
\(676\) 0 0
\(677\) −17.2671 −0.663630 −0.331815 0.943344i \(-0.607661\pi\)
−0.331815 + 0.943344i \(0.607661\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 11.4900 0.440298
\(682\) 0 0
\(683\) 46.0135 1.76066 0.880328 0.474366i \(-0.157323\pi\)
0.880328 + 0.474366i \(0.157323\pi\)
\(684\) 0 0
\(685\) −29.3025 −1.11959
\(686\) 0 0
\(687\) −6.84558 −0.261175
\(688\) 0 0
\(689\) −41.5663 −1.58355
\(690\) 0 0
\(691\) 46.2245 1.75846 0.879231 0.476396i \(-0.158057\pi\)
0.879231 + 0.476396i \(0.158057\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 6.29805 0.238899
\(696\) 0 0
\(697\) 4.53841 0.171905
\(698\) 0 0
\(699\) −1.79867 −0.0680320
\(700\) 0 0
\(701\) 49.9926 1.88819 0.944097 0.329668i \(-0.106937\pi\)
0.944097 + 0.329668i \(0.106937\pi\)
\(702\) 0 0
\(703\) 10.5890 0.399372
\(704\) 0 0
\(705\) 9.59888 0.361515
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 23.4690 0.881395 0.440697 0.897656i \(-0.354731\pi\)
0.440697 + 0.897656i \(0.354731\pi\)
\(710\) 0 0
\(711\) −12.7834 −0.479417
\(712\) 0 0
\(713\) 24.2734 0.909047
\(714\) 0 0
\(715\) 73.0058 2.73026
\(716\) 0 0
\(717\) 5.74790 0.214659
\(718\) 0 0
\(719\) −13.4216 −0.500543 −0.250271 0.968176i \(-0.580520\pi\)
−0.250271 + 0.968176i \(0.580520\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 7.63658 0.284007
\(724\) 0 0
\(725\) 5.17074 0.192036
\(726\) 0 0
\(727\) −28.7007 −1.06445 −0.532224 0.846603i \(-0.678644\pi\)
−0.532224 + 0.846603i \(0.678644\pi\)
\(728\) 0 0
\(729\) −16.5261 −0.612077
\(730\) 0 0
\(731\) 10.2580 0.379406
\(732\) 0 0
\(733\) 5.32164 0.196559 0.0982795 0.995159i \(-0.468666\pi\)
0.0982795 + 0.995159i \(0.468666\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 23.3893 0.861556
\(738\) 0 0
\(739\) −24.1826 −0.889573 −0.444787 0.895637i \(-0.646720\pi\)
−0.444787 + 0.895637i \(0.646720\pi\)
\(740\) 0 0
\(741\) 9.26639 0.340409
\(742\) 0 0
\(743\) −8.96281 −0.328813 −0.164407 0.986393i \(-0.552571\pi\)
−0.164407 + 0.986393i \(0.552571\pi\)
\(744\) 0 0
\(745\) 69.1653 2.53402
\(746\) 0 0
\(747\) −23.2182 −0.849511
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 9.00923 0.328752 0.164376 0.986398i \(-0.447439\pi\)
0.164376 + 0.986398i \(0.447439\pi\)
\(752\) 0 0
\(753\) 13.1672 0.479841
\(754\) 0 0
\(755\) −60.8365 −2.21407
\(756\) 0 0
\(757\) −44.0715 −1.60181 −0.800903 0.598794i \(-0.795647\pi\)
−0.800903 + 0.598794i \(0.795647\pi\)
\(758\) 0 0
\(759\) −4.50740 −0.163608
\(760\) 0 0
\(761\) −13.2382 −0.479886 −0.239943 0.970787i \(-0.577129\pi\)
−0.239943 + 0.970787i \(0.577129\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −8.65474 −0.312913
\(766\) 0 0
\(767\) 27.0422 0.976436
\(768\) 0 0
\(769\) 23.1833 0.836012 0.418006 0.908444i \(-0.362729\pi\)
0.418006 + 0.908444i \(0.362729\pi\)
\(770\) 0 0
\(771\) −6.01923 −0.216777
\(772\) 0 0
\(773\) 6.52140 0.234558 0.117279 0.993099i \(-0.462583\pi\)
0.117279 + 0.993099i \(0.462583\pi\)
\(774\) 0 0
\(775\) −39.6917 −1.42577
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 13.9321 0.499168
\(780\) 0 0
\(781\) −23.3955 −0.837157
\(782\) 0 0
\(783\) 2.95804 0.105712
\(784\) 0 0
\(785\) −75.6468 −2.69995
\(786\) 0 0
\(787\) −43.1883 −1.53950 −0.769748 0.638348i \(-0.779618\pi\)
−0.769748 + 0.638348i \(0.779618\pi\)
\(788\) 0 0
\(789\) 4.19849 0.149470
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 82.6995 2.93675
\(794\) 0 0
\(795\) −8.76565 −0.310886
\(796\) 0 0
\(797\) −8.78993 −0.311355 −0.155678 0.987808i \(-0.549756\pi\)
−0.155678 + 0.987808i \(0.549756\pi\)
\(798\) 0 0
\(799\) −6.83631 −0.241851
\(800\) 0 0
\(801\) −8.04349 −0.284203
\(802\) 0 0
\(803\) −19.7292 −0.696229
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 1.38642 0.0488043
\(808\) 0 0
\(809\) −1.08320 −0.0380834 −0.0190417 0.999819i \(-0.506062\pi\)
−0.0190417 + 0.999819i \(0.506062\pi\)
\(810\) 0 0
\(811\) 46.5032 1.63295 0.816474 0.577382i \(-0.195926\pi\)
0.816474 + 0.577382i \(0.195926\pi\)
\(812\) 0 0
\(813\) −6.30625 −0.221170
\(814\) 0 0
\(815\) 14.3589 0.502969
\(816\) 0 0
\(817\) 31.4901 1.10170
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −27.1929 −0.949038 −0.474519 0.880245i \(-0.657378\pi\)
−0.474519 + 0.880245i \(0.657378\pi\)
\(822\) 0 0
\(823\) 28.2603 0.985092 0.492546 0.870286i \(-0.336066\pi\)
0.492546 + 0.870286i \(0.336066\pi\)
\(824\) 0 0
\(825\) 7.37046 0.256607
\(826\) 0 0
\(827\) 21.3385 0.742014 0.371007 0.928630i \(-0.379013\pi\)
0.371007 + 0.928630i \(0.379013\pi\)
\(828\) 0 0
\(829\) 0.399793 0.0138854 0.00694270 0.999976i \(-0.497790\pi\)
0.00694270 + 0.999976i \(0.497790\pi\)
\(830\) 0 0
\(831\) −9.38171 −0.325448
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 58.2199 2.01478
\(836\) 0 0
\(837\) −22.7065 −0.784853
\(838\) 0 0
\(839\) −8.76505 −0.302603 −0.151302 0.988488i \(-0.548346\pi\)
−0.151302 + 0.988488i \(0.548346\pi\)
\(840\) 0 0
\(841\) −27.7321 −0.956278
\(842\) 0 0
\(843\) 4.77623 0.164502
\(844\) 0 0
\(845\) −97.0367 −3.33816
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −9.28875 −0.318789
\(850\) 0 0
\(851\) 9.68681 0.332060
\(852\) 0 0
\(853\) 26.7104 0.914547 0.457273 0.889326i \(-0.348826\pi\)
0.457273 + 0.889326i \(0.348826\pi\)
\(854\) 0 0
\(855\) −26.5684 −0.908620
\(856\) 0 0
\(857\) 10.0031 0.341699 0.170849 0.985297i \(-0.445349\pi\)
0.170849 + 0.985297i \(0.445349\pi\)
\(858\) 0 0
\(859\) −6.63127 −0.226256 −0.113128 0.993580i \(-0.536087\pi\)
−0.113128 + 0.993580i \(0.536087\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −21.7849 −0.741565 −0.370783 0.928720i \(-0.620911\pi\)
−0.370783 + 0.928720i \(0.620911\pi\)
\(864\) 0 0
\(865\) 11.4168 0.388182
\(866\) 0 0
\(867\) −0.453360 −0.0153969
\(868\) 0 0
\(869\) −16.1955 −0.549396
\(870\) 0 0
\(871\) −43.9873 −1.49045
\(872\) 0 0
\(873\) −12.3827 −0.419089
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −52.8443 −1.78443 −0.892213 0.451615i \(-0.850848\pi\)
−0.892213 + 0.451615i \(0.850848\pi\)
\(878\) 0 0
\(879\) −12.4776 −0.420857
\(880\) 0 0
\(881\) 32.2324 1.08594 0.542968 0.839753i \(-0.317300\pi\)
0.542968 + 0.839753i \(0.317300\pi\)
\(882\) 0 0
\(883\) −16.6798 −0.561318 −0.280659 0.959807i \(-0.590553\pi\)
−0.280659 + 0.959807i \(0.590553\pi\)
\(884\) 0 0
\(885\) 5.70275 0.191696
\(886\) 0 0
\(887\) −26.6367 −0.894372 −0.447186 0.894441i \(-0.647574\pi\)
−0.447186 + 0.894441i \(0.647574\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −25.4637 −0.853066
\(892\) 0 0
\(893\) −20.9862 −0.702275
\(894\) 0 0
\(895\) −55.9279 −1.86946
\(896\) 0 0
\(897\) 8.47688 0.283035
\(898\) 0 0
\(899\) −9.73289 −0.324610
\(900\) 0 0
\(901\) 6.24289 0.207981
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −26.5138 −0.881350
\(906\) 0 0
\(907\) −23.5861 −0.783165 −0.391583 0.920143i \(-0.628072\pi\)
−0.391583 + 0.920143i \(0.628072\pi\)
\(908\) 0 0
\(909\) −8.59420 −0.285052
\(910\) 0 0
\(911\) −27.6670 −0.916648 −0.458324 0.888785i \(-0.651550\pi\)
−0.458324 + 0.888785i \(0.651550\pi\)
\(912\) 0 0
\(913\) −29.4155 −0.973512
\(914\) 0 0
\(915\) 17.4400 0.576547
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 24.4123 0.805286 0.402643 0.915357i \(-0.368092\pi\)
0.402643 + 0.915357i \(0.368092\pi\)
\(920\) 0 0
\(921\) −3.52255 −0.116072
\(922\) 0 0
\(923\) 43.9990 1.44824
\(924\) 0 0
\(925\) −15.8398 −0.520809
\(926\) 0 0
\(927\) −43.8615 −1.44060
\(928\) 0 0
\(929\) −30.0344 −0.985397 −0.492698 0.870200i \(-0.663989\pi\)
−0.492698 + 0.870200i \(0.663989\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −10.1046 −0.330809
\(934\) 0 0
\(935\) −10.9648 −0.358588
\(936\) 0 0
\(937\) −11.7364 −0.383412 −0.191706 0.981452i \(-0.561402\pi\)
−0.191706 + 0.981452i \(0.561402\pi\)
\(938\) 0 0
\(939\) 9.12643 0.297830
\(940\) 0 0
\(941\) −23.9485 −0.780700 −0.390350 0.920667i \(-0.627646\pi\)
−0.390350 + 0.920667i \(0.627646\pi\)
\(942\) 0 0
\(943\) 12.7450 0.415035
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 33.6896 1.09477 0.547383 0.836882i \(-0.315624\pi\)
0.547383 + 0.836882i \(0.315624\pi\)
\(948\) 0 0
\(949\) 37.1039 1.20444
\(950\) 0 0
\(951\) −2.18864 −0.0709716
\(952\) 0 0
\(953\) 0.853762 0.0276561 0.0138280 0.999904i \(-0.495598\pi\)
0.0138280 + 0.999904i \(0.495598\pi\)
\(954\) 0 0
\(955\) 12.0382 0.389547
\(956\) 0 0
\(957\) 1.80733 0.0584226
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 43.7118 1.41006
\(962\) 0 0
\(963\) 12.0809 0.389302
\(964\) 0 0
\(965\) 28.2568 0.909618
\(966\) 0 0
\(967\) −5.38932 −0.173309 −0.0866544 0.996238i \(-0.527618\pi\)
−0.0866544 + 0.996238i \(0.527618\pi\)
\(968\) 0 0
\(969\) −1.39173 −0.0447087
\(970\) 0 0
\(971\) 57.1550 1.83419 0.917096 0.398667i \(-0.130527\pi\)
0.917096 + 0.398667i \(0.130527\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −13.8613 −0.443917
\(976\) 0 0
\(977\) −55.3682 −1.77139 −0.885693 0.464271i \(-0.846316\pi\)
−0.885693 + 0.464271i \(0.846316\pi\)
\(978\) 0 0
\(979\) −10.1904 −0.325687
\(980\) 0 0
\(981\) −47.4780 −1.51585
\(982\) 0 0
\(983\) 16.9700 0.541259 0.270630 0.962684i \(-0.412768\pi\)
0.270630 + 0.962684i \(0.412768\pi\)
\(984\) 0 0
\(985\) 68.7725 2.19127
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 28.8071 0.916012
\(990\) 0 0
\(991\) −55.4986 −1.76297 −0.881485 0.472211i \(-0.843456\pi\)
−0.881485 + 0.472211i \(0.843456\pi\)
\(992\) 0 0
\(993\) −11.5686 −0.367119
\(994\) 0 0
\(995\) 69.2558 2.19556
\(996\) 0 0
\(997\) −47.2359 −1.49598 −0.747988 0.663713i \(-0.768980\pi\)
−0.747988 + 0.663713i \(0.768980\pi\)
\(998\) 0 0
\(999\) −9.06151 −0.286694
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3332.2.a.u.1.4 yes 8
7.6 odd 2 3332.2.a.t.1.5 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3332.2.a.t.1.5 8 7.6 odd 2
3332.2.a.u.1.4 yes 8 1.1 even 1 trivial