Properties

Label 3332.2.a.u.1.1
Level $3332$
Weight $2$
Character 3332.1
Self dual yes
Analytic conductor $26.606$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3332,2,Mod(1,3332)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3332, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3332.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3332 = 2^{2} \cdot 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3332.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.6061539535\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} - 8x^{6} + 36x^{5} + 17x^{4} - 76x^{3} - 20x^{2} + 44x + 17 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.43314\) of defining polynomial
Character \(\chi\) \(=\) 3332.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.43314 q^{3} -0.700514 q^{5} +2.92017 q^{9} -6.25232 q^{11} +3.33822 q^{13} +1.70445 q^{15} -1.00000 q^{17} +2.78435 q^{19} -5.97696 q^{23} -4.50928 q^{25} +0.194229 q^{27} -3.96405 q^{29} +1.55695 q^{31} +15.2128 q^{33} -2.53597 q^{37} -8.12236 q^{39} +5.62122 q^{41} -2.29290 q^{43} -2.04562 q^{45} -11.9664 q^{47} +2.43314 q^{51} +6.55500 q^{53} +4.37983 q^{55} -6.77471 q^{57} -8.78005 q^{59} +4.95327 q^{61} -2.33847 q^{65} +13.1327 q^{67} +14.5428 q^{69} -14.2118 q^{71} -8.40017 q^{73} +10.9717 q^{75} +3.03170 q^{79} -9.23311 q^{81} -4.93476 q^{83} +0.700514 q^{85} +9.64510 q^{87} +14.7216 q^{89} -3.78828 q^{93} -1.95047 q^{95} +0.898333 q^{97} -18.2578 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{3} + 4 q^{5} + 8 q^{9} - 4 q^{11} + 20 q^{13} + 12 q^{15} - 8 q^{17} + 8 q^{19} + 4 q^{23} + 8 q^{25} + 28 q^{27} - 16 q^{29} - 8 q^{31} + 16 q^{33} + 8 q^{37} + 20 q^{39} + 12 q^{41} - 4 q^{43}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.43314 −1.40477 −0.702387 0.711795i \(-0.747882\pi\)
−0.702387 + 0.711795i \(0.747882\pi\)
\(4\) 0 0
\(5\) −0.700514 −0.313279 −0.156640 0.987656i \(-0.550066\pi\)
−0.156640 + 0.987656i \(0.550066\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 2.92017 0.973391
\(10\) 0 0
\(11\) −6.25232 −1.88514 −0.942572 0.334003i \(-0.891601\pi\)
−0.942572 + 0.334003i \(0.891601\pi\)
\(12\) 0 0
\(13\) 3.33822 0.925855 0.462928 0.886396i \(-0.346799\pi\)
0.462928 + 0.886396i \(0.346799\pi\)
\(14\) 0 0
\(15\) 1.70445 0.440087
\(16\) 0 0
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) 2.78435 0.638773 0.319387 0.947625i \(-0.396523\pi\)
0.319387 + 0.947625i \(0.396523\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −5.97696 −1.24628 −0.623141 0.782110i \(-0.714144\pi\)
−0.623141 + 0.782110i \(0.714144\pi\)
\(24\) 0 0
\(25\) −4.50928 −0.901856
\(26\) 0 0
\(27\) 0.194229 0.0373793
\(28\) 0 0
\(29\) −3.96405 −0.736106 −0.368053 0.929805i \(-0.619976\pi\)
−0.368053 + 0.929805i \(0.619976\pi\)
\(30\) 0 0
\(31\) 1.55695 0.279637 0.139818 0.990177i \(-0.455348\pi\)
0.139818 + 0.990177i \(0.455348\pi\)
\(32\) 0 0
\(33\) 15.2128 2.64820
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −2.53597 −0.416912 −0.208456 0.978032i \(-0.566844\pi\)
−0.208456 + 0.978032i \(0.566844\pi\)
\(38\) 0 0
\(39\) −8.12236 −1.30062
\(40\) 0 0
\(41\) 5.62122 0.877887 0.438944 0.898515i \(-0.355353\pi\)
0.438944 + 0.898515i \(0.355353\pi\)
\(42\) 0 0
\(43\) −2.29290 −0.349664 −0.174832 0.984598i \(-0.555938\pi\)
−0.174832 + 0.984598i \(0.555938\pi\)
\(44\) 0 0
\(45\) −2.04562 −0.304943
\(46\) 0 0
\(47\) −11.9664 −1.74548 −0.872742 0.488181i \(-0.837661\pi\)
−0.872742 + 0.488181i \(0.837661\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 2.43314 0.340708
\(52\) 0 0
\(53\) 6.55500 0.900399 0.450200 0.892928i \(-0.351353\pi\)
0.450200 + 0.892928i \(0.351353\pi\)
\(54\) 0 0
\(55\) 4.37983 0.590577
\(56\) 0 0
\(57\) −6.77471 −0.897332
\(58\) 0 0
\(59\) −8.78005 −1.14307 −0.571533 0.820579i \(-0.693651\pi\)
−0.571533 + 0.820579i \(0.693651\pi\)
\(60\) 0 0
\(61\) 4.95327 0.634201 0.317101 0.948392i \(-0.397291\pi\)
0.317101 + 0.948392i \(0.397291\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.33847 −0.290051
\(66\) 0 0
\(67\) 13.1327 1.60442 0.802210 0.597042i \(-0.203657\pi\)
0.802210 + 0.597042i \(0.203657\pi\)
\(68\) 0 0
\(69\) 14.5428 1.75074
\(70\) 0 0
\(71\) −14.2118 −1.68663 −0.843317 0.537417i \(-0.819400\pi\)
−0.843317 + 0.537417i \(0.819400\pi\)
\(72\) 0 0
\(73\) −8.40017 −0.983165 −0.491583 0.870831i \(-0.663581\pi\)
−0.491583 + 0.870831i \(0.663581\pi\)
\(74\) 0 0
\(75\) 10.9717 1.26690
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 3.03170 0.341093 0.170546 0.985350i \(-0.445447\pi\)
0.170546 + 0.985350i \(0.445447\pi\)
\(80\) 0 0
\(81\) −9.23311 −1.02590
\(82\) 0 0
\(83\) −4.93476 −0.541660 −0.270830 0.962627i \(-0.587298\pi\)
−0.270830 + 0.962627i \(0.587298\pi\)
\(84\) 0 0
\(85\) 0.700514 0.0759814
\(86\) 0 0
\(87\) 9.64510 1.03406
\(88\) 0 0
\(89\) 14.7216 1.56049 0.780244 0.625475i \(-0.215095\pi\)
0.780244 + 0.625475i \(0.215095\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −3.78828 −0.392826
\(94\) 0 0
\(95\) −1.95047 −0.200114
\(96\) 0 0
\(97\) 0.898333 0.0912119 0.0456060 0.998960i \(-0.485478\pi\)
0.0456060 + 0.998960i \(0.485478\pi\)
\(98\) 0 0
\(99\) −18.2578 −1.83498
\(100\) 0 0
\(101\) −6.75291 −0.671940 −0.335970 0.941873i \(-0.609064\pi\)
−0.335970 + 0.941873i \(0.609064\pi\)
\(102\) 0 0
\(103\) −3.74321 −0.368830 −0.184415 0.982849i \(-0.559039\pi\)
−0.184415 + 0.982849i \(0.559039\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 12.7611 1.23367 0.616833 0.787094i \(-0.288415\pi\)
0.616833 + 0.787094i \(0.288415\pi\)
\(108\) 0 0
\(109\) −9.26268 −0.887204 −0.443602 0.896224i \(-0.646300\pi\)
−0.443602 + 0.896224i \(0.646300\pi\)
\(110\) 0 0
\(111\) 6.17038 0.585667
\(112\) 0 0
\(113\) 2.64156 0.248497 0.124248 0.992251i \(-0.460348\pi\)
0.124248 + 0.992251i \(0.460348\pi\)
\(114\) 0 0
\(115\) 4.18694 0.390434
\(116\) 0 0
\(117\) 9.74818 0.901220
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 28.0915 2.55377
\(122\) 0 0
\(123\) −13.6772 −1.23323
\(124\) 0 0
\(125\) 6.66138 0.595812
\(126\) 0 0
\(127\) 6.94328 0.616117 0.308058 0.951367i \(-0.400321\pi\)
0.308058 + 0.951367i \(0.400321\pi\)
\(128\) 0 0
\(129\) 5.57895 0.491199
\(130\) 0 0
\(131\) −8.88103 −0.775939 −0.387969 0.921672i \(-0.626823\pi\)
−0.387969 + 0.921672i \(0.626823\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −0.136060 −0.0117102
\(136\) 0 0
\(137\) 4.33823 0.370640 0.185320 0.982678i \(-0.440668\pi\)
0.185320 + 0.982678i \(0.440668\pi\)
\(138\) 0 0
\(139\) 18.0420 1.53030 0.765150 0.643852i \(-0.222665\pi\)
0.765150 + 0.643852i \(0.222665\pi\)
\(140\) 0 0
\(141\) 29.1160 2.45201
\(142\) 0 0
\(143\) −20.8716 −1.74537
\(144\) 0 0
\(145\) 2.77687 0.230607
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 17.6645 1.44713 0.723567 0.690255i \(-0.242501\pi\)
0.723567 + 0.690255i \(0.242501\pi\)
\(150\) 0 0
\(151\) 11.6266 0.946159 0.473080 0.881020i \(-0.343142\pi\)
0.473080 + 0.881020i \(0.343142\pi\)
\(152\) 0 0
\(153\) −2.92017 −0.236082
\(154\) 0 0
\(155\) −1.09067 −0.0876043
\(156\) 0 0
\(157\) 18.8397 1.50357 0.751784 0.659410i \(-0.229194\pi\)
0.751784 + 0.659410i \(0.229194\pi\)
\(158\) 0 0
\(159\) −15.9492 −1.26486
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −10.2038 −0.799221 −0.399611 0.916685i \(-0.630855\pi\)
−0.399611 + 0.916685i \(0.630855\pi\)
\(164\) 0 0
\(165\) −10.6568 −0.829627
\(166\) 0 0
\(167\) 2.04752 0.158442 0.0792210 0.996857i \(-0.474757\pi\)
0.0792210 + 0.996857i \(0.474757\pi\)
\(168\) 0 0
\(169\) −1.85629 −0.142792
\(170\) 0 0
\(171\) 8.13078 0.621776
\(172\) 0 0
\(173\) 3.51778 0.267452 0.133726 0.991018i \(-0.457306\pi\)
0.133726 + 0.991018i \(0.457306\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 21.3631 1.60575
\(178\) 0 0
\(179\) 4.01805 0.300323 0.150162 0.988661i \(-0.452021\pi\)
0.150162 + 0.988661i \(0.452021\pi\)
\(180\) 0 0
\(181\) 3.00576 0.223416 0.111708 0.993741i \(-0.464368\pi\)
0.111708 + 0.993741i \(0.464368\pi\)
\(182\) 0 0
\(183\) −12.0520 −0.890910
\(184\) 0 0
\(185\) 1.77648 0.130610
\(186\) 0 0
\(187\) 6.25232 0.457215
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 13.7743 0.996670 0.498335 0.866985i \(-0.333945\pi\)
0.498335 + 0.866985i \(0.333945\pi\)
\(192\) 0 0
\(193\) −8.29653 −0.597197 −0.298599 0.954379i \(-0.596519\pi\)
−0.298599 + 0.954379i \(0.596519\pi\)
\(194\) 0 0
\(195\) 5.68982 0.407457
\(196\) 0 0
\(197\) 10.6075 0.755755 0.377878 0.925856i \(-0.376654\pi\)
0.377878 + 0.925856i \(0.376654\pi\)
\(198\) 0 0
\(199\) 17.8444 1.26495 0.632477 0.774579i \(-0.282038\pi\)
0.632477 + 0.774579i \(0.282038\pi\)
\(200\) 0 0
\(201\) −31.9538 −2.25385
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −3.93774 −0.275024
\(206\) 0 0
\(207\) −17.4537 −1.21312
\(208\) 0 0
\(209\) −17.4086 −1.20418
\(210\) 0 0
\(211\) −4.90813 −0.337889 −0.168945 0.985626i \(-0.554036\pi\)
−0.168945 + 0.985626i \(0.554036\pi\)
\(212\) 0 0
\(213\) 34.5794 2.36934
\(214\) 0 0
\(215\) 1.60621 0.109542
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 20.4388 1.38113
\(220\) 0 0
\(221\) −3.33822 −0.224553
\(222\) 0 0
\(223\) −10.7501 −0.719879 −0.359940 0.932976i \(-0.617203\pi\)
−0.359940 + 0.932976i \(0.617203\pi\)
\(224\) 0 0
\(225\) −13.1679 −0.877859
\(226\) 0 0
\(227\) −6.86801 −0.455846 −0.227923 0.973679i \(-0.573193\pi\)
−0.227923 + 0.973679i \(0.573193\pi\)
\(228\) 0 0
\(229\) 14.3348 0.947268 0.473634 0.880722i \(-0.342942\pi\)
0.473634 + 0.880722i \(0.342942\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −9.26722 −0.607116 −0.303558 0.952813i \(-0.598175\pi\)
−0.303558 + 0.952813i \(0.598175\pi\)
\(234\) 0 0
\(235\) 8.38266 0.546824
\(236\) 0 0
\(237\) −7.37655 −0.479158
\(238\) 0 0
\(239\) −22.9940 −1.48736 −0.743680 0.668536i \(-0.766921\pi\)
−0.743680 + 0.668536i \(0.766921\pi\)
\(240\) 0 0
\(241\) −5.18312 −0.333874 −0.166937 0.985968i \(-0.553388\pi\)
−0.166937 + 0.985968i \(0.553388\pi\)
\(242\) 0 0
\(243\) 21.8828 1.40378
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 9.29476 0.591412
\(248\) 0 0
\(249\) 12.0070 0.760910
\(250\) 0 0
\(251\) 27.0836 1.70950 0.854752 0.519037i \(-0.173709\pi\)
0.854752 + 0.519037i \(0.173709\pi\)
\(252\) 0 0
\(253\) 37.3698 2.34942
\(254\) 0 0
\(255\) −1.70445 −0.106737
\(256\) 0 0
\(257\) −0.655631 −0.0408972 −0.0204486 0.999791i \(-0.506509\pi\)
−0.0204486 + 0.999791i \(0.506509\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −11.5757 −0.716520
\(262\) 0 0
\(263\) 22.1584 1.36635 0.683173 0.730257i \(-0.260600\pi\)
0.683173 + 0.730257i \(0.260600\pi\)
\(264\) 0 0
\(265\) −4.59187 −0.282076
\(266\) 0 0
\(267\) −35.8198 −2.19213
\(268\) 0 0
\(269\) 7.04549 0.429571 0.214786 0.976661i \(-0.431095\pi\)
0.214786 + 0.976661i \(0.431095\pi\)
\(270\) 0 0
\(271\) −25.4854 −1.54813 −0.774064 0.633107i \(-0.781779\pi\)
−0.774064 + 0.633107i \(0.781779\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 28.1934 1.70013
\(276\) 0 0
\(277\) 32.4113 1.94741 0.973704 0.227815i \(-0.0731582\pi\)
0.973704 + 0.227815i \(0.0731582\pi\)
\(278\) 0 0
\(279\) 4.54657 0.272196
\(280\) 0 0
\(281\) −1.29635 −0.0773339 −0.0386669 0.999252i \(-0.512311\pi\)
−0.0386669 + 0.999252i \(0.512311\pi\)
\(282\) 0 0
\(283\) 25.0050 1.48639 0.743197 0.669072i \(-0.233308\pi\)
0.743197 + 0.669072i \(0.233308\pi\)
\(284\) 0 0
\(285\) 4.74578 0.281116
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −2.18577 −0.128132
\(292\) 0 0
\(293\) 25.4747 1.48825 0.744125 0.668041i \(-0.232867\pi\)
0.744125 + 0.668041i \(0.232867\pi\)
\(294\) 0 0
\(295\) 6.15055 0.358099
\(296\) 0 0
\(297\) −1.21438 −0.0704654
\(298\) 0 0
\(299\) −19.9524 −1.15388
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 16.4308 0.943924
\(304\) 0 0
\(305\) −3.46983 −0.198682
\(306\) 0 0
\(307\) 33.5628 1.91553 0.957764 0.287555i \(-0.0928422\pi\)
0.957764 + 0.287555i \(0.0928422\pi\)
\(308\) 0 0
\(309\) 9.10776 0.518122
\(310\) 0 0
\(311\) 23.2347 1.31752 0.658760 0.752353i \(-0.271081\pi\)
0.658760 + 0.752353i \(0.271081\pi\)
\(312\) 0 0
\(313\) 30.2386 1.70919 0.854593 0.519299i \(-0.173807\pi\)
0.854593 + 0.519299i \(0.173807\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −19.4442 −1.09210 −0.546049 0.837753i \(-0.683869\pi\)
−0.546049 + 0.837753i \(0.683869\pi\)
\(318\) 0 0
\(319\) 24.7845 1.38767
\(320\) 0 0
\(321\) −31.0496 −1.73302
\(322\) 0 0
\(323\) −2.78435 −0.154925
\(324\) 0 0
\(325\) −15.0530 −0.834988
\(326\) 0 0
\(327\) 22.5374 1.24632
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −27.4473 −1.50864 −0.754321 0.656506i \(-0.772034\pi\)
−0.754321 + 0.656506i \(0.772034\pi\)
\(332\) 0 0
\(333\) −7.40549 −0.405818
\(334\) 0 0
\(335\) −9.19967 −0.502631
\(336\) 0 0
\(337\) −13.4504 −0.732688 −0.366344 0.930479i \(-0.619391\pi\)
−0.366344 + 0.930479i \(0.619391\pi\)
\(338\) 0 0
\(339\) −6.42728 −0.349082
\(340\) 0 0
\(341\) −9.73455 −0.527155
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −10.1874 −0.548472
\(346\) 0 0
\(347\) −1.62909 −0.0874544 −0.0437272 0.999044i \(-0.513923\pi\)
−0.0437272 + 0.999044i \(0.513923\pi\)
\(348\) 0 0
\(349\) −7.60959 −0.407332 −0.203666 0.979040i \(-0.565286\pi\)
−0.203666 + 0.979040i \(0.565286\pi\)
\(350\) 0 0
\(351\) 0.648378 0.0346079
\(352\) 0 0
\(353\) 27.3499 1.45569 0.727843 0.685744i \(-0.240523\pi\)
0.727843 + 0.685744i \(0.240523\pi\)
\(354\) 0 0
\(355\) 9.95558 0.528387
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 27.5849 1.45588 0.727939 0.685642i \(-0.240479\pi\)
0.727939 + 0.685642i \(0.240479\pi\)
\(360\) 0 0
\(361\) −11.2474 −0.591969
\(362\) 0 0
\(363\) −68.3505 −3.58747
\(364\) 0 0
\(365\) 5.88443 0.308005
\(366\) 0 0
\(367\) −14.7116 −0.767938 −0.383969 0.923346i \(-0.625443\pi\)
−0.383969 + 0.923346i \(0.625443\pi\)
\(368\) 0 0
\(369\) 16.4149 0.854528
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 21.0714 1.09104 0.545518 0.838099i \(-0.316333\pi\)
0.545518 + 0.838099i \(0.316333\pi\)
\(374\) 0 0
\(375\) −16.2081 −0.836982
\(376\) 0 0
\(377\) −13.2329 −0.681528
\(378\) 0 0
\(379\) −30.5227 −1.56784 −0.783922 0.620859i \(-0.786784\pi\)
−0.783922 + 0.620859i \(0.786784\pi\)
\(380\) 0 0
\(381\) −16.8940 −0.865505
\(382\) 0 0
\(383\) −13.5517 −0.692458 −0.346229 0.938150i \(-0.612538\pi\)
−0.346229 + 0.938150i \(0.612538\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −6.69567 −0.340360
\(388\) 0 0
\(389\) −7.02769 −0.356318 −0.178159 0.984002i \(-0.557014\pi\)
−0.178159 + 0.984002i \(0.557014\pi\)
\(390\) 0 0
\(391\) 5.97696 0.302268
\(392\) 0 0
\(393\) 21.6088 1.09002
\(394\) 0 0
\(395\) −2.12375 −0.106857
\(396\) 0 0
\(397\) −18.2330 −0.915088 −0.457544 0.889187i \(-0.651271\pi\)
−0.457544 + 0.889187i \(0.651271\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −17.8638 −0.892077 −0.446038 0.895014i \(-0.647166\pi\)
−0.446038 + 0.895014i \(0.647166\pi\)
\(402\) 0 0
\(403\) 5.19744 0.258903
\(404\) 0 0
\(405\) 6.46792 0.321393
\(406\) 0 0
\(407\) 15.8557 0.785939
\(408\) 0 0
\(409\) −10.8428 −0.536143 −0.268072 0.963399i \(-0.586386\pi\)
−0.268072 + 0.963399i \(0.586386\pi\)
\(410\) 0 0
\(411\) −10.5555 −0.520665
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 3.45686 0.169691
\(416\) 0 0
\(417\) −43.8987 −2.14973
\(418\) 0 0
\(419\) 23.8813 1.16668 0.583340 0.812228i \(-0.301745\pi\)
0.583340 + 0.812228i \(0.301745\pi\)
\(420\) 0 0
\(421\) −6.82824 −0.332788 −0.166394 0.986059i \(-0.553212\pi\)
−0.166394 + 0.986059i \(0.553212\pi\)
\(422\) 0 0
\(423\) −34.9441 −1.69904
\(424\) 0 0
\(425\) 4.50928 0.218732
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 50.7835 2.45185
\(430\) 0 0
\(431\) −10.9429 −0.527101 −0.263551 0.964646i \(-0.584894\pi\)
−0.263551 + 0.964646i \(0.584894\pi\)
\(432\) 0 0
\(433\) −18.8182 −0.904344 −0.452172 0.891931i \(-0.649351\pi\)
−0.452172 + 0.891931i \(0.649351\pi\)
\(434\) 0 0
\(435\) −6.75653 −0.323951
\(436\) 0 0
\(437\) −16.6419 −0.796091
\(438\) 0 0
\(439\) −4.35808 −0.208000 −0.104000 0.994577i \(-0.533164\pi\)
−0.104000 + 0.994577i \(0.533164\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −8.16946 −0.388143 −0.194071 0.980987i \(-0.562169\pi\)
−0.194071 + 0.980987i \(0.562169\pi\)
\(444\) 0 0
\(445\) −10.3127 −0.488869
\(446\) 0 0
\(447\) −42.9802 −2.03290
\(448\) 0 0
\(449\) 15.0508 0.710292 0.355146 0.934811i \(-0.384431\pi\)
0.355146 + 0.934811i \(0.384431\pi\)
\(450\) 0 0
\(451\) −35.1456 −1.65494
\(452\) 0 0
\(453\) −28.2891 −1.32914
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −37.2417 −1.74209 −0.871047 0.491199i \(-0.836559\pi\)
−0.871047 + 0.491199i \(0.836559\pi\)
\(458\) 0 0
\(459\) −0.194229 −0.00906582
\(460\) 0 0
\(461\) 33.6939 1.56928 0.784642 0.619949i \(-0.212847\pi\)
0.784642 + 0.619949i \(0.212847\pi\)
\(462\) 0 0
\(463\) −7.90942 −0.367582 −0.183791 0.982965i \(-0.558837\pi\)
−0.183791 + 0.982965i \(0.558837\pi\)
\(464\) 0 0
\(465\) 2.65374 0.123064
\(466\) 0 0
\(467\) −12.4018 −0.573887 −0.286944 0.957947i \(-0.592639\pi\)
−0.286944 + 0.957947i \(0.592639\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −45.8395 −2.11217
\(472\) 0 0
\(473\) 14.3359 0.659167
\(474\) 0 0
\(475\) −12.5554 −0.576082
\(476\) 0 0
\(477\) 19.1418 0.876441
\(478\) 0 0
\(479\) −0.175096 −0.00800033 −0.00400016 0.999992i \(-0.501273\pi\)
−0.00400016 + 0.999992i \(0.501273\pi\)
\(480\) 0 0
\(481\) −8.46564 −0.386000
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −0.629295 −0.0285748
\(486\) 0 0
\(487\) 37.8139 1.71351 0.856755 0.515724i \(-0.172477\pi\)
0.856755 + 0.515724i \(0.172477\pi\)
\(488\) 0 0
\(489\) 24.8272 1.12273
\(490\) 0 0
\(491\) 36.7418 1.65814 0.829068 0.559148i \(-0.188872\pi\)
0.829068 + 0.559148i \(0.188872\pi\)
\(492\) 0 0
\(493\) 3.96405 0.178532
\(494\) 0 0
\(495\) 12.7899 0.574862
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −32.8512 −1.47062 −0.735311 0.677729i \(-0.762964\pi\)
−0.735311 + 0.677729i \(0.762964\pi\)
\(500\) 0 0
\(501\) −4.98191 −0.222575
\(502\) 0 0
\(503\) −7.33672 −0.327128 −0.163564 0.986533i \(-0.552299\pi\)
−0.163564 + 0.986533i \(0.552299\pi\)
\(504\) 0 0
\(505\) 4.73051 0.210505
\(506\) 0 0
\(507\) 4.51662 0.200590
\(508\) 0 0
\(509\) 14.8523 0.658318 0.329159 0.944275i \(-0.393235\pi\)
0.329159 + 0.944275i \(0.393235\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0.540800 0.0238769
\(514\) 0 0
\(515\) 2.62217 0.115547
\(516\) 0 0
\(517\) 74.8180 3.29049
\(518\) 0 0
\(519\) −8.55925 −0.375709
\(520\) 0 0
\(521\) 0.695446 0.0304680 0.0152340 0.999884i \(-0.495151\pi\)
0.0152340 + 0.999884i \(0.495151\pi\)
\(522\) 0 0
\(523\) 6.79974 0.297332 0.148666 0.988887i \(-0.452502\pi\)
0.148666 + 0.988887i \(0.452502\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1.55695 −0.0678218
\(528\) 0 0
\(529\) 12.7240 0.553217
\(530\) 0 0
\(531\) −25.6393 −1.11265
\(532\) 0 0
\(533\) 18.7649 0.812797
\(534\) 0 0
\(535\) −8.93935 −0.386482
\(536\) 0 0
\(537\) −9.77648 −0.421886
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −43.5784 −1.87358 −0.936792 0.349887i \(-0.886220\pi\)
−0.936792 + 0.349887i \(0.886220\pi\)
\(542\) 0 0
\(543\) −7.31343 −0.313849
\(544\) 0 0
\(545\) 6.48863 0.277943
\(546\) 0 0
\(547\) −26.6669 −1.14019 −0.570097 0.821577i \(-0.693094\pi\)
−0.570097 + 0.821577i \(0.693094\pi\)
\(548\) 0 0
\(549\) 14.4644 0.617326
\(550\) 0 0
\(551\) −11.0373 −0.470205
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −4.32244 −0.183477
\(556\) 0 0
\(557\) −18.5815 −0.787322 −0.393661 0.919256i \(-0.628792\pi\)
−0.393661 + 0.919256i \(0.628792\pi\)
\(558\) 0 0
\(559\) −7.65420 −0.323738
\(560\) 0 0
\(561\) −15.2128 −0.642283
\(562\) 0 0
\(563\) −9.61461 −0.405208 −0.202604 0.979261i \(-0.564940\pi\)
−0.202604 + 0.979261i \(0.564940\pi\)
\(564\) 0 0
\(565\) −1.85045 −0.0778489
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −21.8304 −0.915179 −0.457590 0.889163i \(-0.651287\pi\)
−0.457590 + 0.889163i \(0.651287\pi\)
\(570\) 0 0
\(571\) −14.1272 −0.591207 −0.295603 0.955311i \(-0.595521\pi\)
−0.295603 + 0.955311i \(0.595521\pi\)
\(572\) 0 0
\(573\) −33.5147 −1.40010
\(574\) 0 0
\(575\) 26.9518 1.12397
\(576\) 0 0
\(577\) 24.2960 1.01146 0.505729 0.862693i \(-0.331224\pi\)
0.505729 + 0.862693i \(0.331224\pi\)
\(578\) 0 0
\(579\) 20.1866 0.838928
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −40.9840 −1.69738
\(584\) 0 0
\(585\) −6.82873 −0.282333
\(586\) 0 0
\(587\) 3.98164 0.164340 0.0821700 0.996618i \(-0.473815\pi\)
0.0821700 + 0.996618i \(0.473815\pi\)
\(588\) 0 0
\(589\) 4.33509 0.178624
\(590\) 0 0
\(591\) −25.8096 −1.06167
\(592\) 0 0
\(593\) −32.4429 −1.33227 −0.666135 0.745831i \(-0.732053\pi\)
−0.666135 + 0.745831i \(0.732053\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −43.4178 −1.77697
\(598\) 0 0
\(599\) −48.4024 −1.97767 −0.988835 0.149016i \(-0.952389\pi\)
−0.988835 + 0.149016i \(0.952389\pi\)
\(600\) 0 0
\(601\) 14.7447 0.601448 0.300724 0.953711i \(-0.402772\pi\)
0.300724 + 0.953711i \(0.402772\pi\)
\(602\) 0 0
\(603\) 38.3499 1.56173
\(604\) 0 0
\(605\) −19.6785 −0.800043
\(606\) 0 0
\(607\) 19.2021 0.779390 0.389695 0.920944i \(-0.372580\pi\)
0.389695 + 0.920944i \(0.372580\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −39.9466 −1.61607
\(612\) 0 0
\(613\) 32.5312 1.31392 0.656961 0.753924i \(-0.271841\pi\)
0.656961 + 0.753924i \(0.271841\pi\)
\(614\) 0 0
\(615\) 9.58108 0.386346
\(616\) 0 0
\(617\) 27.4908 1.10674 0.553369 0.832937i \(-0.313342\pi\)
0.553369 + 0.832937i \(0.313342\pi\)
\(618\) 0 0
\(619\) −2.33700 −0.0939321 −0.0469661 0.998896i \(-0.514955\pi\)
−0.0469661 + 0.998896i \(0.514955\pi\)
\(620\) 0 0
\(621\) −1.16090 −0.0465852
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 17.8800 0.715201
\(626\) 0 0
\(627\) 42.3576 1.69160
\(628\) 0 0
\(629\) 2.53597 0.101116
\(630\) 0 0
\(631\) −34.5715 −1.37627 −0.688135 0.725583i \(-0.741570\pi\)
−0.688135 + 0.725583i \(0.741570\pi\)
\(632\) 0 0
\(633\) 11.9422 0.474658
\(634\) 0 0
\(635\) −4.86387 −0.193017
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −41.5010 −1.64175
\(640\) 0 0
\(641\) −23.9277 −0.945086 −0.472543 0.881308i \(-0.656664\pi\)
−0.472543 + 0.881308i \(0.656664\pi\)
\(642\) 0 0
\(643\) −18.3241 −0.722632 −0.361316 0.932443i \(-0.617672\pi\)
−0.361316 + 0.932443i \(0.617672\pi\)
\(644\) 0 0
\(645\) −3.90813 −0.153882
\(646\) 0 0
\(647\) −40.3569 −1.58659 −0.793297 0.608834i \(-0.791637\pi\)
−0.793297 + 0.608834i \(0.791637\pi\)
\(648\) 0 0
\(649\) 54.8957 2.15484
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 16.7302 0.654705 0.327353 0.944902i \(-0.393844\pi\)
0.327353 + 0.944902i \(0.393844\pi\)
\(654\) 0 0
\(655\) 6.22128 0.243086
\(656\) 0 0
\(657\) −24.5299 −0.957004
\(658\) 0 0
\(659\) −5.34497 −0.208211 −0.104105 0.994566i \(-0.533198\pi\)
−0.104105 + 0.994566i \(0.533198\pi\)
\(660\) 0 0
\(661\) −17.9109 −0.696654 −0.348327 0.937373i \(-0.613250\pi\)
−0.348327 + 0.937373i \(0.613250\pi\)
\(662\) 0 0
\(663\) 8.12236 0.315446
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 23.6930 0.917396
\(668\) 0 0
\(669\) 26.1565 1.01127
\(670\) 0 0
\(671\) −30.9694 −1.19556
\(672\) 0 0
\(673\) 9.72661 0.374933 0.187467 0.982271i \(-0.439972\pi\)
0.187467 + 0.982271i \(0.439972\pi\)
\(674\) 0 0
\(675\) −0.875832 −0.0337108
\(676\) 0 0
\(677\) 1.35298 0.0519993 0.0259997 0.999662i \(-0.491723\pi\)
0.0259997 + 0.999662i \(0.491723\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 16.7108 0.640361
\(682\) 0 0
\(683\) 30.2177 1.15625 0.578125 0.815948i \(-0.303785\pi\)
0.578125 + 0.815948i \(0.303785\pi\)
\(684\) 0 0
\(685\) −3.03899 −0.116114
\(686\) 0 0
\(687\) −34.8785 −1.33070
\(688\) 0 0
\(689\) 21.8820 0.833639
\(690\) 0 0
\(691\) 14.9535 0.568859 0.284430 0.958697i \(-0.408196\pi\)
0.284430 + 0.958697i \(0.408196\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −12.6386 −0.479411
\(696\) 0 0
\(697\) −5.62122 −0.212919
\(698\) 0 0
\(699\) 22.5485 0.852861
\(700\) 0 0
\(701\) −26.6974 −1.00835 −0.504173 0.863603i \(-0.668202\pi\)
−0.504173 + 0.863603i \(0.668202\pi\)
\(702\) 0 0
\(703\) −7.06104 −0.266312
\(704\) 0 0
\(705\) −20.3962 −0.768165
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 1.43807 0.0540077 0.0270038 0.999635i \(-0.491403\pi\)
0.0270038 + 0.999635i \(0.491403\pi\)
\(710\) 0 0
\(711\) 8.85309 0.332017
\(712\) 0 0
\(713\) −9.30582 −0.348506
\(714\) 0 0
\(715\) 14.6208 0.546789
\(716\) 0 0
\(717\) 55.9477 2.08940
\(718\) 0 0
\(719\) −36.5231 −1.36208 −0.681041 0.732245i \(-0.738473\pi\)
−0.681041 + 0.732245i \(0.738473\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 12.6113 0.469018
\(724\) 0 0
\(725\) 17.8750 0.663862
\(726\) 0 0
\(727\) −3.65584 −0.135588 −0.0677938 0.997699i \(-0.521596\pi\)
−0.0677938 + 0.997699i \(0.521596\pi\)
\(728\) 0 0
\(729\) −25.5445 −0.946093
\(730\) 0 0
\(731\) 2.29290 0.0848060
\(732\) 0 0
\(733\) 27.5214 1.01652 0.508262 0.861202i \(-0.330288\pi\)
0.508262 + 0.861202i \(0.330288\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −82.1101 −3.02456
\(738\) 0 0
\(739\) 38.0727 1.40053 0.700264 0.713884i \(-0.253066\pi\)
0.700264 + 0.713884i \(0.253066\pi\)
\(740\) 0 0
\(741\) −22.6155 −0.830800
\(742\) 0 0
\(743\) 52.8685 1.93956 0.969778 0.243990i \(-0.0784564\pi\)
0.969778 + 0.243990i \(0.0784564\pi\)
\(744\) 0 0
\(745\) −12.3742 −0.453357
\(746\) 0 0
\(747\) −14.4103 −0.527247
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 10.4052 0.379691 0.189846 0.981814i \(-0.439201\pi\)
0.189846 + 0.981814i \(0.439201\pi\)
\(752\) 0 0
\(753\) −65.8983 −2.40147
\(754\) 0 0
\(755\) −8.14459 −0.296412
\(756\) 0 0
\(757\) −24.5697 −0.893000 −0.446500 0.894784i \(-0.647330\pi\)
−0.446500 + 0.894784i \(0.647330\pi\)
\(758\) 0 0
\(759\) −90.9260 −3.30041
\(760\) 0 0
\(761\) 3.52282 0.127702 0.0638511 0.997959i \(-0.479662\pi\)
0.0638511 + 0.997959i \(0.479662\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 2.04562 0.0739596
\(766\) 0 0
\(767\) −29.3097 −1.05831
\(768\) 0 0
\(769\) 25.0896 0.904753 0.452377 0.891827i \(-0.350576\pi\)
0.452377 + 0.891827i \(0.350576\pi\)
\(770\) 0 0
\(771\) 1.59524 0.0574513
\(772\) 0 0
\(773\) −32.0298 −1.15203 −0.576016 0.817438i \(-0.695394\pi\)
−0.576016 + 0.817438i \(0.695394\pi\)
\(774\) 0 0
\(775\) −7.02073 −0.252192
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 15.6514 0.560771
\(780\) 0 0
\(781\) 88.8569 3.17955
\(782\) 0 0
\(783\) −0.769933 −0.0275152
\(784\) 0 0
\(785\) −13.1974 −0.471037
\(786\) 0 0
\(787\) −12.4077 −0.442288 −0.221144 0.975241i \(-0.570979\pi\)
−0.221144 + 0.975241i \(0.570979\pi\)
\(788\) 0 0
\(789\) −53.9145 −1.91941
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 16.5351 0.587179
\(794\) 0 0
\(795\) 11.1727 0.396254
\(796\) 0 0
\(797\) 34.2865 1.21449 0.607245 0.794515i \(-0.292275\pi\)
0.607245 + 0.794515i \(0.292275\pi\)
\(798\) 0 0
\(799\) 11.9664 0.423342
\(800\) 0 0
\(801\) 42.9897 1.51897
\(802\) 0 0
\(803\) 52.5205 1.85341
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −17.1427 −0.603451
\(808\) 0 0
\(809\) 50.3540 1.77035 0.885176 0.465256i \(-0.154038\pi\)
0.885176 + 0.465256i \(0.154038\pi\)
\(810\) 0 0
\(811\) −49.5402 −1.73959 −0.869796 0.493412i \(-0.835750\pi\)
−0.869796 + 0.493412i \(0.835750\pi\)
\(812\) 0 0
\(813\) 62.0096 2.17477
\(814\) 0 0
\(815\) 7.14789 0.250379
\(816\) 0 0
\(817\) −6.38423 −0.223356
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 12.0853 0.421781 0.210890 0.977510i \(-0.432364\pi\)
0.210890 + 0.977510i \(0.432364\pi\)
\(822\) 0 0
\(823\) −10.2751 −0.358166 −0.179083 0.983834i \(-0.557313\pi\)
−0.179083 + 0.983834i \(0.557313\pi\)
\(824\) 0 0
\(825\) −68.5986 −2.38830
\(826\) 0 0
\(827\) 51.7650 1.80005 0.900023 0.435843i \(-0.143550\pi\)
0.900023 + 0.435843i \(0.143550\pi\)
\(828\) 0 0
\(829\) −47.9968 −1.66700 −0.833500 0.552520i \(-0.813666\pi\)
−0.833500 + 0.552520i \(0.813666\pi\)
\(830\) 0 0
\(831\) −78.8614 −2.73567
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −1.43432 −0.0496366
\(836\) 0 0
\(837\) 0.302405 0.0104526
\(838\) 0 0
\(839\) −52.5562 −1.81444 −0.907220 0.420656i \(-0.861800\pi\)
−0.907220 + 0.420656i \(0.861800\pi\)
\(840\) 0 0
\(841\) −13.2863 −0.458147
\(842\) 0 0
\(843\) 3.15421 0.108637
\(844\) 0 0
\(845\) 1.30036 0.0447337
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −60.8408 −2.08805
\(850\) 0 0
\(851\) 15.1574 0.519589
\(852\) 0 0
\(853\) −7.65942 −0.262254 −0.131127 0.991366i \(-0.541859\pi\)
−0.131127 + 0.991366i \(0.541859\pi\)
\(854\) 0 0
\(855\) −5.69572 −0.194790
\(856\) 0 0
\(857\) 48.9114 1.67078 0.835391 0.549656i \(-0.185241\pi\)
0.835391 + 0.549656i \(0.185241\pi\)
\(858\) 0 0
\(859\) 16.7120 0.570206 0.285103 0.958497i \(-0.407972\pi\)
0.285103 + 0.958497i \(0.407972\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 45.7856 1.55856 0.779279 0.626677i \(-0.215585\pi\)
0.779279 + 0.626677i \(0.215585\pi\)
\(864\) 0 0
\(865\) −2.46425 −0.0837871
\(866\) 0 0
\(867\) −2.43314 −0.0826338
\(868\) 0 0
\(869\) −18.9551 −0.643009
\(870\) 0 0
\(871\) 43.8400 1.48546
\(872\) 0 0
\(873\) 2.62329 0.0887849
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −26.1183 −0.881952 −0.440976 0.897519i \(-0.645368\pi\)
−0.440976 + 0.897519i \(0.645368\pi\)
\(878\) 0 0
\(879\) −61.9836 −2.09065
\(880\) 0 0
\(881\) 23.3437 0.786469 0.393234 0.919438i \(-0.371356\pi\)
0.393234 + 0.919438i \(0.371356\pi\)
\(882\) 0 0
\(883\) 31.0746 1.04574 0.522872 0.852411i \(-0.324861\pi\)
0.522872 + 0.852411i \(0.324861\pi\)
\(884\) 0 0
\(885\) −14.9651 −0.503048
\(886\) 0 0
\(887\) −25.0640 −0.841566 −0.420783 0.907161i \(-0.638245\pi\)
−0.420783 + 0.907161i \(0.638245\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 57.7283 1.93397
\(892\) 0 0
\(893\) −33.3187 −1.11497
\(894\) 0 0
\(895\) −2.81470 −0.0940850
\(896\) 0 0
\(897\) 48.5470 1.62094
\(898\) 0 0
\(899\) −6.17184 −0.205842
\(900\) 0 0
\(901\) −6.55500 −0.218379
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −2.10557 −0.0699916
\(906\) 0 0
\(907\) 56.7568 1.88458 0.942290 0.334798i \(-0.108668\pi\)
0.942290 + 0.334798i \(0.108668\pi\)
\(908\) 0 0
\(909\) −19.7197 −0.654060
\(910\) 0 0
\(911\) −6.93958 −0.229919 −0.114959 0.993370i \(-0.536674\pi\)
−0.114959 + 0.993370i \(0.536674\pi\)
\(912\) 0 0
\(913\) 30.8537 1.02111
\(914\) 0 0
\(915\) 8.44259 0.279103
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 42.2004 1.39206 0.696031 0.718012i \(-0.254948\pi\)
0.696031 + 0.718012i \(0.254948\pi\)
\(920\) 0 0
\(921\) −81.6629 −2.69089
\(922\) 0 0
\(923\) −47.4422 −1.56158
\(924\) 0 0
\(925\) 11.4354 0.375994
\(926\) 0 0
\(927\) −10.9308 −0.359015
\(928\) 0 0
\(929\) −34.3374 −1.12657 −0.563286 0.826262i \(-0.690463\pi\)
−0.563286 + 0.826262i \(0.690463\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −56.5334 −1.85082
\(934\) 0 0
\(935\) −4.37983 −0.143236
\(936\) 0 0
\(937\) −16.5267 −0.539903 −0.269952 0.962874i \(-0.587008\pi\)
−0.269952 + 0.962874i \(0.587008\pi\)
\(938\) 0 0
\(939\) −73.5747 −2.40102
\(940\) 0 0
\(941\) 37.6133 1.22616 0.613079 0.790022i \(-0.289931\pi\)
0.613079 + 0.790022i \(0.289931\pi\)
\(942\) 0 0
\(943\) −33.5978 −1.09409
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 30.7256 0.998448 0.499224 0.866473i \(-0.333618\pi\)
0.499224 + 0.866473i \(0.333618\pi\)
\(948\) 0 0
\(949\) −28.0416 −0.910269
\(950\) 0 0
\(951\) 47.3106 1.53415
\(952\) 0 0
\(953\) 10.1120 0.327558 0.163779 0.986497i \(-0.447632\pi\)
0.163779 + 0.986497i \(0.447632\pi\)
\(954\) 0 0
\(955\) −9.64905 −0.312236
\(956\) 0 0
\(957\) −60.3042 −1.94936
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −28.5759 −0.921803
\(962\) 0 0
\(963\) 37.2647 1.20084
\(964\) 0 0
\(965\) 5.81183 0.187090
\(966\) 0 0
\(967\) −26.0882 −0.838940 −0.419470 0.907769i \(-0.637784\pi\)
−0.419470 + 0.907769i \(0.637784\pi\)
\(968\) 0 0
\(969\) 6.77471 0.217635
\(970\) 0 0
\(971\) −11.8527 −0.380372 −0.190186 0.981748i \(-0.560909\pi\)
−0.190186 + 0.981748i \(0.560909\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 36.6260 1.17297
\(976\) 0 0
\(977\) −13.1874 −0.421902 −0.210951 0.977497i \(-0.567656\pi\)
−0.210951 + 0.977497i \(0.567656\pi\)
\(978\) 0 0
\(979\) −92.0442 −2.94175
\(980\) 0 0
\(981\) −27.0486 −0.863596
\(982\) 0 0
\(983\) −19.3555 −0.617344 −0.308672 0.951169i \(-0.599885\pi\)
−0.308672 + 0.951169i \(0.599885\pi\)
\(984\) 0 0
\(985\) −7.43072 −0.236762
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 13.7046 0.435780
\(990\) 0 0
\(991\) −5.67221 −0.180184 −0.0900918 0.995933i \(-0.528716\pi\)
−0.0900918 + 0.995933i \(0.528716\pi\)
\(992\) 0 0
\(993\) 66.7832 2.11930
\(994\) 0 0
\(995\) −12.5002 −0.396284
\(996\) 0 0
\(997\) 31.7031 1.00405 0.502023 0.864854i \(-0.332589\pi\)
0.502023 + 0.864854i \(0.332589\pi\)
\(998\) 0 0
\(999\) −0.492559 −0.0155839
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3332.2.a.u.1.1 yes 8
7.6 odd 2 3332.2.a.t.1.8 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3332.2.a.t.1.8 8 7.6 odd 2
3332.2.a.u.1.1 yes 8 1.1 even 1 trivial