Properties

Label 3332.2.a.u.1.3
Level $3332$
Weight $2$
Character 3332.1
Self dual yes
Analytic conductor $26.606$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3332,2,Mod(1,3332)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3332, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3332.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3332 = 2^{2} \cdot 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3332.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.6061539535\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} - 8x^{6} + 36x^{5} + 17x^{4} - 76x^{3} - 20x^{2} + 44x + 17 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.703456\) of defining polynomial
Character \(\chi\) \(=\) 3332.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.703456 q^{3} -0.200537 q^{5} -2.50515 q^{9} +0.369152 q^{11} -3.09466 q^{13} +0.141069 q^{15} -1.00000 q^{17} +3.18269 q^{19} -3.84786 q^{23} -4.95979 q^{25} +3.87263 q^{27} -2.87291 q^{29} +6.70249 q^{31} -0.259682 q^{33} -4.84269 q^{37} +2.17695 q^{39} +10.7673 q^{41} +12.5862 q^{43} +0.502375 q^{45} -0.142451 q^{47} +0.703456 q^{51} +7.07619 q^{53} -0.0740286 q^{55} -2.23888 q^{57} -6.71357 q^{59} -5.43405 q^{61} +0.620592 q^{65} +1.03265 q^{67} +2.70680 q^{69} -2.83998 q^{71} +9.84364 q^{73} +3.48899 q^{75} -12.3647 q^{79} +4.79123 q^{81} -5.51678 q^{83} +0.200537 q^{85} +2.02096 q^{87} +2.57375 q^{89} -4.71490 q^{93} -0.638245 q^{95} +14.8270 q^{97} -0.924782 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{3} + 4 q^{5} + 8 q^{9} - 4 q^{11} + 20 q^{13} + 12 q^{15} - 8 q^{17} + 8 q^{19} + 4 q^{23} + 8 q^{25} + 28 q^{27} - 16 q^{29} - 8 q^{31} + 16 q^{33} + 8 q^{37} + 20 q^{39} + 12 q^{41} - 4 q^{43}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.703456 −0.406140 −0.203070 0.979164i \(-0.565092\pi\)
−0.203070 + 0.979164i \(0.565092\pi\)
\(4\) 0 0
\(5\) −0.200537 −0.0896827 −0.0448414 0.998994i \(-0.514278\pi\)
−0.0448414 + 0.998994i \(0.514278\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −2.50515 −0.835050
\(10\) 0 0
\(11\) 0.369152 0.111304 0.0556518 0.998450i \(-0.482276\pi\)
0.0556518 + 0.998450i \(0.482276\pi\)
\(12\) 0 0
\(13\) −3.09466 −0.858303 −0.429151 0.903233i \(-0.641187\pi\)
−0.429151 + 0.903233i \(0.641187\pi\)
\(14\) 0 0
\(15\) 0.141069 0.0364238
\(16\) 0 0
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) 3.18269 0.730158 0.365079 0.930977i \(-0.381042\pi\)
0.365079 + 0.930977i \(0.381042\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.84786 −0.802334 −0.401167 0.916005i \(-0.631395\pi\)
−0.401167 + 0.916005i \(0.631395\pi\)
\(24\) 0 0
\(25\) −4.95979 −0.991957
\(26\) 0 0
\(27\) 3.87263 0.745288
\(28\) 0 0
\(29\) −2.87291 −0.533486 −0.266743 0.963768i \(-0.585947\pi\)
−0.266743 + 0.963768i \(0.585947\pi\)
\(30\) 0 0
\(31\) 6.70249 1.20380 0.601901 0.798571i \(-0.294410\pi\)
0.601901 + 0.798571i \(0.294410\pi\)
\(32\) 0 0
\(33\) −0.259682 −0.0452049
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −4.84269 −0.796134 −0.398067 0.917356i \(-0.630319\pi\)
−0.398067 + 0.917356i \(0.630319\pi\)
\(38\) 0 0
\(39\) 2.17695 0.348591
\(40\) 0 0
\(41\) 10.7673 1.68157 0.840786 0.541367i \(-0.182093\pi\)
0.840786 + 0.541367i \(0.182093\pi\)
\(42\) 0 0
\(43\) 12.5862 1.91938 0.959691 0.281057i \(-0.0906850\pi\)
0.959691 + 0.281057i \(0.0906850\pi\)
\(44\) 0 0
\(45\) 0.502375 0.0748896
\(46\) 0 0
\(47\) −0.142451 −0.0207786 −0.0103893 0.999946i \(-0.503307\pi\)
−0.0103893 + 0.999946i \(0.503307\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0.703456 0.0985035
\(52\) 0 0
\(53\) 7.07619 0.971989 0.485995 0.873962i \(-0.338457\pi\)
0.485995 + 0.873962i \(0.338457\pi\)
\(54\) 0 0
\(55\) −0.0740286 −0.00998201
\(56\) 0 0
\(57\) −2.23888 −0.296547
\(58\) 0 0
\(59\) −6.71357 −0.874032 −0.437016 0.899454i \(-0.643965\pi\)
−0.437016 + 0.899454i \(0.643965\pi\)
\(60\) 0 0
\(61\) −5.43405 −0.695759 −0.347879 0.937539i \(-0.613098\pi\)
−0.347879 + 0.937539i \(0.613098\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0.620592 0.0769750
\(66\) 0 0
\(67\) 1.03265 0.126159 0.0630793 0.998009i \(-0.479908\pi\)
0.0630793 + 0.998009i \(0.479908\pi\)
\(68\) 0 0
\(69\) 2.70680 0.325860
\(70\) 0 0
\(71\) −2.83998 −0.337043 −0.168522 0.985698i \(-0.553899\pi\)
−0.168522 + 0.985698i \(0.553899\pi\)
\(72\) 0 0
\(73\) 9.84364 1.15211 0.576055 0.817411i \(-0.304591\pi\)
0.576055 + 0.817411i \(0.304591\pi\)
\(74\) 0 0
\(75\) 3.48899 0.402874
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −12.3647 −1.39114 −0.695569 0.718459i \(-0.744848\pi\)
−0.695569 + 0.718459i \(0.744848\pi\)
\(80\) 0 0
\(81\) 4.79123 0.532358
\(82\) 0 0
\(83\) −5.51678 −0.605545 −0.302773 0.953063i \(-0.597912\pi\)
−0.302773 + 0.953063i \(0.597912\pi\)
\(84\) 0 0
\(85\) 0.200537 0.0217513
\(86\) 0 0
\(87\) 2.02096 0.216670
\(88\) 0 0
\(89\) 2.57375 0.272817 0.136408 0.990653i \(-0.456444\pi\)
0.136408 + 0.990653i \(0.456444\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −4.71490 −0.488913
\(94\) 0 0
\(95\) −0.638245 −0.0654826
\(96\) 0 0
\(97\) 14.8270 1.50545 0.752726 0.658334i \(-0.228739\pi\)
0.752726 + 0.658334i \(0.228739\pi\)
\(98\) 0 0
\(99\) −0.924782 −0.0929441
\(100\) 0 0
\(101\) 14.3476 1.42764 0.713819 0.700331i \(-0.246964\pi\)
0.713819 + 0.700331i \(0.246964\pi\)
\(102\) 0 0
\(103\) 9.67665 0.953468 0.476734 0.879048i \(-0.341820\pi\)
0.476734 + 0.879048i \(0.341820\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −9.53652 −0.921930 −0.460965 0.887418i \(-0.652497\pi\)
−0.460965 + 0.887418i \(0.652497\pi\)
\(108\) 0 0
\(109\) 8.57234 0.821081 0.410541 0.911842i \(-0.365340\pi\)
0.410541 + 0.911842i \(0.365340\pi\)
\(110\) 0 0
\(111\) 3.40662 0.323342
\(112\) 0 0
\(113\) 10.8275 1.01856 0.509281 0.860600i \(-0.329911\pi\)
0.509281 + 0.860600i \(0.329911\pi\)
\(114\) 0 0
\(115\) 0.771637 0.0719555
\(116\) 0 0
\(117\) 7.75257 0.716726
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −10.8637 −0.987612
\(122\) 0 0
\(123\) −7.57433 −0.682954
\(124\) 0 0
\(125\) 1.99730 0.178644
\(126\) 0 0
\(127\) 5.02711 0.446084 0.223042 0.974809i \(-0.428401\pi\)
0.223042 + 0.974809i \(0.428401\pi\)
\(128\) 0 0
\(129\) −8.85386 −0.779539
\(130\) 0 0
\(131\) 13.7709 1.20317 0.601583 0.798811i \(-0.294537\pi\)
0.601583 + 0.798811i \(0.294537\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −0.776604 −0.0668395
\(136\) 0 0
\(137\) 10.3085 0.880716 0.440358 0.897822i \(-0.354852\pi\)
0.440358 + 0.897822i \(0.354852\pi\)
\(138\) 0 0
\(139\) 9.17849 0.778509 0.389255 0.921130i \(-0.372733\pi\)
0.389255 + 0.921130i \(0.372733\pi\)
\(140\) 0 0
\(141\) 0.100208 0.00843903
\(142\) 0 0
\(143\) −1.14240 −0.0955322
\(144\) 0 0
\(145\) 0.576124 0.0478445
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −3.95204 −0.323764 −0.161882 0.986810i \(-0.551756\pi\)
−0.161882 + 0.986810i \(0.551756\pi\)
\(150\) 0 0
\(151\) −2.34019 −0.190442 −0.0952208 0.995456i \(-0.530356\pi\)
−0.0952208 + 0.995456i \(0.530356\pi\)
\(152\) 0 0
\(153\) 2.50515 0.202529
\(154\) 0 0
\(155\) −1.34410 −0.107960
\(156\) 0 0
\(157\) −7.47884 −0.596876 −0.298438 0.954429i \(-0.596466\pi\)
−0.298438 + 0.954429i \(0.596466\pi\)
\(158\) 0 0
\(159\) −4.97779 −0.394764
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 9.20394 0.720908 0.360454 0.932777i \(-0.382622\pi\)
0.360454 + 0.932777i \(0.382622\pi\)
\(164\) 0 0
\(165\) 0.0520758 0.00405410
\(166\) 0 0
\(167\) 4.25555 0.329304 0.164652 0.986352i \(-0.447350\pi\)
0.164652 + 0.986352i \(0.447350\pi\)
\(168\) 0 0
\(169\) −3.42311 −0.263316
\(170\) 0 0
\(171\) −7.97310 −0.609719
\(172\) 0 0
\(173\) 5.40778 0.411146 0.205573 0.978642i \(-0.434094\pi\)
0.205573 + 0.978642i \(0.434094\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 4.72270 0.354980
\(178\) 0 0
\(179\) −10.1938 −0.761922 −0.380961 0.924591i \(-0.624407\pi\)
−0.380961 + 0.924591i \(0.624407\pi\)
\(180\) 0 0
\(181\) 0.0382153 0.00284052 0.00142026 0.999999i \(-0.499548\pi\)
0.00142026 + 0.999999i \(0.499548\pi\)
\(182\) 0 0
\(183\) 3.82261 0.282576
\(184\) 0 0
\(185\) 0.971138 0.0713995
\(186\) 0 0
\(187\) −0.369152 −0.0269951
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −24.2538 −1.75494 −0.877472 0.479629i \(-0.840771\pi\)
−0.877472 + 0.479629i \(0.840771\pi\)
\(192\) 0 0
\(193\) 12.7938 0.920917 0.460459 0.887681i \(-0.347685\pi\)
0.460459 + 0.887681i \(0.347685\pi\)
\(194\) 0 0
\(195\) −0.436559 −0.0312626
\(196\) 0 0
\(197\) 9.97518 0.710702 0.355351 0.934733i \(-0.384361\pi\)
0.355351 + 0.934733i \(0.384361\pi\)
\(198\) 0 0
\(199\) −6.68593 −0.473953 −0.236976 0.971515i \(-0.576156\pi\)
−0.236976 + 0.971515i \(0.576156\pi\)
\(200\) 0 0
\(201\) −0.726426 −0.0512381
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −2.15924 −0.150808
\(206\) 0 0
\(207\) 9.63946 0.669989
\(208\) 0 0
\(209\) 1.17490 0.0812692
\(210\) 0 0
\(211\) 9.63425 0.663249 0.331624 0.943411i \(-0.392403\pi\)
0.331624 + 0.943411i \(0.392403\pi\)
\(212\) 0 0
\(213\) 1.99780 0.136887
\(214\) 0 0
\(215\) −2.52400 −0.172135
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −6.92456 −0.467919
\(220\) 0 0
\(221\) 3.09466 0.208169
\(222\) 0 0
\(223\) 14.2325 0.953080 0.476540 0.879153i \(-0.341891\pi\)
0.476540 + 0.879153i \(0.341891\pi\)
\(224\) 0 0
\(225\) 12.4250 0.828334
\(226\) 0 0
\(227\) −10.8629 −0.720994 −0.360497 0.932760i \(-0.617393\pi\)
−0.360497 + 0.932760i \(0.617393\pi\)
\(228\) 0 0
\(229\) 16.0833 1.06282 0.531408 0.847116i \(-0.321663\pi\)
0.531408 + 0.847116i \(0.321663\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 4.90856 0.321570 0.160785 0.986989i \(-0.448597\pi\)
0.160785 + 0.986989i \(0.448597\pi\)
\(234\) 0 0
\(235\) 0.0285667 0.00186348
\(236\) 0 0
\(237\) 8.69802 0.564997
\(238\) 0 0
\(239\) 28.2990 1.83051 0.915255 0.402876i \(-0.131989\pi\)
0.915255 + 0.402876i \(0.131989\pi\)
\(240\) 0 0
\(241\) 12.0909 0.778840 0.389420 0.921060i \(-0.372675\pi\)
0.389420 + 0.921060i \(0.372675\pi\)
\(242\) 0 0
\(243\) −14.9883 −0.961500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −9.84931 −0.626697
\(248\) 0 0
\(249\) 3.88081 0.245936
\(250\) 0 0
\(251\) 6.78218 0.428088 0.214044 0.976824i \(-0.431336\pi\)
0.214044 + 0.976824i \(0.431336\pi\)
\(252\) 0 0
\(253\) −1.42045 −0.0893027
\(254\) 0 0
\(255\) −0.141069 −0.00883407
\(256\) 0 0
\(257\) −10.2859 −0.641616 −0.320808 0.947144i \(-0.603954\pi\)
−0.320808 + 0.947144i \(0.603954\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 7.19707 0.445487
\(262\) 0 0
\(263\) 22.8609 1.40966 0.704832 0.709374i \(-0.251022\pi\)
0.704832 + 0.709374i \(0.251022\pi\)
\(264\) 0 0
\(265\) −1.41904 −0.0871707
\(266\) 0 0
\(267\) −1.81052 −0.110802
\(268\) 0 0
\(269\) 12.3958 0.755787 0.377894 0.925849i \(-0.376648\pi\)
0.377894 + 0.925849i \(0.376648\pi\)
\(270\) 0 0
\(271\) 11.8149 0.717705 0.358853 0.933394i \(-0.383168\pi\)
0.358853 + 0.933394i \(0.383168\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.83092 −0.110408
\(276\) 0 0
\(277\) −24.6663 −1.48205 −0.741026 0.671476i \(-0.765660\pi\)
−0.741026 + 0.671476i \(0.765660\pi\)
\(278\) 0 0
\(279\) −16.7907 −1.00524
\(280\) 0 0
\(281\) −26.1300 −1.55879 −0.779393 0.626536i \(-0.784472\pi\)
−0.779393 + 0.626536i \(0.784472\pi\)
\(282\) 0 0
\(283\) 5.61446 0.333745 0.166872 0.985979i \(-0.446633\pi\)
0.166872 + 0.985979i \(0.446633\pi\)
\(284\) 0 0
\(285\) 0.448977 0.0265951
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −10.4301 −0.611425
\(292\) 0 0
\(293\) 18.5564 1.08407 0.542037 0.840355i \(-0.317653\pi\)
0.542037 + 0.840355i \(0.317653\pi\)
\(294\) 0 0
\(295\) 1.34632 0.0783856
\(296\) 0 0
\(297\) 1.42959 0.0829532
\(298\) 0 0
\(299\) 11.9078 0.688645
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −10.0929 −0.579821
\(304\) 0 0
\(305\) 1.08973 0.0623976
\(306\) 0 0
\(307\) −18.9093 −1.07921 −0.539604 0.841919i \(-0.681426\pi\)
−0.539604 + 0.841919i \(0.681426\pi\)
\(308\) 0 0
\(309\) −6.80709 −0.387242
\(310\) 0 0
\(311\) −29.1565 −1.65332 −0.826658 0.562705i \(-0.809761\pi\)
−0.826658 + 0.562705i \(0.809761\pi\)
\(312\) 0 0
\(313\) 26.3584 1.48987 0.744933 0.667139i \(-0.232481\pi\)
0.744933 + 0.667139i \(0.232481\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 20.9968 1.17930 0.589649 0.807660i \(-0.299266\pi\)
0.589649 + 0.807660i \(0.299266\pi\)
\(318\) 0 0
\(319\) −1.06054 −0.0593789
\(320\) 0 0
\(321\) 6.70852 0.374433
\(322\) 0 0
\(323\) −3.18269 −0.177089
\(324\) 0 0
\(325\) 15.3488 0.851400
\(326\) 0 0
\(327\) −6.03026 −0.333474
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 30.2063 1.66029 0.830144 0.557549i \(-0.188258\pi\)
0.830144 + 0.557549i \(0.188258\pi\)
\(332\) 0 0
\(333\) 12.1317 0.664812
\(334\) 0 0
\(335\) −0.207085 −0.0113143
\(336\) 0 0
\(337\) −12.7200 −0.692901 −0.346451 0.938068i \(-0.612613\pi\)
−0.346451 + 0.938068i \(0.612613\pi\)
\(338\) 0 0
\(339\) −7.61664 −0.413679
\(340\) 0 0
\(341\) 2.47424 0.133988
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −0.542812 −0.0292240
\(346\) 0 0
\(347\) 27.1235 1.45607 0.728033 0.685542i \(-0.240435\pi\)
0.728033 + 0.685542i \(0.240435\pi\)
\(348\) 0 0
\(349\) 13.3003 0.711947 0.355973 0.934496i \(-0.384149\pi\)
0.355973 + 0.934496i \(0.384149\pi\)
\(350\) 0 0
\(351\) −11.9845 −0.639683
\(352\) 0 0
\(353\) 20.6223 1.09762 0.548808 0.835948i \(-0.315082\pi\)
0.548808 + 0.835948i \(0.315082\pi\)
\(354\) 0 0
\(355\) 0.569520 0.0302270
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −5.35717 −0.282740 −0.141370 0.989957i \(-0.545151\pi\)
−0.141370 + 0.989957i \(0.545151\pi\)
\(360\) 0 0
\(361\) −8.87051 −0.466869
\(362\) 0 0
\(363\) 7.64215 0.401109
\(364\) 0 0
\(365\) −1.97401 −0.103324
\(366\) 0 0
\(367\) −11.5081 −0.600716 −0.300358 0.953826i \(-0.597106\pi\)
−0.300358 + 0.953826i \(0.597106\pi\)
\(368\) 0 0
\(369\) −26.9737 −1.40420
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 5.85404 0.303111 0.151555 0.988449i \(-0.451572\pi\)
0.151555 + 0.988449i \(0.451572\pi\)
\(374\) 0 0
\(375\) −1.40501 −0.0725546
\(376\) 0 0
\(377\) 8.89066 0.457892
\(378\) 0 0
\(379\) −0.0146945 −0.000754805 0 −0.000377402 1.00000i \(-0.500120\pi\)
−0.000377402 1.00000i \(0.500120\pi\)
\(380\) 0 0
\(381\) −3.53635 −0.181173
\(382\) 0 0
\(383\) −9.21982 −0.471111 −0.235555 0.971861i \(-0.575691\pi\)
−0.235555 + 0.971861i \(0.575691\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −31.5304 −1.60278
\(388\) 0 0
\(389\) 13.7712 0.698230 0.349115 0.937080i \(-0.386482\pi\)
0.349115 + 0.937080i \(0.386482\pi\)
\(390\) 0 0
\(391\) 3.84786 0.194595
\(392\) 0 0
\(393\) −9.68719 −0.488654
\(394\) 0 0
\(395\) 2.47958 0.124761
\(396\) 0 0
\(397\) −2.09627 −0.105209 −0.0526043 0.998615i \(-0.516752\pi\)
−0.0526043 + 0.998615i \(0.516752\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −16.1428 −0.806131 −0.403065 0.915171i \(-0.632055\pi\)
−0.403065 + 0.915171i \(0.632055\pi\)
\(402\) 0 0
\(403\) −20.7419 −1.03323
\(404\) 0 0
\(405\) −0.960817 −0.0477434
\(406\) 0 0
\(407\) −1.78769 −0.0886126
\(408\) 0 0
\(409\) 9.85765 0.487429 0.243715 0.969847i \(-0.421634\pi\)
0.243715 + 0.969847i \(0.421634\pi\)
\(410\) 0 0
\(411\) −7.25159 −0.357694
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 1.10632 0.0543069
\(416\) 0 0
\(417\) −6.45666 −0.316184
\(418\) 0 0
\(419\) −29.2448 −1.42870 −0.714352 0.699787i \(-0.753278\pi\)
−0.714352 + 0.699787i \(0.753278\pi\)
\(420\) 0 0
\(421\) 11.5615 0.563471 0.281735 0.959492i \(-0.409090\pi\)
0.281735 + 0.959492i \(0.409090\pi\)
\(422\) 0 0
\(423\) 0.356861 0.0173512
\(424\) 0 0
\(425\) 4.95979 0.240585
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0.803627 0.0387995
\(430\) 0 0
\(431\) −32.7294 −1.57652 −0.788259 0.615344i \(-0.789017\pi\)
−0.788259 + 0.615344i \(0.789017\pi\)
\(432\) 0 0
\(433\) −2.84522 −0.136733 −0.0683663 0.997660i \(-0.521779\pi\)
−0.0683663 + 0.997660i \(0.521779\pi\)
\(434\) 0 0
\(435\) −0.405278 −0.0194316
\(436\) 0 0
\(437\) −12.2465 −0.585831
\(438\) 0 0
\(439\) 4.92953 0.235274 0.117637 0.993057i \(-0.462468\pi\)
0.117637 + 0.993057i \(0.462468\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 11.3649 0.539964 0.269982 0.962865i \(-0.412982\pi\)
0.269982 + 0.962865i \(0.412982\pi\)
\(444\) 0 0
\(445\) −0.516131 −0.0244670
\(446\) 0 0
\(447\) 2.78009 0.131494
\(448\) 0 0
\(449\) 5.21674 0.246193 0.123097 0.992395i \(-0.460717\pi\)
0.123097 + 0.992395i \(0.460717\pi\)
\(450\) 0 0
\(451\) 3.97478 0.187165
\(452\) 0 0
\(453\) 1.64622 0.0773460
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 19.0627 0.891717 0.445859 0.895103i \(-0.352898\pi\)
0.445859 + 0.895103i \(0.352898\pi\)
\(458\) 0 0
\(459\) −3.87263 −0.180759
\(460\) 0 0
\(461\) −39.6079 −1.84472 −0.922361 0.386329i \(-0.873743\pi\)
−0.922361 + 0.386329i \(0.873743\pi\)
\(462\) 0 0
\(463\) 1.70237 0.0791158 0.0395579 0.999217i \(-0.487405\pi\)
0.0395579 + 0.999217i \(0.487405\pi\)
\(464\) 0 0
\(465\) 0.945511 0.0438470
\(466\) 0 0
\(467\) −16.5730 −0.766908 −0.383454 0.923560i \(-0.625266\pi\)
−0.383454 + 0.923560i \(0.625266\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 5.26103 0.242416
\(472\) 0 0
\(473\) 4.64624 0.213634
\(474\) 0 0
\(475\) −15.7854 −0.724286
\(476\) 0 0
\(477\) −17.7269 −0.811660
\(478\) 0 0
\(479\) −24.5762 −1.12291 −0.561457 0.827506i \(-0.689759\pi\)
−0.561457 + 0.827506i \(0.689759\pi\)
\(480\) 0 0
\(481\) 14.9865 0.683324
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2.97335 −0.135013
\(486\) 0 0
\(487\) −2.04497 −0.0926663 −0.0463331 0.998926i \(-0.514754\pi\)
−0.0463331 + 0.998926i \(0.514754\pi\)
\(488\) 0 0
\(489\) −6.47456 −0.292790
\(490\) 0 0
\(491\) 13.1994 0.595680 0.297840 0.954616i \(-0.403734\pi\)
0.297840 + 0.954616i \(0.403734\pi\)
\(492\) 0 0
\(493\) 2.87291 0.129389
\(494\) 0 0
\(495\) 0.185453 0.00833548
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 29.6114 1.32559 0.662795 0.748801i \(-0.269370\pi\)
0.662795 + 0.748801i \(0.269370\pi\)
\(500\) 0 0
\(501\) −2.99359 −0.133744
\(502\) 0 0
\(503\) −11.7752 −0.525028 −0.262514 0.964928i \(-0.584552\pi\)
−0.262514 + 0.964928i \(0.584552\pi\)
\(504\) 0 0
\(505\) −2.87722 −0.128034
\(506\) 0 0
\(507\) 2.40801 0.106943
\(508\) 0 0
\(509\) −17.0112 −0.754010 −0.377005 0.926211i \(-0.623046\pi\)
−0.377005 + 0.926211i \(0.623046\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 12.3254 0.544178
\(514\) 0 0
\(515\) −1.94052 −0.0855097
\(516\) 0 0
\(517\) −0.0525861 −0.00231273
\(518\) 0 0
\(519\) −3.80414 −0.166983
\(520\) 0 0
\(521\) 3.37095 0.147684 0.0738420 0.997270i \(-0.476474\pi\)
0.0738420 + 0.997270i \(0.476474\pi\)
\(522\) 0 0
\(523\) 4.63433 0.202645 0.101322 0.994854i \(-0.467693\pi\)
0.101322 + 0.994854i \(0.467693\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −6.70249 −0.291965
\(528\) 0 0
\(529\) −8.19399 −0.356260
\(530\) 0 0
\(531\) 16.8185 0.729861
\(532\) 0 0
\(533\) −33.3211 −1.44330
\(534\) 0 0
\(535\) 1.91242 0.0826812
\(536\) 0 0
\(537\) 7.17090 0.309447
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 4.17894 0.179667 0.0898334 0.995957i \(-0.471367\pi\)
0.0898334 + 0.995957i \(0.471367\pi\)
\(542\) 0 0
\(543\) −0.0268828 −0.00115365
\(544\) 0 0
\(545\) −1.71907 −0.0736368
\(546\) 0 0
\(547\) 19.1368 0.818229 0.409114 0.912483i \(-0.365838\pi\)
0.409114 + 0.912483i \(0.365838\pi\)
\(548\) 0 0
\(549\) 13.6131 0.580993
\(550\) 0 0
\(551\) −9.14357 −0.389529
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −0.683153 −0.0289982
\(556\) 0 0
\(557\) 16.6431 0.705190 0.352595 0.935776i \(-0.385299\pi\)
0.352595 + 0.935776i \(0.385299\pi\)
\(558\) 0 0
\(559\) −38.9500 −1.64741
\(560\) 0 0
\(561\) 0.259682 0.0109638
\(562\) 0 0
\(563\) 27.9120 1.17635 0.588175 0.808733i \(-0.299846\pi\)
0.588175 + 0.808733i \(0.299846\pi\)
\(564\) 0 0
\(565\) −2.17130 −0.0913474
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 9.09195 0.381154 0.190577 0.981672i \(-0.438964\pi\)
0.190577 + 0.981672i \(0.438964\pi\)
\(570\) 0 0
\(571\) −35.2749 −1.47621 −0.738105 0.674686i \(-0.764279\pi\)
−0.738105 + 0.674686i \(0.764279\pi\)
\(572\) 0 0
\(573\) 17.0615 0.712753
\(574\) 0 0
\(575\) 19.0845 0.795881
\(576\) 0 0
\(577\) −9.34435 −0.389011 −0.194505 0.980901i \(-0.562310\pi\)
−0.194505 + 0.980901i \(0.562310\pi\)
\(578\) 0 0
\(579\) −8.99987 −0.374022
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 2.61219 0.108186
\(584\) 0 0
\(585\) −1.55468 −0.0642779
\(586\) 0 0
\(587\) −13.7933 −0.569311 −0.284655 0.958630i \(-0.591879\pi\)
−0.284655 + 0.958630i \(0.591879\pi\)
\(588\) 0 0
\(589\) 21.3319 0.878966
\(590\) 0 0
\(591\) −7.01710 −0.288645
\(592\) 0 0
\(593\) −46.7655 −1.92043 −0.960214 0.279264i \(-0.909910\pi\)
−0.960214 + 0.279264i \(0.909910\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 4.70326 0.192491
\(598\) 0 0
\(599\) −4.08619 −0.166957 −0.0834786 0.996510i \(-0.526603\pi\)
−0.0834786 + 0.996510i \(0.526603\pi\)
\(600\) 0 0
\(601\) −1.43949 −0.0587180 −0.0293590 0.999569i \(-0.509347\pi\)
−0.0293590 + 0.999569i \(0.509347\pi\)
\(602\) 0 0
\(603\) −2.58695 −0.105349
\(604\) 0 0
\(605\) 2.17858 0.0885717
\(606\) 0 0
\(607\) −33.0234 −1.34038 −0.670189 0.742190i \(-0.733787\pi\)
−0.670189 + 0.742190i \(0.733787\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0.440837 0.0178343
\(612\) 0 0
\(613\) 29.3637 1.18599 0.592994 0.805207i \(-0.297946\pi\)
0.592994 + 0.805207i \(0.297946\pi\)
\(614\) 0 0
\(615\) 1.51893 0.0612492
\(616\) 0 0
\(617\) −43.3541 −1.74537 −0.872685 0.488284i \(-0.837623\pi\)
−0.872685 + 0.488284i \(0.837623\pi\)
\(618\) 0 0
\(619\) −14.9088 −0.599235 −0.299618 0.954059i \(-0.596859\pi\)
−0.299618 + 0.954059i \(0.596859\pi\)
\(620\) 0 0
\(621\) −14.9013 −0.597970
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 24.3984 0.975936
\(626\) 0 0
\(627\) −0.826487 −0.0330067
\(628\) 0 0
\(629\) 4.84269 0.193091
\(630\) 0 0
\(631\) 26.3812 1.05022 0.525110 0.851034i \(-0.324024\pi\)
0.525110 + 0.851034i \(0.324024\pi\)
\(632\) 0 0
\(633\) −6.77727 −0.269372
\(634\) 0 0
\(635\) −1.00812 −0.0400061
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 7.11457 0.281448
\(640\) 0 0
\(641\) −30.8365 −1.21797 −0.608985 0.793182i \(-0.708423\pi\)
−0.608985 + 0.793182i \(0.708423\pi\)
\(642\) 0 0
\(643\) −30.1699 −1.18979 −0.594893 0.803805i \(-0.702805\pi\)
−0.594893 + 0.803805i \(0.702805\pi\)
\(644\) 0 0
\(645\) 1.77552 0.0699112
\(646\) 0 0
\(647\) 26.0146 1.02274 0.511370 0.859360i \(-0.329138\pi\)
0.511370 + 0.859360i \(0.329138\pi\)
\(648\) 0 0
\(649\) −2.47833 −0.0972830
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −2.75285 −0.107727 −0.0538637 0.998548i \(-0.517154\pi\)
−0.0538637 + 0.998548i \(0.517154\pi\)
\(654\) 0 0
\(655\) −2.76156 −0.107903
\(656\) 0 0
\(657\) −24.6598 −0.962070
\(658\) 0 0
\(659\) 17.9141 0.697834 0.348917 0.937154i \(-0.386549\pi\)
0.348917 + 0.937154i \(0.386549\pi\)
\(660\) 0 0
\(661\) 30.3762 1.18150 0.590750 0.806855i \(-0.298832\pi\)
0.590750 + 0.806855i \(0.298832\pi\)
\(662\) 0 0
\(663\) −2.17695 −0.0845458
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 11.0545 0.428034
\(668\) 0 0
\(669\) −10.0119 −0.387084
\(670\) 0 0
\(671\) −2.00599 −0.0774405
\(672\) 0 0
\(673\) −45.4261 −1.75105 −0.875523 0.483176i \(-0.839483\pi\)
−0.875523 + 0.483176i \(0.839483\pi\)
\(674\) 0 0
\(675\) −19.2074 −0.739294
\(676\) 0 0
\(677\) −15.4002 −0.591879 −0.295939 0.955207i \(-0.595633\pi\)
−0.295939 + 0.955207i \(0.595633\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 7.64155 0.292825
\(682\) 0 0
\(683\) −38.9298 −1.48961 −0.744803 0.667284i \(-0.767457\pi\)
−0.744803 + 0.667284i \(0.767457\pi\)
\(684\) 0 0
\(685\) −2.06724 −0.0789850
\(686\) 0 0
\(687\) −11.3139 −0.431652
\(688\) 0 0
\(689\) −21.8984 −0.834261
\(690\) 0 0
\(691\) 34.6743 1.31907 0.659537 0.751672i \(-0.270752\pi\)
0.659537 + 0.751672i \(0.270752\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1.84062 −0.0698188
\(696\) 0 0
\(697\) −10.7673 −0.407841
\(698\) 0 0
\(699\) −3.45296 −0.130603
\(700\) 0 0
\(701\) −42.7812 −1.61582 −0.807912 0.589304i \(-0.799402\pi\)
−0.807912 + 0.589304i \(0.799402\pi\)
\(702\) 0 0
\(703\) −15.4128 −0.581304
\(704\) 0 0
\(705\) −0.0200954 −0.000756836 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −9.23697 −0.346902 −0.173451 0.984843i \(-0.555492\pi\)
−0.173451 + 0.984843i \(0.555492\pi\)
\(710\) 0 0
\(711\) 30.9754 1.16167
\(712\) 0 0
\(713\) −25.7902 −0.965851
\(714\) 0 0
\(715\) 0.229093 0.00856759
\(716\) 0 0
\(717\) −19.9071 −0.743444
\(718\) 0 0
\(719\) −30.5552 −1.13952 −0.569759 0.821812i \(-0.692963\pi\)
−0.569759 + 0.821812i \(0.692963\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −8.50538 −0.316318
\(724\) 0 0
\(725\) 14.2490 0.529195
\(726\) 0 0
\(727\) −45.8821 −1.70167 −0.850837 0.525430i \(-0.823904\pi\)
−0.850837 + 0.525430i \(0.823904\pi\)
\(728\) 0 0
\(729\) −3.83007 −0.141854
\(730\) 0 0
\(731\) −12.5862 −0.465519
\(732\) 0 0
\(733\) 24.5005 0.904948 0.452474 0.891778i \(-0.350542\pi\)
0.452474 + 0.891778i \(0.350542\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0.381206 0.0140419
\(738\) 0 0
\(739\) −30.1296 −1.10833 −0.554167 0.832405i \(-0.686963\pi\)
−0.554167 + 0.832405i \(0.686963\pi\)
\(740\) 0 0
\(741\) 6.92856 0.254527
\(742\) 0 0
\(743\) −37.7607 −1.38530 −0.692652 0.721272i \(-0.743558\pi\)
−0.692652 + 0.721272i \(0.743558\pi\)
\(744\) 0 0
\(745\) 0.792529 0.0290360
\(746\) 0 0
\(747\) 13.8204 0.505660
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 7.56429 0.276025 0.138013 0.990430i \(-0.455929\pi\)
0.138013 + 0.990430i \(0.455929\pi\)
\(752\) 0 0
\(753\) −4.77097 −0.173864
\(754\) 0 0
\(755\) 0.469293 0.0170793
\(756\) 0 0
\(757\) −4.31815 −0.156946 −0.0784728 0.996916i \(-0.525004\pi\)
−0.0784728 + 0.996916i \(0.525004\pi\)
\(758\) 0 0
\(759\) 0.999221 0.0362694
\(760\) 0 0
\(761\) 26.4300 0.958088 0.479044 0.877791i \(-0.340984\pi\)
0.479044 + 0.877791i \(0.340984\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −0.502375 −0.0181634
\(766\) 0 0
\(767\) 20.7762 0.750185
\(768\) 0 0
\(769\) 47.6141 1.71701 0.858503 0.512808i \(-0.171395\pi\)
0.858503 + 0.512808i \(0.171395\pi\)
\(770\) 0 0
\(771\) 7.23567 0.260586
\(772\) 0 0
\(773\) −9.37262 −0.337110 −0.168555 0.985692i \(-0.553910\pi\)
−0.168555 + 0.985692i \(0.553910\pi\)
\(774\) 0 0
\(775\) −33.2429 −1.19412
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 34.2690 1.22781
\(780\) 0 0
\(781\) −1.04838 −0.0375141
\(782\) 0 0
\(783\) −11.1257 −0.397601
\(784\) 0 0
\(785\) 1.49978 0.0535295
\(786\) 0 0
\(787\) 20.8406 0.742886 0.371443 0.928456i \(-0.378863\pi\)
0.371443 + 0.928456i \(0.378863\pi\)
\(788\) 0 0
\(789\) −16.0816 −0.572522
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 16.8165 0.597172
\(794\) 0 0
\(795\) 0.998229 0.0354035
\(796\) 0 0
\(797\) −34.2311 −1.21253 −0.606264 0.795264i \(-0.707332\pi\)
−0.606264 + 0.795264i \(0.707332\pi\)
\(798\) 0 0
\(799\) 0.142451 0.00503955
\(800\) 0 0
\(801\) −6.44763 −0.227816
\(802\) 0 0
\(803\) 3.63380 0.128234
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −8.71992 −0.306956
\(808\) 0 0
\(809\) −5.51489 −0.193893 −0.0969466 0.995290i \(-0.530908\pi\)
−0.0969466 + 0.995290i \(0.530908\pi\)
\(810\) 0 0
\(811\) 33.1850 1.16528 0.582642 0.812729i \(-0.302019\pi\)
0.582642 + 0.812729i \(0.302019\pi\)
\(812\) 0 0
\(813\) −8.31128 −0.291489
\(814\) 0 0
\(815\) −1.84573 −0.0646530
\(816\) 0 0
\(817\) 40.0580 1.40145
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 48.6110 1.69654 0.848268 0.529568i \(-0.177646\pi\)
0.848268 + 0.529568i \(0.177646\pi\)
\(822\) 0 0
\(823\) −9.33485 −0.325392 −0.162696 0.986676i \(-0.552019\pi\)
−0.162696 + 0.986676i \(0.552019\pi\)
\(824\) 0 0
\(825\) 1.28797 0.0448413
\(826\) 0 0
\(827\) −1.89827 −0.0660095 −0.0330047 0.999455i \(-0.510508\pi\)
−0.0330047 + 0.999455i \(0.510508\pi\)
\(828\) 0 0
\(829\) 14.5849 0.506556 0.253278 0.967394i \(-0.418491\pi\)
0.253278 + 0.967394i \(0.418491\pi\)
\(830\) 0 0
\(831\) 17.3516 0.601921
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −0.853394 −0.0295329
\(836\) 0 0
\(837\) 25.9563 0.897179
\(838\) 0 0
\(839\) −11.0257 −0.380648 −0.190324 0.981721i \(-0.560954\pi\)
−0.190324 + 0.981721i \(0.560954\pi\)
\(840\) 0 0
\(841\) −20.7464 −0.715393
\(842\) 0 0
\(843\) 18.3813 0.633086
\(844\) 0 0
\(845\) 0.686459 0.0236149
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −3.94952 −0.135547
\(850\) 0 0
\(851\) 18.6340 0.638765
\(852\) 0 0
\(853\) 11.7576 0.402573 0.201286 0.979532i \(-0.435488\pi\)
0.201286 + 0.979532i \(0.435488\pi\)
\(854\) 0 0
\(855\) 1.59890 0.0546812
\(856\) 0 0
\(857\) 37.4622 1.27969 0.639843 0.768506i \(-0.278999\pi\)
0.639843 + 0.768506i \(0.278999\pi\)
\(858\) 0 0
\(859\) −5.04132 −0.172008 −0.0860038 0.996295i \(-0.527410\pi\)
−0.0860038 + 0.996295i \(0.527410\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 36.4021 1.23914 0.619570 0.784941i \(-0.287307\pi\)
0.619570 + 0.784941i \(0.287307\pi\)
\(864\) 0 0
\(865\) −1.08446 −0.0368727
\(866\) 0 0
\(867\) −0.703456 −0.0238906
\(868\) 0 0
\(869\) −4.56446 −0.154839
\(870\) 0 0
\(871\) −3.19570 −0.108282
\(872\) 0 0
\(873\) −37.1438 −1.25713
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 51.7835 1.74860 0.874302 0.485383i \(-0.161320\pi\)
0.874302 + 0.485383i \(0.161320\pi\)
\(878\) 0 0
\(879\) −13.0536 −0.440286
\(880\) 0 0
\(881\) −35.7933 −1.20591 −0.602954 0.797776i \(-0.706010\pi\)
−0.602954 + 0.797776i \(0.706010\pi\)
\(882\) 0 0
\(883\) 28.5377 0.960371 0.480186 0.877167i \(-0.340569\pi\)
0.480186 + 0.877167i \(0.340569\pi\)
\(884\) 0 0
\(885\) −0.947075 −0.0318356
\(886\) 0 0
\(887\) 2.54617 0.0854919 0.0427459 0.999086i \(-0.486389\pi\)
0.0427459 + 0.999086i \(0.486389\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 1.76869 0.0592534
\(892\) 0 0
\(893\) −0.453377 −0.0151717
\(894\) 0 0
\(895\) 2.04424 0.0683313
\(896\) 0 0
\(897\) −8.37661 −0.279687
\(898\) 0 0
\(899\) −19.2556 −0.642212
\(900\) 0 0
\(901\) −7.07619 −0.235742
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −0.00766358 −0.000254746 0
\(906\) 0 0
\(907\) −36.7520 −1.22033 −0.610165 0.792274i \(-0.708897\pi\)
−0.610165 + 0.792274i \(0.708897\pi\)
\(908\) 0 0
\(909\) −35.9428 −1.19215
\(910\) 0 0
\(911\) −18.1727 −0.602088 −0.301044 0.953610i \(-0.597335\pi\)
−0.301044 + 0.953610i \(0.597335\pi\)
\(912\) 0 0
\(913\) −2.03653 −0.0673994
\(914\) 0 0
\(915\) −0.766574 −0.0253422
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −3.85580 −0.127191 −0.0635956 0.997976i \(-0.520257\pi\)
−0.0635956 + 0.997976i \(0.520257\pi\)
\(920\) 0 0
\(921\) 13.3018 0.438310
\(922\) 0 0
\(923\) 8.78875 0.289285
\(924\) 0 0
\(925\) 24.0187 0.789731
\(926\) 0 0
\(927\) −24.2415 −0.796194
\(928\) 0 0
\(929\) −7.24726 −0.237775 −0.118888 0.992908i \(-0.537933\pi\)
−0.118888 + 0.992908i \(0.537933\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 20.5103 0.671478
\(934\) 0 0
\(935\) 0.0740286 0.00242099
\(936\) 0 0
\(937\) 31.7443 1.03704 0.518520 0.855065i \(-0.326483\pi\)
0.518520 + 0.855065i \(0.326483\pi\)
\(938\) 0 0
\(939\) −18.5420 −0.605095
\(940\) 0 0
\(941\) 23.6609 0.771322 0.385661 0.922641i \(-0.373973\pi\)
0.385661 + 0.922641i \(0.373973\pi\)
\(942\) 0 0
\(943\) −41.4311 −1.34918
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −20.0969 −0.653062 −0.326531 0.945187i \(-0.605880\pi\)
−0.326531 + 0.945187i \(0.605880\pi\)
\(948\) 0 0
\(949\) −30.4627 −0.988860
\(950\) 0 0
\(951\) −14.7703 −0.478960
\(952\) 0 0
\(953\) 27.5224 0.891538 0.445769 0.895148i \(-0.352930\pi\)
0.445769 + 0.895148i \(0.352930\pi\)
\(954\) 0 0
\(955\) 4.86378 0.157388
\(956\) 0 0
\(957\) 0.746044 0.0241162
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 13.9234 0.449140
\(962\) 0 0
\(963\) 23.8904 0.769858
\(964\) 0 0
\(965\) −2.56562 −0.0825904
\(966\) 0 0
\(967\) −11.5594 −0.371726 −0.185863 0.982576i \(-0.559508\pi\)
−0.185863 + 0.982576i \(0.559508\pi\)
\(968\) 0 0
\(969\) 2.23888 0.0719231
\(970\) 0 0
\(971\) −6.13380 −0.196843 −0.0984215 0.995145i \(-0.531379\pi\)
−0.0984215 + 0.995145i \(0.531379\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −10.7972 −0.345788
\(976\) 0 0
\(977\) 11.5275 0.368797 0.184399 0.982852i \(-0.440966\pi\)
0.184399 + 0.982852i \(0.440966\pi\)
\(978\) 0 0
\(979\) 0.950105 0.0303655
\(980\) 0 0
\(981\) −21.4750 −0.685644
\(982\) 0 0
\(983\) −55.7362 −1.77771 −0.888854 0.458191i \(-0.848498\pi\)
−0.888854 + 0.458191i \(0.848498\pi\)
\(984\) 0 0
\(985\) −2.00039 −0.0637377
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −48.4300 −1.53999
\(990\) 0 0
\(991\) −12.1311 −0.385359 −0.192679 0.981262i \(-0.561718\pi\)
−0.192679 + 0.981262i \(0.561718\pi\)
\(992\) 0 0
\(993\) −21.2488 −0.674310
\(994\) 0 0
\(995\) 1.34077 0.0425054
\(996\) 0 0
\(997\) 51.3299 1.62563 0.812817 0.582520i \(-0.197933\pi\)
0.812817 + 0.582520i \(0.197933\pi\)
\(998\) 0 0
\(999\) −18.7540 −0.593349
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3332.2.a.u.1.3 yes 8
7.6 odd 2 3332.2.a.t.1.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3332.2.a.t.1.6 8 7.6 odd 2
3332.2.a.u.1.3 yes 8 1.1 even 1 trivial