Properties

Label 3332.2.a.u.1.2
Level $3332$
Weight $2$
Character 3332.1
Self dual yes
Analytic conductor $26.606$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3332,2,Mod(1,3332)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3332, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3332.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3332 = 2^{2} \cdot 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3332.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.6061539535\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} - 8x^{6} + 36x^{5} + 17x^{4} - 76x^{3} - 20x^{2} + 44x + 17 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.33282\) of defining polynomial
Character \(\chi\) \(=\) 3332.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.33282 q^{3} +2.63441 q^{5} -1.22360 q^{9} +3.39855 q^{11} +2.73620 q^{13} -3.51118 q^{15} -1.00000 q^{17} -0.404319 q^{19} +1.46779 q^{23} +1.94009 q^{25} +5.62928 q^{27} +5.14721 q^{29} -5.78955 q^{31} -4.52965 q^{33} +3.35268 q^{37} -3.64685 q^{39} +8.88513 q^{41} -7.39301 q^{43} -3.22346 q^{45} +10.8335 q^{47} +1.33282 q^{51} -5.85643 q^{53} +8.95317 q^{55} +0.538883 q^{57} -2.15676 q^{59} +1.64909 q^{61} +7.20825 q^{65} -12.4743 q^{67} -1.95630 q^{69} -5.10604 q^{71} +11.7695 q^{73} -2.58579 q^{75} +1.64849 q^{79} -3.83200 q^{81} +11.4159 q^{83} -2.63441 q^{85} -6.86029 q^{87} +5.01381 q^{89} +7.71641 q^{93} -1.06514 q^{95} -1.08733 q^{97} -4.15847 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{3} + 4 q^{5} + 8 q^{9} - 4 q^{11} + 20 q^{13} + 12 q^{15} - 8 q^{17} + 8 q^{19} + 4 q^{23} + 8 q^{25} + 28 q^{27} - 16 q^{29} - 8 q^{31} + 16 q^{33} + 8 q^{37} + 20 q^{39} + 12 q^{41} - 4 q^{43}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.33282 −0.769502 −0.384751 0.923020i \(-0.625713\pi\)
−0.384751 + 0.923020i \(0.625713\pi\)
\(4\) 0 0
\(5\) 2.63441 1.17814 0.589071 0.808081i \(-0.299494\pi\)
0.589071 + 0.808081i \(0.299494\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −1.22360 −0.407867
\(10\) 0 0
\(11\) 3.39855 1.02470 0.512351 0.858776i \(-0.328775\pi\)
0.512351 + 0.858776i \(0.328775\pi\)
\(12\) 0 0
\(13\) 2.73620 0.758885 0.379442 0.925215i \(-0.376116\pi\)
0.379442 + 0.925215i \(0.376116\pi\)
\(14\) 0 0
\(15\) −3.51118 −0.906582
\(16\) 0 0
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) −0.404319 −0.0927571 −0.0463785 0.998924i \(-0.514768\pi\)
−0.0463785 + 0.998924i \(0.514768\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.46779 0.306056 0.153028 0.988222i \(-0.451098\pi\)
0.153028 + 0.988222i \(0.451098\pi\)
\(24\) 0 0
\(25\) 1.94009 0.388019
\(26\) 0 0
\(27\) 5.62928 1.08336
\(28\) 0 0
\(29\) 5.14721 0.955813 0.477907 0.878411i \(-0.341396\pi\)
0.477907 + 0.878411i \(0.341396\pi\)
\(30\) 0 0
\(31\) −5.78955 −1.03983 −0.519917 0.854217i \(-0.674037\pi\)
−0.519917 + 0.854217i \(0.674037\pi\)
\(32\) 0 0
\(33\) −4.52965 −0.788511
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 3.35268 0.551177 0.275589 0.961276i \(-0.411127\pi\)
0.275589 + 0.961276i \(0.411127\pi\)
\(38\) 0 0
\(39\) −3.64685 −0.583963
\(40\) 0 0
\(41\) 8.88513 1.38762 0.693812 0.720156i \(-0.255930\pi\)
0.693812 + 0.720156i \(0.255930\pi\)
\(42\) 0 0
\(43\) −7.39301 −1.12742 −0.563712 0.825971i \(-0.690627\pi\)
−0.563712 + 0.825971i \(0.690627\pi\)
\(44\) 0 0
\(45\) −3.22346 −0.480525
\(46\) 0 0
\(47\) 10.8335 1.58023 0.790113 0.612961i \(-0.210022\pi\)
0.790113 + 0.612961i \(0.210022\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 1.33282 0.186632
\(52\) 0 0
\(53\) −5.85643 −0.804443 −0.402222 0.915542i \(-0.631762\pi\)
−0.402222 + 0.915542i \(0.631762\pi\)
\(54\) 0 0
\(55\) 8.95317 1.20725
\(56\) 0 0
\(57\) 0.538883 0.0713767
\(58\) 0 0
\(59\) −2.15676 −0.280786 −0.140393 0.990096i \(-0.544837\pi\)
−0.140393 + 0.990096i \(0.544837\pi\)
\(60\) 0 0
\(61\) 1.64909 0.211144 0.105572 0.994412i \(-0.466333\pi\)
0.105572 + 0.994412i \(0.466333\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 7.20825 0.894074
\(66\) 0 0
\(67\) −12.4743 −1.52398 −0.761989 0.647590i \(-0.775777\pi\)
−0.761989 + 0.647590i \(0.775777\pi\)
\(68\) 0 0
\(69\) −1.95630 −0.235511
\(70\) 0 0
\(71\) −5.10604 −0.605975 −0.302987 0.952995i \(-0.597984\pi\)
−0.302987 + 0.952995i \(0.597984\pi\)
\(72\) 0 0
\(73\) 11.7695 1.37752 0.688761 0.724989i \(-0.258155\pi\)
0.688761 + 0.724989i \(0.258155\pi\)
\(74\) 0 0
\(75\) −2.58579 −0.298581
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 1.64849 0.185470 0.0927349 0.995691i \(-0.470439\pi\)
0.0927349 + 0.995691i \(0.470439\pi\)
\(80\) 0 0
\(81\) −3.83200 −0.425778
\(82\) 0 0
\(83\) 11.4159 1.25306 0.626528 0.779399i \(-0.284475\pi\)
0.626528 + 0.779399i \(0.284475\pi\)
\(84\) 0 0
\(85\) −2.63441 −0.285741
\(86\) 0 0
\(87\) −6.86029 −0.735500
\(88\) 0 0
\(89\) 5.01381 0.531462 0.265731 0.964047i \(-0.414387\pi\)
0.265731 + 0.964047i \(0.414387\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 7.71641 0.800154
\(94\) 0 0
\(95\) −1.06514 −0.109281
\(96\) 0 0
\(97\) −1.08733 −0.110401 −0.0552006 0.998475i \(-0.517580\pi\)
−0.0552006 + 0.998475i \(0.517580\pi\)
\(98\) 0 0
\(99\) −4.15847 −0.417942
\(100\) 0 0
\(101\) −3.77415 −0.375542 −0.187771 0.982213i \(-0.560126\pi\)
−0.187771 + 0.982213i \(0.560126\pi\)
\(102\) 0 0
\(103\) 6.99756 0.689490 0.344745 0.938696i \(-0.387965\pi\)
0.344745 + 0.938696i \(0.387965\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −9.76321 −0.943846 −0.471923 0.881640i \(-0.656440\pi\)
−0.471923 + 0.881640i \(0.656440\pi\)
\(108\) 0 0
\(109\) 10.0135 0.959123 0.479562 0.877508i \(-0.340796\pi\)
0.479562 + 0.877508i \(0.340796\pi\)
\(110\) 0 0
\(111\) −4.46851 −0.424132
\(112\) 0 0
\(113\) 13.8115 1.29927 0.649637 0.760245i \(-0.274921\pi\)
0.649637 + 0.760245i \(0.274921\pi\)
\(114\) 0 0
\(115\) 3.86676 0.360577
\(116\) 0 0
\(117\) −3.34801 −0.309524
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0.550175 0.0500159
\(122\) 0 0
\(123\) −11.8423 −1.06778
\(124\) 0 0
\(125\) −8.06103 −0.721001
\(126\) 0 0
\(127\) −9.12622 −0.809821 −0.404911 0.914356i \(-0.632697\pi\)
−0.404911 + 0.914356i \(0.632697\pi\)
\(128\) 0 0
\(129\) 9.85353 0.867555
\(130\) 0 0
\(131\) 5.61422 0.490517 0.245258 0.969458i \(-0.421127\pi\)
0.245258 + 0.969458i \(0.421127\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 14.8298 1.27635
\(136\) 0 0
\(137\) −12.8360 −1.09666 −0.548329 0.836263i \(-0.684736\pi\)
−0.548329 + 0.836263i \(0.684736\pi\)
\(138\) 0 0
\(139\) −4.04881 −0.343415 −0.171708 0.985148i \(-0.554928\pi\)
−0.171708 + 0.985148i \(0.554928\pi\)
\(140\) 0 0
\(141\) −14.4390 −1.21599
\(142\) 0 0
\(143\) 9.29912 0.777631
\(144\) 0 0
\(145\) 13.5598 1.12608
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 8.50041 0.696380 0.348190 0.937424i \(-0.386796\pi\)
0.348190 + 0.937424i \(0.386796\pi\)
\(150\) 0 0
\(151\) 7.83954 0.637973 0.318987 0.947759i \(-0.396658\pi\)
0.318987 + 0.947759i \(0.396658\pi\)
\(152\) 0 0
\(153\) 1.22360 0.0989223
\(154\) 0 0
\(155\) −15.2520 −1.22507
\(156\) 0 0
\(157\) 5.03137 0.401547 0.200774 0.979638i \(-0.435654\pi\)
0.200774 + 0.979638i \(0.435654\pi\)
\(158\) 0 0
\(159\) 7.80555 0.619020
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 3.29713 0.258251 0.129126 0.991628i \(-0.458783\pi\)
0.129126 + 0.991628i \(0.458783\pi\)
\(164\) 0 0
\(165\) −11.9329 −0.928978
\(166\) 0 0
\(167\) 2.38360 0.184448 0.0922242 0.995738i \(-0.470602\pi\)
0.0922242 + 0.995738i \(0.470602\pi\)
\(168\) 0 0
\(169\) −5.51323 −0.424094
\(170\) 0 0
\(171\) 0.494725 0.0378326
\(172\) 0 0
\(173\) 17.6282 1.34025 0.670124 0.742249i \(-0.266241\pi\)
0.670124 + 0.742249i \(0.266241\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 2.87456 0.216065
\(178\) 0 0
\(179\) −3.92787 −0.293583 −0.146792 0.989167i \(-0.546895\pi\)
−0.146792 + 0.989167i \(0.546895\pi\)
\(180\) 0 0
\(181\) 23.1186 1.71839 0.859197 0.511645i \(-0.170964\pi\)
0.859197 + 0.511645i \(0.170964\pi\)
\(182\) 0 0
\(183\) −2.19793 −0.162476
\(184\) 0 0
\(185\) 8.83232 0.649365
\(186\) 0 0
\(187\) −3.39855 −0.248527
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 22.5203 1.62951 0.814755 0.579805i \(-0.196871\pi\)
0.814755 + 0.579805i \(0.196871\pi\)
\(192\) 0 0
\(193\) 17.4315 1.25475 0.627373 0.778719i \(-0.284130\pi\)
0.627373 + 0.778719i \(0.284130\pi\)
\(194\) 0 0
\(195\) −9.60728 −0.687991
\(196\) 0 0
\(197\) 9.55478 0.680750 0.340375 0.940290i \(-0.389446\pi\)
0.340375 + 0.940290i \(0.389446\pi\)
\(198\) 0 0
\(199\) −3.19341 −0.226375 −0.113188 0.993574i \(-0.536106\pi\)
−0.113188 + 0.993574i \(0.536106\pi\)
\(200\) 0 0
\(201\) 16.6259 1.17270
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 23.4071 1.63482
\(206\) 0 0
\(207\) −1.79599 −0.124830
\(208\) 0 0
\(209\) −1.37410 −0.0950484
\(210\) 0 0
\(211\) −23.5517 −1.62137 −0.810683 0.585485i \(-0.800904\pi\)
−0.810683 + 0.585485i \(0.800904\pi\)
\(212\) 0 0
\(213\) 6.80541 0.466299
\(214\) 0 0
\(215\) −19.4762 −1.32827
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −15.6866 −1.06000
\(220\) 0 0
\(221\) −2.73620 −0.184057
\(222\) 0 0
\(223\) 10.2413 0.685809 0.342904 0.939370i \(-0.388589\pi\)
0.342904 + 0.939370i \(0.388589\pi\)
\(224\) 0 0
\(225\) −2.37390 −0.158260
\(226\) 0 0
\(227\) −0.894724 −0.0593849 −0.0296925 0.999559i \(-0.509453\pi\)
−0.0296925 + 0.999559i \(0.509453\pi\)
\(228\) 0 0
\(229\) −15.6823 −1.03632 −0.518159 0.855284i \(-0.673383\pi\)
−0.518159 + 0.855284i \(0.673383\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 19.6653 1.28832 0.644160 0.764891i \(-0.277207\pi\)
0.644160 + 0.764891i \(0.277207\pi\)
\(234\) 0 0
\(235\) 28.5398 1.86173
\(236\) 0 0
\(237\) −2.19714 −0.142719
\(238\) 0 0
\(239\) 16.9468 1.09620 0.548100 0.836413i \(-0.315351\pi\)
0.548100 + 0.836413i \(0.315351\pi\)
\(240\) 0 0
\(241\) 23.8330 1.53522 0.767608 0.640920i \(-0.221447\pi\)
0.767608 + 0.640920i \(0.221447\pi\)
\(242\) 0 0
\(243\) −11.7805 −0.755720
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −1.10630 −0.0703919
\(248\) 0 0
\(249\) −15.2153 −0.964230
\(250\) 0 0
\(251\) 15.3635 0.969737 0.484869 0.874587i \(-0.338867\pi\)
0.484869 + 0.874587i \(0.338867\pi\)
\(252\) 0 0
\(253\) 4.98838 0.313616
\(254\) 0 0
\(255\) 3.51118 0.219879
\(256\) 0 0
\(257\) −0.186838 −0.0116546 −0.00582731 0.999983i \(-0.501855\pi\)
−0.00582731 + 0.999983i \(0.501855\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −6.29813 −0.389845
\(262\) 0 0
\(263\) −21.3661 −1.31749 −0.658746 0.752365i \(-0.728913\pi\)
−0.658746 + 0.752365i \(0.728913\pi\)
\(264\) 0 0
\(265\) −15.4282 −0.947748
\(266\) 0 0
\(267\) −6.68248 −0.408961
\(268\) 0 0
\(269\) −17.0143 −1.03738 −0.518689 0.854963i \(-0.673580\pi\)
−0.518689 + 0.854963i \(0.673580\pi\)
\(270\) 0 0
\(271\) −23.7048 −1.43997 −0.719983 0.693992i \(-0.755850\pi\)
−0.719983 + 0.693992i \(0.755850\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 6.59352 0.397604
\(276\) 0 0
\(277\) −10.4722 −0.629211 −0.314606 0.949222i \(-0.601872\pi\)
−0.314606 + 0.949222i \(0.601872\pi\)
\(278\) 0 0
\(279\) 7.08410 0.424114
\(280\) 0 0
\(281\) 13.7779 0.821919 0.410960 0.911654i \(-0.365194\pi\)
0.410960 + 0.911654i \(0.365194\pi\)
\(282\) 0 0
\(283\) −12.6862 −0.754118 −0.377059 0.926189i \(-0.623065\pi\)
−0.377059 + 0.926189i \(0.623065\pi\)
\(284\) 0 0
\(285\) 1.41964 0.0840919
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 1.44921 0.0849539
\(292\) 0 0
\(293\) 2.70276 0.157897 0.0789484 0.996879i \(-0.474844\pi\)
0.0789484 + 0.996879i \(0.474844\pi\)
\(294\) 0 0
\(295\) −5.68177 −0.330805
\(296\) 0 0
\(297\) 19.1314 1.11012
\(298\) 0 0
\(299\) 4.01617 0.232261
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 5.03024 0.288980
\(304\) 0 0
\(305\) 4.34437 0.248758
\(306\) 0 0
\(307\) 14.6666 0.837065 0.418532 0.908202i \(-0.362545\pi\)
0.418532 + 0.908202i \(0.362545\pi\)
\(308\) 0 0
\(309\) −9.32646 −0.530564
\(310\) 0 0
\(311\) −12.1777 −0.690535 −0.345268 0.938504i \(-0.612212\pi\)
−0.345268 + 0.938504i \(0.612212\pi\)
\(312\) 0 0
\(313\) 25.0483 1.41582 0.707908 0.706305i \(-0.249639\pi\)
0.707908 + 0.706305i \(0.249639\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 19.6043 1.10108 0.550542 0.834807i \(-0.314421\pi\)
0.550542 + 0.834807i \(0.314421\pi\)
\(318\) 0 0
\(319\) 17.4931 0.979425
\(320\) 0 0
\(321\) 13.0126 0.726291
\(322\) 0 0
\(323\) 0.404319 0.0224969
\(324\) 0 0
\(325\) 5.30848 0.294461
\(326\) 0 0
\(327\) −13.3462 −0.738047
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −14.2160 −0.781384 −0.390692 0.920521i \(-0.627764\pi\)
−0.390692 + 0.920521i \(0.627764\pi\)
\(332\) 0 0
\(333\) −4.10234 −0.224807
\(334\) 0 0
\(335\) −32.8623 −1.79546
\(336\) 0 0
\(337\) 13.3893 0.729361 0.364680 0.931133i \(-0.381178\pi\)
0.364680 + 0.931133i \(0.381178\pi\)
\(338\) 0 0
\(339\) −18.4081 −0.999793
\(340\) 0 0
\(341\) −19.6761 −1.06552
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −5.15368 −0.277465
\(346\) 0 0
\(347\) 33.8546 1.81741 0.908706 0.417437i \(-0.137072\pi\)
0.908706 + 0.417437i \(0.137072\pi\)
\(348\) 0 0
\(349\) 27.2035 1.45617 0.728085 0.685487i \(-0.240411\pi\)
0.728085 + 0.685487i \(0.240411\pi\)
\(350\) 0 0
\(351\) 15.4028 0.822142
\(352\) 0 0
\(353\) −14.6928 −0.782019 −0.391009 0.920387i \(-0.627874\pi\)
−0.391009 + 0.920387i \(0.627874\pi\)
\(354\) 0 0
\(355\) −13.4514 −0.713925
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 9.33884 0.492885 0.246442 0.969157i \(-0.420738\pi\)
0.246442 + 0.969157i \(0.420738\pi\)
\(360\) 0 0
\(361\) −18.8365 −0.991396
\(362\) 0 0
\(363\) −0.733282 −0.0384873
\(364\) 0 0
\(365\) 31.0058 1.62292
\(366\) 0 0
\(367\) 0.578678 0.0302068 0.0151034 0.999886i \(-0.495192\pi\)
0.0151034 + 0.999886i \(0.495192\pi\)
\(368\) 0 0
\(369\) −10.8719 −0.565966
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −21.8602 −1.13188 −0.565940 0.824447i \(-0.691486\pi\)
−0.565940 + 0.824447i \(0.691486\pi\)
\(374\) 0 0
\(375\) 10.7439 0.554811
\(376\) 0 0
\(377\) 14.0838 0.725352
\(378\) 0 0
\(379\) 4.26768 0.219216 0.109608 0.993975i \(-0.465040\pi\)
0.109608 + 0.993975i \(0.465040\pi\)
\(380\) 0 0
\(381\) 12.1636 0.623159
\(382\) 0 0
\(383\) 28.5396 1.45830 0.729152 0.684351i \(-0.239915\pi\)
0.729152 + 0.684351i \(0.239915\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 9.04610 0.459839
\(388\) 0 0
\(389\) 37.8618 1.91967 0.959836 0.280563i \(-0.0905211\pi\)
0.959836 + 0.280563i \(0.0905211\pi\)
\(390\) 0 0
\(391\) −1.46779 −0.0742295
\(392\) 0 0
\(393\) −7.48272 −0.377453
\(394\) 0 0
\(395\) 4.34280 0.218510
\(396\) 0 0
\(397\) 18.3336 0.920138 0.460069 0.887883i \(-0.347825\pi\)
0.460069 + 0.887883i \(0.347825\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −30.2532 −1.51077 −0.755387 0.655279i \(-0.772551\pi\)
−0.755387 + 0.655279i \(0.772551\pi\)
\(402\) 0 0
\(403\) −15.8414 −0.789114
\(404\) 0 0
\(405\) −10.0950 −0.501626
\(406\) 0 0
\(407\) 11.3943 0.564793
\(408\) 0 0
\(409\) −17.1292 −0.846986 −0.423493 0.905899i \(-0.639196\pi\)
−0.423493 + 0.905899i \(0.639196\pi\)
\(410\) 0 0
\(411\) 17.1081 0.843880
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 30.0741 1.47628
\(416\) 0 0
\(417\) 5.39632 0.264259
\(418\) 0 0
\(419\) −12.7339 −0.622092 −0.311046 0.950395i \(-0.600679\pi\)
−0.311046 + 0.950395i \(0.600679\pi\)
\(420\) 0 0
\(421\) 27.3824 1.33454 0.667269 0.744817i \(-0.267463\pi\)
0.667269 + 0.744817i \(0.267463\pi\)
\(422\) 0 0
\(423\) −13.2559 −0.644522
\(424\) 0 0
\(425\) −1.94009 −0.0941084
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −12.3940 −0.598389
\(430\) 0 0
\(431\) 12.5372 0.603895 0.301947 0.953325i \(-0.402363\pi\)
0.301947 + 0.953325i \(0.402363\pi\)
\(432\) 0 0
\(433\) −6.93267 −0.333163 −0.166581 0.986028i \(-0.553273\pi\)
−0.166581 + 0.986028i \(0.553273\pi\)
\(434\) 0 0
\(435\) −18.0728 −0.866524
\(436\) 0 0
\(437\) −0.593456 −0.0283889
\(438\) 0 0
\(439\) 1.59334 0.0760462 0.0380231 0.999277i \(-0.487894\pi\)
0.0380231 + 0.999277i \(0.487894\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 8.78641 0.417455 0.208728 0.977974i \(-0.433068\pi\)
0.208728 + 0.977974i \(0.433068\pi\)
\(444\) 0 0
\(445\) 13.2084 0.626138
\(446\) 0 0
\(447\) −11.3295 −0.535866
\(448\) 0 0
\(449\) −5.10893 −0.241105 −0.120553 0.992707i \(-0.538467\pi\)
−0.120553 + 0.992707i \(0.538467\pi\)
\(450\) 0 0
\(451\) 30.1966 1.42190
\(452\) 0 0
\(453\) −10.4487 −0.490921
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −31.4086 −1.46923 −0.734616 0.678483i \(-0.762638\pi\)
−0.734616 + 0.678483i \(0.762638\pi\)
\(458\) 0 0
\(459\) −5.62928 −0.262752
\(460\) 0 0
\(461\) 17.3719 0.809090 0.404545 0.914518i \(-0.367430\pi\)
0.404545 + 0.914518i \(0.367430\pi\)
\(462\) 0 0
\(463\) −19.5143 −0.906905 −0.453453 0.891280i \(-0.649808\pi\)
−0.453453 + 0.891280i \(0.649808\pi\)
\(464\) 0 0
\(465\) 20.3282 0.942695
\(466\) 0 0
\(467\) −11.5364 −0.533839 −0.266920 0.963719i \(-0.586006\pi\)
−0.266920 + 0.963719i \(0.586006\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −6.70590 −0.308991
\(472\) 0 0
\(473\) −25.1256 −1.15527
\(474\) 0 0
\(475\) −0.784416 −0.0359915
\(476\) 0 0
\(477\) 7.16594 0.328106
\(478\) 0 0
\(479\) −11.4533 −0.523315 −0.261657 0.965161i \(-0.584269\pi\)
−0.261657 + 0.965161i \(0.584269\pi\)
\(480\) 0 0
\(481\) 9.17359 0.418280
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2.86446 −0.130068
\(486\) 0 0
\(487\) −7.98161 −0.361681 −0.180841 0.983512i \(-0.557882\pi\)
−0.180841 + 0.983512i \(0.557882\pi\)
\(488\) 0 0
\(489\) −4.39447 −0.198725
\(490\) 0 0
\(491\) −21.2292 −0.958060 −0.479030 0.877798i \(-0.659012\pi\)
−0.479030 + 0.877798i \(0.659012\pi\)
\(492\) 0 0
\(493\) −5.14721 −0.231819
\(494\) 0 0
\(495\) −10.9551 −0.492396
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −36.1880 −1.62000 −0.809999 0.586432i \(-0.800532\pi\)
−0.809999 + 0.586432i \(0.800532\pi\)
\(500\) 0 0
\(501\) −3.17690 −0.141933
\(502\) 0 0
\(503\) −36.1481 −1.61176 −0.805882 0.592076i \(-0.798308\pi\)
−0.805882 + 0.592076i \(0.798308\pi\)
\(504\) 0 0
\(505\) −9.94263 −0.442441
\(506\) 0 0
\(507\) 7.34812 0.326341
\(508\) 0 0
\(509\) −31.4404 −1.39357 −0.696785 0.717280i \(-0.745387\pi\)
−0.696785 + 0.717280i \(0.745387\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −2.27603 −0.100489
\(514\) 0 0
\(515\) 18.4344 0.812317
\(516\) 0 0
\(517\) 36.8182 1.61926
\(518\) 0 0
\(519\) −23.4952 −1.03132
\(520\) 0 0
\(521\) −22.0154 −0.964513 −0.482257 0.876030i \(-0.660183\pi\)
−0.482257 + 0.876030i \(0.660183\pi\)
\(522\) 0 0
\(523\) 14.6017 0.638487 0.319243 0.947673i \(-0.396571\pi\)
0.319243 + 0.947673i \(0.396571\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 5.78955 0.252197
\(528\) 0 0
\(529\) −20.8456 −0.906330
\(530\) 0 0
\(531\) 2.63901 0.114523
\(532\) 0 0
\(533\) 24.3115 1.05305
\(534\) 0 0
\(535\) −25.7203 −1.11198
\(536\) 0 0
\(537\) 5.23513 0.225913
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −38.4069 −1.65124 −0.825621 0.564225i \(-0.809175\pi\)
−0.825621 + 0.564225i \(0.809175\pi\)
\(542\) 0 0
\(543\) −30.8129 −1.32231
\(544\) 0 0
\(545\) 26.3797 1.12998
\(546\) 0 0
\(547\) −31.0157 −1.32614 −0.663069 0.748559i \(-0.730746\pi\)
−0.663069 + 0.748559i \(0.730746\pi\)
\(548\) 0 0
\(549\) −2.01783 −0.0861188
\(550\) 0 0
\(551\) −2.08111 −0.0886585
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −11.7719 −0.499688
\(556\) 0 0
\(557\) 6.94418 0.294235 0.147117 0.989119i \(-0.453001\pi\)
0.147117 + 0.989119i \(0.453001\pi\)
\(558\) 0 0
\(559\) −20.2287 −0.855585
\(560\) 0 0
\(561\) 4.52965 0.191242
\(562\) 0 0
\(563\) −4.13022 −0.174068 −0.0870340 0.996205i \(-0.527739\pi\)
−0.0870340 + 0.996205i \(0.527739\pi\)
\(564\) 0 0
\(565\) 36.3850 1.53073
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −20.7679 −0.870637 −0.435318 0.900277i \(-0.643364\pi\)
−0.435318 + 0.900277i \(0.643364\pi\)
\(570\) 0 0
\(571\) 34.9944 1.46447 0.732234 0.681053i \(-0.238478\pi\)
0.732234 + 0.681053i \(0.238478\pi\)
\(572\) 0 0
\(573\) −30.0154 −1.25391
\(574\) 0 0
\(575\) 2.84766 0.118755
\(576\) 0 0
\(577\) −32.3857 −1.34823 −0.674117 0.738624i \(-0.735476\pi\)
−0.674117 + 0.738624i \(0.735476\pi\)
\(578\) 0 0
\(579\) −23.2330 −0.965529
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −19.9034 −0.824315
\(584\) 0 0
\(585\) −8.82003 −0.364663
\(586\) 0 0
\(587\) −41.0902 −1.69597 −0.847987 0.530017i \(-0.822186\pi\)
−0.847987 + 0.530017i \(0.822186\pi\)
\(588\) 0 0
\(589\) 2.34082 0.0964520
\(590\) 0 0
\(591\) −12.7348 −0.523838
\(592\) 0 0
\(593\) 7.60694 0.312380 0.156190 0.987727i \(-0.450079\pi\)
0.156190 + 0.987727i \(0.450079\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 4.25623 0.174196
\(598\) 0 0
\(599\) −35.8096 −1.46314 −0.731570 0.681767i \(-0.761212\pi\)
−0.731570 + 0.681767i \(0.761212\pi\)
\(600\) 0 0
\(601\) −36.6919 −1.49669 −0.748347 0.663307i \(-0.769152\pi\)
−0.748347 + 0.663307i \(0.769152\pi\)
\(602\) 0 0
\(603\) 15.2636 0.621580
\(604\) 0 0
\(605\) 1.44938 0.0589258
\(606\) 0 0
\(607\) −2.83085 −0.114901 −0.0574503 0.998348i \(-0.518297\pi\)
−0.0574503 + 0.998348i \(0.518297\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 29.6425 1.19921
\(612\) 0 0
\(613\) 26.3540 1.06443 0.532213 0.846610i \(-0.321361\pi\)
0.532213 + 0.846610i \(0.321361\pi\)
\(614\) 0 0
\(615\) −31.1973 −1.25800
\(616\) 0 0
\(617\) 1.49863 0.0603326 0.0301663 0.999545i \(-0.490396\pi\)
0.0301663 + 0.999545i \(0.490396\pi\)
\(618\) 0 0
\(619\) 4.29710 0.172715 0.0863576 0.996264i \(-0.472477\pi\)
0.0863576 + 0.996264i \(0.472477\pi\)
\(620\) 0 0
\(621\) 8.26262 0.331568
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −30.9365 −1.23746
\(626\) 0 0
\(627\) 1.83142 0.0731400
\(628\) 0 0
\(629\) −3.35268 −0.133680
\(630\) 0 0
\(631\) 33.3092 1.32602 0.663010 0.748611i \(-0.269279\pi\)
0.663010 + 0.748611i \(0.269279\pi\)
\(632\) 0 0
\(633\) 31.3901 1.24764
\(634\) 0 0
\(635\) −24.0422 −0.954084
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 6.24775 0.247157
\(640\) 0 0
\(641\) −46.6140 −1.84114 −0.920572 0.390573i \(-0.872277\pi\)
−0.920572 + 0.390573i \(0.872277\pi\)
\(642\) 0 0
\(643\) −1.83554 −0.0723867 −0.0361934 0.999345i \(-0.511523\pi\)
−0.0361934 + 0.999345i \(0.511523\pi\)
\(644\) 0 0
\(645\) 25.9582 1.02210
\(646\) 0 0
\(647\) −29.4260 −1.15686 −0.578428 0.815734i \(-0.696333\pi\)
−0.578428 + 0.815734i \(0.696333\pi\)
\(648\) 0 0
\(649\) −7.32985 −0.287722
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −36.4919 −1.42804 −0.714018 0.700127i \(-0.753127\pi\)
−0.714018 + 0.700127i \(0.753127\pi\)
\(654\) 0 0
\(655\) 14.7901 0.577898
\(656\) 0 0
\(657\) −14.4012 −0.561845
\(658\) 0 0
\(659\) −39.2123 −1.52750 −0.763748 0.645515i \(-0.776643\pi\)
−0.763748 + 0.645515i \(0.776643\pi\)
\(660\) 0 0
\(661\) 23.6477 0.919790 0.459895 0.887973i \(-0.347887\pi\)
0.459895 + 0.887973i \(0.347887\pi\)
\(662\) 0 0
\(663\) 3.64685 0.141632
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 7.55504 0.292532
\(668\) 0 0
\(669\) −13.6498 −0.527731
\(670\) 0 0
\(671\) 5.60452 0.216360
\(672\) 0 0
\(673\) 20.3812 0.785638 0.392819 0.919616i \(-0.371500\pi\)
0.392819 + 0.919616i \(0.371500\pi\)
\(674\) 0 0
\(675\) 10.9213 0.420363
\(676\) 0 0
\(677\) −27.2439 −1.04707 −0.523533 0.852005i \(-0.675386\pi\)
−0.523533 + 0.852005i \(0.675386\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 1.19250 0.0456968
\(682\) 0 0
\(683\) −0.0918747 −0.00351549 −0.00175774 0.999998i \(-0.500560\pi\)
−0.00175774 + 0.999998i \(0.500560\pi\)
\(684\) 0 0
\(685\) −33.8153 −1.29202
\(686\) 0 0
\(687\) 20.9017 0.797449
\(688\) 0 0
\(689\) −16.0244 −0.610479
\(690\) 0 0
\(691\) −2.31807 −0.0881834 −0.0440917 0.999027i \(-0.514039\pi\)
−0.0440917 + 0.999027i \(0.514039\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −10.6662 −0.404592
\(696\) 0 0
\(697\) −8.88513 −0.336548
\(698\) 0 0
\(699\) −26.2103 −0.991364
\(700\) 0 0
\(701\) −16.9943 −0.641865 −0.320932 0.947102i \(-0.603996\pi\)
−0.320932 + 0.947102i \(0.603996\pi\)
\(702\) 0 0
\(703\) −1.35555 −0.0511256
\(704\) 0 0
\(705\) −38.0383 −1.43261
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −16.7430 −0.628798 −0.314399 0.949291i \(-0.601803\pi\)
−0.314399 + 0.949291i \(0.601803\pi\)
\(710\) 0 0
\(711\) −2.01710 −0.0756470
\(712\) 0 0
\(713\) −8.49786 −0.318247
\(714\) 0 0
\(715\) 24.4976 0.916160
\(716\) 0 0
\(717\) −22.5870 −0.843528
\(718\) 0 0
\(719\) 17.4685 0.651465 0.325732 0.945462i \(-0.394389\pi\)
0.325732 + 0.945462i \(0.394389\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −31.7649 −1.18135
\(724\) 0 0
\(725\) 9.98608 0.370874
\(726\) 0 0
\(727\) 29.0537 1.07754 0.538770 0.842453i \(-0.318889\pi\)
0.538770 + 0.842453i \(0.318889\pi\)
\(728\) 0 0
\(729\) 27.1972 1.00731
\(730\) 0 0
\(731\) 7.39301 0.273440
\(732\) 0 0
\(733\) 17.4825 0.645731 0.322866 0.946445i \(-0.395354\pi\)
0.322866 + 0.946445i \(0.395354\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −42.3946 −1.56162
\(738\) 0 0
\(739\) 44.4652 1.63568 0.817839 0.575448i \(-0.195172\pi\)
0.817839 + 0.575448i \(0.195172\pi\)
\(740\) 0 0
\(741\) 1.47449 0.0541667
\(742\) 0 0
\(743\) 1.93478 0.0709802 0.0354901 0.999370i \(-0.488701\pi\)
0.0354901 + 0.999370i \(0.488701\pi\)
\(744\) 0 0
\(745\) 22.3935 0.820435
\(746\) 0 0
\(747\) −13.9685 −0.511081
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −10.3909 −0.379169 −0.189585 0.981864i \(-0.560714\pi\)
−0.189585 + 0.981864i \(0.560714\pi\)
\(752\) 0 0
\(753\) −20.4768 −0.746214
\(754\) 0 0
\(755\) 20.6525 0.751623
\(756\) 0 0
\(757\) −40.0024 −1.45391 −0.726956 0.686684i \(-0.759065\pi\)
−0.726956 + 0.686684i \(0.759065\pi\)
\(758\) 0 0
\(759\) −6.64859 −0.241328
\(760\) 0 0
\(761\) −35.3291 −1.28068 −0.640339 0.768092i \(-0.721206\pi\)
−0.640339 + 0.768092i \(0.721206\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 3.22346 0.116544
\(766\) 0 0
\(767\) −5.90131 −0.213084
\(768\) 0 0
\(769\) −43.8275 −1.58046 −0.790230 0.612810i \(-0.790039\pi\)
−0.790230 + 0.612810i \(0.790039\pi\)
\(770\) 0 0
\(771\) 0.249020 0.00896825
\(772\) 0 0
\(773\) −22.9608 −0.825844 −0.412922 0.910766i \(-0.635492\pi\)
−0.412922 + 0.910766i \(0.635492\pi\)
\(774\) 0 0
\(775\) −11.2323 −0.403475
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −3.59243 −0.128712
\(780\) 0 0
\(781\) −17.3531 −0.620944
\(782\) 0 0
\(783\) 28.9751 1.03549
\(784\) 0 0
\(785\) 13.2547 0.473080
\(786\) 0 0
\(787\) 27.7458 0.989032 0.494516 0.869168i \(-0.335345\pi\)
0.494516 + 0.869168i \(0.335345\pi\)
\(788\) 0 0
\(789\) 28.4771 1.01381
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 4.51223 0.160234
\(794\) 0 0
\(795\) 20.5630 0.729294
\(796\) 0 0
\(797\) −22.4056 −0.793649 −0.396824 0.917895i \(-0.629888\pi\)
−0.396824 + 0.917895i \(0.629888\pi\)
\(798\) 0 0
\(799\) −10.8335 −0.383261
\(800\) 0 0
\(801\) −6.13490 −0.216766
\(802\) 0 0
\(803\) 39.9994 1.41155
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 22.6769 0.798265
\(808\) 0 0
\(809\) 9.66658 0.339859 0.169929 0.985456i \(-0.445646\pi\)
0.169929 + 0.985456i \(0.445646\pi\)
\(810\) 0 0
\(811\) −15.8495 −0.556551 −0.278275 0.960501i \(-0.589763\pi\)
−0.278275 + 0.960501i \(0.589763\pi\)
\(812\) 0 0
\(813\) 31.5942 1.10806
\(814\) 0 0
\(815\) 8.68599 0.304257
\(816\) 0 0
\(817\) 2.98913 0.104577
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −32.7857 −1.14423 −0.572115 0.820173i \(-0.693877\pi\)
−0.572115 + 0.820173i \(0.693877\pi\)
\(822\) 0 0
\(823\) 51.2019 1.78479 0.892394 0.451257i \(-0.149024\pi\)
0.892394 + 0.451257i \(0.149024\pi\)
\(824\) 0 0
\(825\) −8.78794 −0.305957
\(826\) 0 0
\(827\) −2.48109 −0.0862758 −0.0431379 0.999069i \(-0.513735\pi\)
−0.0431379 + 0.999069i \(0.513735\pi\)
\(828\) 0 0
\(829\) 25.4701 0.884612 0.442306 0.896864i \(-0.354161\pi\)
0.442306 + 0.896864i \(0.354161\pi\)
\(830\) 0 0
\(831\) 13.9575 0.484179
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 6.27936 0.217306
\(836\) 0 0
\(837\) −32.5910 −1.12651
\(838\) 0 0
\(839\) −47.3802 −1.63575 −0.817874 0.575398i \(-0.804847\pi\)
−0.817874 + 0.575398i \(0.804847\pi\)
\(840\) 0 0
\(841\) −2.50621 −0.0864209
\(842\) 0 0
\(843\) −18.3634 −0.632468
\(844\) 0 0
\(845\) −14.5241 −0.499643
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 16.9084 0.580295
\(850\) 0 0
\(851\) 4.92104 0.168691
\(852\) 0 0
\(853\) 50.7362 1.73718 0.868588 0.495535i \(-0.165028\pi\)
0.868588 + 0.495535i \(0.165028\pi\)
\(854\) 0 0
\(855\) 1.30331 0.0445721
\(856\) 0 0
\(857\) −6.95326 −0.237519 −0.118759 0.992923i \(-0.537892\pi\)
−0.118759 + 0.992923i \(0.537892\pi\)
\(858\) 0 0
\(859\) −13.7889 −0.470471 −0.235236 0.971938i \(-0.575586\pi\)
−0.235236 + 0.971938i \(0.575586\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 48.1645 1.63954 0.819770 0.572693i \(-0.194101\pi\)
0.819770 + 0.572693i \(0.194101\pi\)
\(864\) 0 0
\(865\) 46.4399 1.57900
\(866\) 0 0
\(867\) −1.33282 −0.0452648
\(868\) 0 0
\(869\) 5.60249 0.190052
\(870\) 0 0
\(871\) −34.1321 −1.15652
\(872\) 0 0
\(873\) 1.33045 0.0450290
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −32.1289 −1.08492 −0.542458 0.840083i \(-0.682506\pi\)
−0.542458 + 0.840083i \(0.682506\pi\)
\(878\) 0 0
\(879\) −3.60228 −0.121502
\(880\) 0 0
\(881\) 23.8417 0.803246 0.401623 0.915805i \(-0.368446\pi\)
0.401623 + 0.915805i \(0.368446\pi\)
\(882\) 0 0
\(883\) 56.5522 1.90313 0.951566 0.307444i \(-0.0994736\pi\)
0.951566 + 0.307444i \(0.0994736\pi\)
\(884\) 0 0
\(885\) 7.57275 0.254555
\(886\) 0 0
\(887\) 3.79132 0.127300 0.0636500 0.997972i \(-0.479726\pi\)
0.0636500 + 0.997972i \(0.479726\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −13.0233 −0.436295
\(892\) 0 0
\(893\) −4.38018 −0.146577
\(894\) 0 0
\(895\) −10.3476 −0.345883
\(896\) 0 0
\(897\) −5.35282 −0.178725
\(898\) 0 0
\(899\) −29.8001 −0.993887
\(900\) 0 0
\(901\) 5.85643 0.195106
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 60.9038 2.02451
\(906\) 0 0
\(907\) 17.0338 0.565598 0.282799 0.959179i \(-0.408737\pi\)
0.282799 + 0.959179i \(0.408737\pi\)
\(908\) 0 0
\(909\) 4.61805 0.153171
\(910\) 0 0
\(911\) 11.6353 0.385493 0.192747 0.981249i \(-0.438260\pi\)
0.192747 + 0.981249i \(0.438260\pi\)
\(912\) 0 0
\(913\) 38.7975 1.28401
\(914\) 0 0
\(915\) −5.79025 −0.191420
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −4.79523 −0.158180 −0.0790899 0.996867i \(-0.525201\pi\)
−0.0790899 + 0.996867i \(0.525201\pi\)
\(920\) 0 0
\(921\) −19.5478 −0.644123
\(922\) 0 0
\(923\) −13.9711 −0.459865
\(924\) 0 0
\(925\) 6.50451 0.213867
\(926\) 0 0
\(927\) −8.56222 −0.281220
\(928\) 0 0
\(929\) −44.3224 −1.45417 −0.727086 0.686547i \(-0.759126\pi\)
−0.727086 + 0.686547i \(0.759126\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 16.2307 0.531368
\(934\) 0 0
\(935\) −8.95317 −0.292800
\(936\) 0 0
\(937\) 43.1735 1.41042 0.705208 0.709000i \(-0.250853\pi\)
0.705208 + 0.709000i \(0.250853\pi\)
\(938\) 0 0
\(939\) −33.3848 −1.08947
\(940\) 0 0
\(941\) 28.1904 0.918982 0.459491 0.888183i \(-0.348032\pi\)
0.459491 + 0.888183i \(0.348032\pi\)
\(942\) 0 0
\(943\) 13.0415 0.424691
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −37.3180 −1.21267 −0.606337 0.795208i \(-0.707362\pi\)
−0.606337 + 0.795208i \(0.707362\pi\)
\(948\) 0 0
\(949\) 32.2038 1.04538
\(950\) 0 0
\(951\) −26.1289 −0.847287
\(952\) 0 0
\(953\) 6.79062 0.219970 0.109985 0.993933i \(-0.464920\pi\)
0.109985 + 0.993933i \(0.464920\pi\)
\(954\) 0 0
\(955\) 59.3276 1.91980
\(956\) 0 0
\(957\) −23.3151 −0.753669
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 2.51891 0.0812551
\(962\) 0 0
\(963\) 11.9463 0.384963
\(964\) 0 0
\(965\) 45.9216 1.47827
\(966\) 0 0
\(967\) 27.7347 0.891888 0.445944 0.895061i \(-0.352868\pi\)
0.445944 + 0.895061i \(0.352868\pi\)
\(968\) 0 0
\(969\) −0.538883 −0.0173114
\(970\) 0 0
\(971\) −32.6912 −1.04911 −0.524556 0.851376i \(-0.675769\pi\)
−0.524556 + 0.851376i \(0.675769\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −7.07523 −0.226589
\(976\) 0 0
\(977\) 49.2549 1.57581 0.787903 0.615800i \(-0.211167\pi\)
0.787903 + 0.615800i \(0.211167\pi\)
\(978\) 0 0
\(979\) 17.0397 0.544591
\(980\) 0 0
\(981\) −12.2526 −0.391195
\(982\) 0 0
\(983\) 26.0666 0.831396 0.415698 0.909503i \(-0.363537\pi\)
0.415698 + 0.909503i \(0.363537\pi\)
\(984\) 0 0
\(985\) 25.1712 0.802020
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −10.8514 −0.345055
\(990\) 0 0
\(991\) 42.6057 1.35341 0.676707 0.736252i \(-0.263406\pi\)
0.676707 + 0.736252i \(0.263406\pi\)
\(992\) 0 0
\(993\) 18.9474 0.601277
\(994\) 0 0
\(995\) −8.41275 −0.266702
\(996\) 0 0
\(997\) −22.0611 −0.698682 −0.349341 0.936996i \(-0.613594\pi\)
−0.349341 + 0.936996i \(0.613594\pi\)
\(998\) 0 0
\(999\) 18.8732 0.597121
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3332.2.a.u.1.2 yes 8
7.6 odd 2 3332.2.a.t.1.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3332.2.a.t.1.7 8 7.6 odd 2
3332.2.a.u.1.2 yes 8 1.1 even 1 trivial