Properties

Label 3332.2.a.t.1.3
Level $3332$
Weight $2$
Character 3332.1
Self dual yes
Analytic conductor $26.606$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3332,2,Mod(1,3332)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3332, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3332.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3332 = 2^{2} \cdot 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3332.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.6061539535\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} - 8x^{6} + 36x^{5} + 17x^{4} - 76x^{3} - 20x^{2} + 44x + 17 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.27952\) of defining polynomial
Character \(\chi\) \(=\) 3332.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.27952 q^{3} -4.13895 q^{5} -1.36282 q^{9} +O(q^{10})\) \(q-1.27952 q^{3} -4.13895 q^{5} -1.36282 q^{9} +1.53680 q^{11} -0.0160623 q^{13} +5.29588 q^{15} +1.00000 q^{17} -0.519822 q^{19} +0.958750 q^{23} +12.1309 q^{25} +5.58233 q^{27} +5.79146 q^{29} -1.29639 q^{31} -1.96637 q^{33} +2.76827 q^{37} +0.0205521 q^{39} +0.769697 q^{41} -4.93770 q^{43} +5.64063 q^{45} +1.60825 q^{47} -1.27952 q^{51} +5.00816 q^{53} -6.36074 q^{55} +0.665125 q^{57} -5.50390 q^{59} -14.5818 q^{61} +0.0664811 q^{65} +5.13657 q^{67} -1.22674 q^{69} +13.4293 q^{71} +3.16522 q^{73} -15.5218 q^{75} -10.3220 q^{79} -3.05428 q^{81} -16.1399 q^{83} -4.13895 q^{85} -7.41032 q^{87} +10.5848 q^{89} +1.65876 q^{93} +2.15152 q^{95} -10.0542 q^{97} -2.09438 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{3} - 4 q^{5} + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 4 q^{3} - 4 q^{5} + 8 q^{9} - 4 q^{11} - 20 q^{13} + 12 q^{15} + 8 q^{17} - 8 q^{19} + 4 q^{23} + 8 q^{25} - 28 q^{27} - 16 q^{29} + 8 q^{31} - 16 q^{33} + 8 q^{37} + 20 q^{39} - 12 q^{41} - 4 q^{43} - 20 q^{45} - 4 q^{47} - 4 q^{51} - 12 q^{55} + 16 q^{59} - 32 q^{61} - 44 q^{69} - 24 q^{73} - 24 q^{75} + 4 q^{79} + 36 q^{81} - 28 q^{83} - 4 q^{85} + 40 q^{87} - 20 q^{89} - 16 q^{93} - 20 q^{95} - 56 q^{97} - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.27952 −0.738734 −0.369367 0.929284i \(-0.620425\pi\)
−0.369367 + 0.929284i \(0.620425\pi\)
\(4\) 0 0
\(5\) −4.13895 −1.85099 −0.925497 0.378756i \(-0.876352\pi\)
−0.925497 + 0.378756i \(0.876352\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −1.36282 −0.454272
\(10\) 0 0
\(11\) 1.53680 0.463363 0.231681 0.972792i \(-0.425577\pi\)
0.231681 + 0.972792i \(0.425577\pi\)
\(12\) 0 0
\(13\) −0.0160623 −0.00445489 −0.00222744 0.999998i \(-0.500709\pi\)
−0.00222744 + 0.999998i \(0.500709\pi\)
\(14\) 0 0
\(15\) 5.29588 1.36739
\(16\) 0 0
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) −0.519822 −0.119255 −0.0596277 0.998221i \(-0.518991\pi\)
−0.0596277 + 0.998221i \(0.518991\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.958750 0.199913 0.0999566 0.994992i \(-0.468130\pi\)
0.0999566 + 0.994992i \(0.468130\pi\)
\(24\) 0 0
\(25\) 12.1309 2.42618
\(26\) 0 0
\(27\) 5.58233 1.07432
\(28\) 0 0
\(29\) 5.79146 1.07545 0.537724 0.843121i \(-0.319284\pi\)
0.537724 + 0.843121i \(0.319284\pi\)
\(30\) 0 0
\(31\) −1.29639 −0.232838 −0.116419 0.993200i \(-0.537141\pi\)
−0.116419 + 0.993200i \(0.537141\pi\)
\(32\) 0 0
\(33\) −1.96637 −0.342302
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 2.76827 0.455101 0.227550 0.973766i \(-0.426928\pi\)
0.227550 + 0.973766i \(0.426928\pi\)
\(38\) 0 0
\(39\) 0.0205521 0.00329098
\(40\) 0 0
\(41\) 0.769697 0.120207 0.0601033 0.998192i \(-0.480857\pi\)
0.0601033 + 0.998192i \(0.480857\pi\)
\(42\) 0 0
\(43\) −4.93770 −0.752992 −0.376496 0.926418i \(-0.622871\pi\)
−0.376496 + 0.926418i \(0.622871\pi\)
\(44\) 0 0
\(45\) 5.64063 0.840855
\(46\) 0 0
\(47\) 1.60825 0.234587 0.117294 0.993097i \(-0.462578\pi\)
0.117294 + 0.993097i \(0.462578\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −1.27952 −0.179169
\(52\) 0 0
\(53\) 5.00816 0.687923 0.343962 0.938984i \(-0.388231\pi\)
0.343962 + 0.938984i \(0.388231\pi\)
\(54\) 0 0
\(55\) −6.36074 −0.857682
\(56\) 0 0
\(57\) 0.665125 0.0880980
\(58\) 0 0
\(59\) −5.50390 −0.716547 −0.358273 0.933617i \(-0.616634\pi\)
−0.358273 + 0.933617i \(0.616634\pi\)
\(60\) 0 0
\(61\) −14.5818 −1.86701 −0.933506 0.358562i \(-0.883267\pi\)
−0.933506 + 0.358562i \(0.883267\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0.0664811 0.00824597
\(66\) 0 0
\(67\) 5.13657 0.627532 0.313766 0.949500i \(-0.398409\pi\)
0.313766 + 0.949500i \(0.398409\pi\)
\(68\) 0 0
\(69\) −1.22674 −0.147683
\(70\) 0 0
\(71\) 13.4293 1.59377 0.796883 0.604133i \(-0.206481\pi\)
0.796883 + 0.604133i \(0.206481\pi\)
\(72\) 0 0
\(73\) 3.16522 0.370461 0.185230 0.982695i \(-0.440697\pi\)
0.185230 + 0.982695i \(0.440697\pi\)
\(74\) 0 0
\(75\) −15.5218 −1.79230
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −10.3220 −1.16131 −0.580657 0.814148i \(-0.697204\pi\)
−0.580657 + 0.814148i \(0.697204\pi\)
\(80\) 0 0
\(81\) −3.05428 −0.339364
\(82\) 0 0
\(83\) −16.1399 −1.77159 −0.885793 0.464080i \(-0.846385\pi\)
−0.885793 + 0.464080i \(0.846385\pi\)
\(84\) 0 0
\(85\) −4.13895 −0.448932
\(86\) 0 0
\(87\) −7.41032 −0.794470
\(88\) 0 0
\(89\) 10.5848 1.12199 0.560995 0.827819i \(-0.310419\pi\)
0.560995 + 0.827819i \(0.310419\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 1.65876 0.172005
\(94\) 0 0
\(95\) 2.15152 0.220741
\(96\) 0 0
\(97\) −10.0542 −1.02085 −0.510427 0.859921i \(-0.670513\pi\)
−0.510427 + 0.859921i \(0.670513\pi\)
\(98\) 0 0
\(99\) −2.09438 −0.210493
\(100\) 0 0
\(101\) 11.5236 1.14665 0.573323 0.819330i \(-0.305654\pi\)
0.573323 + 0.819330i \(0.305654\pi\)
\(102\) 0 0
\(103\) 7.09694 0.699283 0.349641 0.936884i \(-0.386303\pi\)
0.349641 + 0.936884i \(0.386303\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −12.9252 −1.24953 −0.624764 0.780814i \(-0.714805\pi\)
−0.624764 + 0.780814i \(0.714805\pi\)
\(108\) 0 0
\(109\) −8.79060 −0.841987 −0.420993 0.907064i \(-0.638318\pi\)
−0.420993 + 0.907064i \(0.638318\pi\)
\(110\) 0 0
\(111\) −3.54207 −0.336198
\(112\) 0 0
\(113\) −8.29520 −0.780347 −0.390174 0.920741i \(-0.627585\pi\)
−0.390174 + 0.920741i \(0.627585\pi\)
\(114\) 0 0
\(115\) −3.96822 −0.370038
\(116\) 0 0
\(117\) 0.0218900 0.00202373
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −8.63824 −0.785295
\(122\) 0 0
\(123\) −0.984846 −0.0888006
\(124\) 0 0
\(125\) −29.5144 −2.63984
\(126\) 0 0
\(127\) 11.1242 0.987110 0.493555 0.869715i \(-0.335697\pi\)
0.493555 + 0.869715i \(0.335697\pi\)
\(128\) 0 0
\(129\) 6.31790 0.556260
\(130\) 0 0
\(131\) 20.2010 1.76497 0.882486 0.470338i \(-0.155868\pi\)
0.882486 + 0.470338i \(0.155868\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −23.1050 −1.98856
\(136\) 0 0
\(137\) 17.9159 1.53066 0.765331 0.643637i \(-0.222575\pi\)
0.765331 + 0.643637i \(0.222575\pi\)
\(138\) 0 0
\(139\) 0.0526564 0.00446626 0.00223313 0.999998i \(-0.499289\pi\)
0.00223313 + 0.999998i \(0.499289\pi\)
\(140\) 0 0
\(141\) −2.05779 −0.173297
\(142\) 0 0
\(143\) −0.0246846 −0.00206423
\(144\) 0 0
\(145\) −23.9706 −1.99065
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 2.18629 0.179108 0.0895538 0.995982i \(-0.471456\pi\)
0.0895538 + 0.995982i \(0.471456\pi\)
\(150\) 0 0
\(151\) −17.9310 −1.45920 −0.729601 0.683873i \(-0.760294\pi\)
−0.729601 + 0.683873i \(0.760294\pi\)
\(152\) 0 0
\(153\) −1.36282 −0.110177
\(154\) 0 0
\(155\) 5.36567 0.430981
\(156\) 0 0
\(157\) 1.46355 0.116804 0.0584020 0.998293i \(-0.481399\pi\)
0.0584020 + 0.998293i \(0.481399\pi\)
\(158\) 0 0
\(159\) −6.40806 −0.508192
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −16.5954 −1.29986 −0.649928 0.759996i \(-0.725201\pi\)
−0.649928 + 0.759996i \(0.725201\pi\)
\(164\) 0 0
\(165\) 8.13872 0.633599
\(166\) 0 0
\(167\) −13.3783 −1.03524 −0.517621 0.855610i \(-0.673182\pi\)
−0.517621 + 0.855610i \(0.673182\pi\)
\(168\) 0 0
\(169\) −12.9997 −0.999980
\(170\) 0 0
\(171\) 0.708423 0.0541744
\(172\) 0 0
\(173\) −3.90950 −0.297234 −0.148617 0.988895i \(-0.547482\pi\)
−0.148617 + 0.988895i \(0.547482\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 7.04237 0.529337
\(178\) 0 0
\(179\) −24.4163 −1.82496 −0.912480 0.409121i \(-0.865835\pi\)
−0.912480 + 0.409121i \(0.865835\pi\)
\(180\) 0 0
\(181\) −15.2516 −1.13364 −0.566821 0.823841i \(-0.691827\pi\)
−0.566821 + 0.823841i \(0.691827\pi\)
\(182\) 0 0
\(183\) 18.6578 1.37922
\(184\) 0 0
\(185\) −11.4577 −0.842389
\(186\) 0 0
\(187\) 1.53680 0.112382
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1.35507 0.0980492 0.0490246 0.998798i \(-0.484389\pi\)
0.0490246 + 0.998798i \(0.484389\pi\)
\(192\) 0 0
\(193\) −21.5938 −1.55436 −0.777178 0.629281i \(-0.783349\pi\)
−0.777178 + 0.629281i \(0.783349\pi\)
\(194\) 0 0
\(195\) −0.0850642 −0.00609158
\(196\) 0 0
\(197\) 0.342141 0.0243765 0.0121883 0.999926i \(-0.496120\pi\)
0.0121883 + 0.999926i \(0.496120\pi\)
\(198\) 0 0
\(199\) 18.5461 1.31470 0.657348 0.753587i \(-0.271678\pi\)
0.657348 + 0.753587i \(0.271678\pi\)
\(200\) 0 0
\(201\) −6.57237 −0.463579
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −3.18574 −0.222501
\(206\) 0 0
\(207\) −1.30660 −0.0908150
\(208\) 0 0
\(209\) −0.798863 −0.0552585
\(210\) 0 0
\(211\) 3.63388 0.250166 0.125083 0.992146i \(-0.460080\pi\)
0.125083 + 0.992146i \(0.460080\pi\)
\(212\) 0 0
\(213\) −17.1831 −1.17737
\(214\) 0 0
\(215\) 20.4369 1.39378
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −4.04997 −0.273672
\(220\) 0 0
\(221\) −0.0160623 −0.00108047
\(222\) 0 0
\(223\) 22.8440 1.52975 0.764875 0.644179i \(-0.222801\pi\)
0.764875 + 0.644179i \(0.222801\pi\)
\(224\) 0 0
\(225\) −16.5322 −1.10215
\(226\) 0 0
\(227\) −6.58399 −0.436995 −0.218497 0.975838i \(-0.570116\pi\)
−0.218497 + 0.975838i \(0.570116\pi\)
\(228\) 0 0
\(229\) −5.61189 −0.370844 −0.185422 0.982659i \(-0.559365\pi\)
−0.185422 + 0.982659i \(0.559365\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −18.8916 −1.23763 −0.618817 0.785536i \(-0.712388\pi\)
−0.618817 + 0.785536i \(0.712388\pi\)
\(234\) 0 0
\(235\) −6.65646 −0.434219
\(236\) 0 0
\(237\) 13.2072 0.857902
\(238\) 0 0
\(239\) 6.79748 0.439693 0.219846 0.975535i \(-0.429444\pi\)
0.219846 + 0.975535i \(0.429444\pi\)
\(240\) 0 0
\(241\) −15.8682 −1.02216 −0.511082 0.859532i \(-0.670755\pi\)
−0.511082 + 0.859532i \(0.670755\pi\)
\(242\) 0 0
\(243\) −12.8390 −0.823620
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0.00834956 0.000531270 0
\(248\) 0 0
\(249\) 20.6514 1.30873
\(250\) 0 0
\(251\) 8.71087 0.549825 0.274913 0.961469i \(-0.411351\pi\)
0.274913 + 0.961469i \(0.411351\pi\)
\(252\) 0 0
\(253\) 1.47341 0.0926324
\(254\) 0 0
\(255\) 5.29588 0.331641
\(256\) 0 0
\(257\) 7.07610 0.441395 0.220697 0.975342i \(-0.429167\pi\)
0.220697 + 0.975342i \(0.429167\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −7.89271 −0.488546
\(262\) 0 0
\(263\) 18.4753 1.13923 0.569617 0.821910i \(-0.307092\pi\)
0.569617 + 0.821910i \(0.307092\pi\)
\(264\) 0 0
\(265\) −20.7285 −1.27334
\(266\) 0 0
\(267\) −13.5435 −0.828851
\(268\) 0 0
\(269\) −18.8617 −1.15002 −0.575010 0.818146i \(-0.695002\pi\)
−0.575010 + 0.818146i \(0.695002\pi\)
\(270\) 0 0
\(271\) 29.0252 1.76316 0.881579 0.472037i \(-0.156481\pi\)
0.881579 + 0.472037i \(0.156481\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 18.6428 1.12420
\(276\) 0 0
\(277\) −0.756258 −0.0454391 −0.0227196 0.999742i \(-0.507232\pi\)
−0.0227196 + 0.999742i \(0.507232\pi\)
\(278\) 0 0
\(279\) 1.76674 0.105772
\(280\) 0 0
\(281\) 20.2702 1.20922 0.604609 0.796523i \(-0.293330\pi\)
0.604609 + 0.796523i \(0.293330\pi\)
\(282\) 0 0
\(283\) 10.9667 0.651902 0.325951 0.945387i \(-0.394316\pi\)
0.325951 + 0.945387i \(0.394316\pi\)
\(284\) 0 0
\(285\) −2.75292 −0.163069
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 12.8646 0.754139
\(292\) 0 0
\(293\) 5.00489 0.292389 0.146194 0.989256i \(-0.453298\pi\)
0.146194 + 0.989256i \(0.453298\pi\)
\(294\) 0 0
\(295\) 22.7804 1.32632
\(296\) 0 0
\(297\) 8.57893 0.497800
\(298\) 0 0
\(299\) −0.0153998 −0.000890591 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −14.7448 −0.847066
\(304\) 0 0
\(305\) 60.3534 3.45583
\(306\) 0 0
\(307\) 23.1563 1.32160 0.660799 0.750563i \(-0.270217\pi\)
0.660799 + 0.750563i \(0.270217\pi\)
\(308\) 0 0
\(309\) −9.08071 −0.516584
\(310\) 0 0
\(311\) −27.4088 −1.55421 −0.777105 0.629371i \(-0.783313\pi\)
−0.777105 + 0.629371i \(0.783313\pi\)
\(312\) 0 0
\(313\) −22.8081 −1.28919 −0.644595 0.764524i \(-0.722974\pi\)
−0.644595 + 0.764524i \(0.722974\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −22.6005 −1.26937 −0.634685 0.772771i \(-0.718870\pi\)
−0.634685 + 0.772771i \(0.718870\pi\)
\(318\) 0 0
\(319\) 8.90033 0.498323
\(320\) 0 0
\(321\) 16.5381 0.923069
\(322\) 0 0
\(323\) −0.519822 −0.0289237
\(324\) 0 0
\(325\) −0.194850 −0.0108083
\(326\) 0 0
\(327\) 11.2478 0.622004
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −25.5591 −1.40486 −0.702428 0.711755i \(-0.747901\pi\)
−0.702428 + 0.711755i \(0.747901\pi\)
\(332\) 0 0
\(333\) −3.77265 −0.206740
\(334\) 0 0
\(335\) −21.2600 −1.16156
\(336\) 0 0
\(337\) 23.1633 1.26179 0.630893 0.775870i \(-0.282689\pi\)
0.630893 + 0.775870i \(0.282689\pi\)
\(338\) 0 0
\(339\) 10.6139 0.576469
\(340\) 0 0
\(341\) −1.99229 −0.107888
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 5.07743 0.273360
\(346\) 0 0
\(347\) −36.4373 −1.95606 −0.978029 0.208468i \(-0.933152\pi\)
−0.978029 + 0.208468i \(0.933152\pi\)
\(348\) 0 0
\(349\) 0.0585067 0.00313179 0.00156590 0.999999i \(-0.499502\pi\)
0.00156590 + 0.999999i \(0.499502\pi\)
\(350\) 0 0
\(351\) −0.0896653 −0.00478598
\(352\) 0 0
\(353\) −23.5207 −1.25188 −0.625939 0.779872i \(-0.715284\pi\)
−0.625939 + 0.779872i \(0.715284\pi\)
\(354\) 0 0
\(355\) −55.5832 −2.95005
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 10.6575 0.562483 0.281242 0.959637i \(-0.409254\pi\)
0.281242 + 0.959637i \(0.409254\pi\)
\(360\) 0 0
\(361\) −18.7298 −0.985778
\(362\) 0 0
\(363\) 11.0528 0.580124
\(364\) 0 0
\(365\) −13.1007 −0.685721
\(366\) 0 0
\(367\) −29.9738 −1.56462 −0.782309 0.622890i \(-0.785958\pi\)
−0.782309 + 0.622890i \(0.785958\pi\)
\(368\) 0 0
\(369\) −1.04896 −0.0546065
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −12.7252 −0.658888 −0.329444 0.944175i \(-0.606861\pi\)
−0.329444 + 0.944175i \(0.606861\pi\)
\(374\) 0 0
\(375\) 37.7643 1.95014
\(376\) 0 0
\(377\) −0.0930244 −0.00479100
\(378\) 0 0
\(379\) 16.3107 0.837824 0.418912 0.908027i \(-0.362411\pi\)
0.418912 + 0.908027i \(0.362411\pi\)
\(380\) 0 0
\(381\) −14.2336 −0.729211
\(382\) 0 0
\(383\) 23.8797 1.22020 0.610099 0.792325i \(-0.291130\pi\)
0.610099 + 0.792325i \(0.291130\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 6.72918 0.342063
\(388\) 0 0
\(389\) −2.75525 −0.139697 −0.0698485 0.997558i \(-0.522252\pi\)
−0.0698485 + 0.997558i \(0.522252\pi\)
\(390\) 0 0
\(391\) 0.958750 0.0484861
\(392\) 0 0
\(393\) −25.8477 −1.30384
\(394\) 0 0
\(395\) 42.7222 2.14959
\(396\) 0 0
\(397\) −21.4903 −1.07857 −0.539283 0.842124i \(-0.681305\pi\)
−0.539283 + 0.842124i \(0.681305\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 35.3195 1.76377 0.881886 0.471462i \(-0.156274\pi\)
0.881886 + 0.471462i \(0.156274\pi\)
\(402\) 0 0
\(403\) 0.0208230 0.00103727
\(404\) 0 0
\(405\) 12.6415 0.628161
\(406\) 0 0
\(407\) 4.25428 0.210877
\(408\) 0 0
\(409\) −3.10362 −0.153464 −0.0767321 0.997052i \(-0.524449\pi\)
−0.0767321 + 0.997052i \(0.524449\pi\)
\(410\) 0 0
\(411\) −22.9239 −1.13075
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 66.8023 3.27919
\(416\) 0 0
\(417\) −0.0673752 −0.00329938
\(418\) 0 0
\(419\) 34.8546 1.70276 0.851379 0.524551i \(-0.175767\pi\)
0.851379 + 0.524551i \(0.175767\pi\)
\(420\) 0 0
\(421\) −20.4225 −0.995334 −0.497667 0.867368i \(-0.665810\pi\)
−0.497667 + 0.867368i \(0.665810\pi\)
\(422\) 0 0
\(423\) −2.19175 −0.106566
\(424\) 0 0
\(425\) 12.1309 0.588434
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0.0315846 0.00152492
\(430\) 0 0
\(431\) 3.36333 0.162006 0.0810030 0.996714i \(-0.474188\pi\)
0.0810030 + 0.996714i \(0.474188\pi\)
\(432\) 0 0
\(433\) 11.1308 0.534914 0.267457 0.963570i \(-0.413817\pi\)
0.267457 + 0.963570i \(0.413817\pi\)
\(434\) 0 0
\(435\) 30.6709 1.47056
\(436\) 0 0
\(437\) −0.498379 −0.0238407
\(438\) 0 0
\(439\) 8.96569 0.427909 0.213955 0.976844i \(-0.431366\pi\)
0.213955 + 0.976844i \(0.431366\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 3.94610 0.187485 0.0937423 0.995596i \(-0.470117\pi\)
0.0937423 + 0.995596i \(0.470117\pi\)
\(444\) 0 0
\(445\) −43.8100 −2.07679
\(446\) 0 0
\(447\) −2.79741 −0.132313
\(448\) 0 0
\(449\) 23.8289 1.12455 0.562277 0.826949i \(-0.309926\pi\)
0.562277 + 0.826949i \(0.309926\pi\)
\(450\) 0 0
\(451\) 1.18287 0.0556992
\(452\) 0 0
\(453\) 22.9431 1.07796
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −3.01424 −0.141000 −0.0705000 0.997512i \(-0.522459\pi\)
−0.0705000 + 0.997512i \(0.522459\pi\)
\(458\) 0 0
\(459\) 5.58233 0.260561
\(460\) 0 0
\(461\) −8.45569 −0.393821 −0.196910 0.980421i \(-0.563091\pi\)
−0.196910 + 0.980421i \(0.563091\pi\)
\(462\) 0 0
\(463\) −24.2074 −1.12501 −0.562506 0.826793i \(-0.690163\pi\)
−0.562506 + 0.826793i \(0.690163\pi\)
\(464\) 0 0
\(465\) −6.86551 −0.318380
\(466\) 0 0
\(467\) 8.28824 0.383534 0.191767 0.981440i \(-0.438578\pi\)
0.191767 + 0.981440i \(0.438578\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −1.87265 −0.0862871
\(472\) 0 0
\(473\) −7.58826 −0.348908
\(474\) 0 0
\(475\) −6.30590 −0.289335
\(476\) 0 0
\(477\) −6.82520 −0.312505
\(478\) 0 0
\(479\) 22.1591 1.01248 0.506238 0.862394i \(-0.331036\pi\)
0.506238 + 0.862394i \(0.331036\pi\)
\(480\) 0 0
\(481\) −0.0444649 −0.00202742
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 41.6140 1.88959
\(486\) 0 0
\(487\) 31.3324 1.41981 0.709904 0.704298i \(-0.248738\pi\)
0.709904 + 0.704298i \(0.248738\pi\)
\(488\) 0 0
\(489\) 21.2343 0.960247
\(490\) 0 0
\(491\) 5.58409 0.252007 0.126003 0.992030i \(-0.459785\pi\)
0.126003 + 0.992030i \(0.459785\pi\)
\(492\) 0 0
\(493\) 5.79146 0.260834
\(494\) 0 0
\(495\) 8.66852 0.389621
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −2.27863 −0.102005 −0.0510027 0.998699i \(-0.516242\pi\)
−0.0510027 + 0.998699i \(0.516242\pi\)
\(500\) 0 0
\(501\) 17.1178 0.764768
\(502\) 0 0
\(503\) −36.8357 −1.64242 −0.821212 0.570624i \(-0.806701\pi\)
−0.821212 + 0.570624i \(0.806701\pi\)
\(504\) 0 0
\(505\) −47.6958 −2.12243
\(506\) 0 0
\(507\) 16.6335 0.738719
\(508\) 0 0
\(509\) 39.3753 1.74528 0.872641 0.488363i \(-0.162406\pi\)
0.872641 + 0.488363i \(0.162406\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −2.90182 −0.128118
\(514\) 0 0
\(515\) −29.3739 −1.29437
\(516\) 0 0
\(517\) 2.47156 0.108699
\(518\) 0 0
\(519\) 5.00231 0.219577
\(520\) 0 0
\(521\) −6.78449 −0.297234 −0.148617 0.988895i \(-0.547482\pi\)
−0.148617 + 0.988895i \(0.547482\pi\)
\(522\) 0 0
\(523\) −35.5401 −1.55406 −0.777030 0.629464i \(-0.783274\pi\)
−0.777030 + 0.629464i \(0.783274\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1.29639 −0.0564714
\(528\) 0 0
\(529\) −22.0808 −0.960035
\(530\) 0 0
\(531\) 7.50081 0.325507
\(532\) 0 0
\(533\) −0.0123631 −0.000535507 0
\(534\) 0 0
\(535\) 53.4968 2.31287
\(536\) 0 0
\(537\) 31.2413 1.34816
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 28.3887 1.22053 0.610263 0.792199i \(-0.291064\pi\)
0.610263 + 0.792199i \(0.291064\pi\)
\(542\) 0 0
\(543\) 19.5148 0.837460
\(544\) 0 0
\(545\) 36.3838 1.55851
\(546\) 0 0
\(547\) −25.3338 −1.08320 −0.541598 0.840638i \(-0.682180\pi\)
−0.541598 + 0.840638i \(0.682180\pi\)
\(548\) 0 0
\(549\) 19.8724 0.848132
\(550\) 0 0
\(551\) −3.01053 −0.128253
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 14.6604 0.622301
\(556\) 0 0
\(557\) −35.0713 −1.48602 −0.743010 0.669280i \(-0.766603\pi\)
−0.743010 + 0.669280i \(0.766603\pi\)
\(558\) 0 0
\(559\) 0.0793109 0.00335449
\(560\) 0 0
\(561\) −1.96637 −0.0830204
\(562\) 0 0
\(563\) 37.1770 1.56682 0.783412 0.621503i \(-0.213477\pi\)
0.783412 + 0.621503i \(0.213477\pi\)
\(564\) 0 0
\(565\) 34.3334 1.44442
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −30.7661 −1.28978 −0.644891 0.764275i \(-0.723097\pi\)
−0.644891 + 0.764275i \(0.723097\pi\)
\(570\) 0 0
\(571\) −17.1129 −0.716154 −0.358077 0.933692i \(-0.616568\pi\)
−0.358077 + 0.933692i \(0.616568\pi\)
\(572\) 0 0
\(573\) −1.73384 −0.0724322
\(574\) 0 0
\(575\) 11.6305 0.485025
\(576\) 0 0
\(577\) −18.7692 −0.781372 −0.390686 0.920524i \(-0.627762\pi\)
−0.390686 + 0.920524i \(0.627762\pi\)
\(578\) 0 0
\(579\) 27.6298 1.14825
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 7.69654 0.318758
\(584\) 0 0
\(585\) −0.0906016 −0.00374592
\(586\) 0 0
\(587\) −22.6989 −0.936884 −0.468442 0.883494i \(-0.655184\pi\)
−0.468442 + 0.883494i \(0.655184\pi\)
\(588\) 0 0
\(589\) 0.673890 0.0277671
\(590\) 0 0
\(591\) −0.437778 −0.0180078
\(592\) 0 0
\(593\) −36.9707 −1.51821 −0.759103 0.650970i \(-0.774362\pi\)
−0.759103 + 0.650970i \(0.774362\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −23.7302 −0.971211
\(598\) 0 0
\(599\) 1.40362 0.0573505 0.0286753 0.999589i \(-0.490871\pi\)
0.0286753 + 0.999589i \(0.490871\pi\)
\(600\) 0 0
\(601\) −27.7980 −1.13390 −0.566951 0.823751i \(-0.691877\pi\)
−0.566951 + 0.823751i \(0.691877\pi\)
\(602\) 0 0
\(603\) −7.00021 −0.285070
\(604\) 0 0
\(605\) 35.7532 1.45358
\(606\) 0 0
\(607\) 10.4113 0.422580 0.211290 0.977423i \(-0.432234\pi\)
0.211290 + 0.977423i \(0.432234\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −0.0258322 −0.00104506
\(612\) 0 0
\(613\) 18.6101 0.751655 0.375828 0.926690i \(-0.377358\pi\)
0.375828 + 0.926690i \(0.377358\pi\)
\(614\) 0 0
\(615\) 4.07623 0.164369
\(616\) 0 0
\(617\) −16.8106 −0.676771 −0.338386 0.941008i \(-0.609881\pi\)
−0.338386 + 0.941008i \(0.609881\pi\)
\(618\) 0 0
\(619\) −38.9688 −1.56629 −0.783145 0.621839i \(-0.786386\pi\)
−0.783145 + 0.621839i \(0.786386\pi\)
\(620\) 0 0
\(621\) 5.35206 0.214771
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 61.5039 2.46016
\(626\) 0 0
\(627\) 1.02217 0.0408213
\(628\) 0 0
\(629\) 2.76827 0.110378
\(630\) 0 0
\(631\) 2.53283 0.100830 0.0504152 0.998728i \(-0.483946\pi\)
0.0504152 + 0.998728i \(0.483946\pi\)
\(632\) 0 0
\(633\) −4.64963 −0.184806
\(634\) 0 0
\(635\) −46.0423 −1.82713
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −18.3017 −0.724004
\(640\) 0 0
\(641\) −3.61319 −0.142713 −0.0713563 0.997451i \(-0.522733\pi\)
−0.0713563 + 0.997451i \(0.522733\pi\)
\(642\) 0 0
\(643\) 3.55385 0.140150 0.0700750 0.997542i \(-0.477676\pi\)
0.0700750 + 0.997542i \(0.477676\pi\)
\(644\) 0 0
\(645\) −26.1495 −1.02963
\(646\) 0 0
\(647\) 38.9319 1.53057 0.765285 0.643692i \(-0.222598\pi\)
0.765285 + 0.643692i \(0.222598\pi\)
\(648\) 0 0
\(649\) −8.45840 −0.332021
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 23.5910 0.923189 0.461594 0.887091i \(-0.347278\pi\)
0.461594 + 0.887091i \(0.347278\pi\)
\(654\) 0 0
\(655\) −83.6110 −3.26695
\(656\) 0 0
\(657\) −4.31361 −0.168290
\(658\) 0 0
\(659\) 3.43190 0.133688 0.0668439 0.997763i \(-0.478707\pi\)
0.0668439 + 0.997763i \(0.478707\pi\)
\(660\) 0 0
\(661\) −38.1243 −1.48286 −0.741431 0.671029i \(-0.765853\pi\)
−0.741431 + 0.671029i \(0.765853\pi\)
\(662\) 0 0
\(663\) 0.0205521 0.000798179 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 5.55256 0.214996
\(668\) 0 0
\(669\) −29.2295 −1.13008
\(670\) 0 0
\(671\) −22.4094 −0.865104
\(672\) 0 0
\(673\) −9.27831 −0.357653 −0.178826 0.983881i \(-0.557230\pi\)
−0.178826 + 0.983881i \(0.557230\pi\)
\(674\) 0 0
\(675\) 67.7186 2.60649
\(676\) 0 0
\(677\) 10.4284 0.400797 0.200398 0.979715i \(-0.435776\pi\)
0.200398 + 0.979715i \(0.435776\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 8.42438 0.322823
\(682\) 0 0
\(683\) −33.6376 −1.28711 −0.643554 0.765401i \(-0.722541\pi\)
−0.643554 + 0.765401i \(0.722541\pi\)
\(684\) 0 0
\(685\) −74.1532 −2.83325
\(686\) 0 0
\(687\) 7.18055 0.273955
\(688\) 0 0
\(689\) −0.0804427 −0.00306462
\(690\) 0 0
\(691\) 5.83824 0.222097 0.111049 0.993815i \(-0.464579\pi\)
0.111049 + 0.993815i \(0.464579\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −0.217942 −0.00826702
\(696\) 0 0
\(697\) 0.769697 0.0291544
\(698\) 0 0
\(699\) 24.1723 0.914281
\(700\) 0 0
\(701\) −46.7733 −1.76660 −0.883302 0.468805i \(-0.844685\pi\)
−0.883302 + 0.468805i \(0.844685\pi\)
\(702\) 0 0
\(703\) −1.43901 −0.0542732
\(704\) 0 0
\(705\) 8.51710 0.320772
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −5.15814 −0.193718 −0.0968590 0.995298i \(-0.530880\pi\)
−0.0968590 + 0.995298i \(0.530880\pi\)
\(710\) 0 0
\(711\) 14.0670 0.527553
\(712\) 0 0
\(713\) −1.24291 −0.0465473
\(714\) 0 0
\(715\) 0.102168 0.00382088
\(716\) 0 0
\(717\) −8.69755 −0.324816
\(718\) 0 0
\(719\) 41.4647 1.54637 0.773186 0.634179i \(-0.218662\pi\)
0.773186 + 0.634179i \(0.218662\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 20.3038 0.755107
\(724\) 0 0
\(725\) 70.2556 2.60923
\(726\) 0 0
\(727\) 2.82479 0.104766 0.0523828 0.998627i \(-0.483318\pi\)
0.0523828 + 0.998627i \(0.483318\pi\)
\(728\) 0 0
\(729\) 25.5906 0.947800
\(730\) 0 0
\(731\) −4.93770 −0.182627
\(732\) 0 0
\(733\) 15.3118 0.565556 0.282778 0.959185i \(-0.408744\pi\)
0.282778 + 0.959185i \(0.408744\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 7.89389 0.290775
\(738\) 0 0
\(739\) −25.0298 −0.920737 −0.460369 0.887728i \(-0.652283\pi\)
−0.460369 + 0.887728i \(0.652283\pi\)
\(740\) 0 0
\(741\) −0.0106835 −0.000392467 0
\(742\) 0 0
\(743\) −16.1647 −0.593027 −0.296513 0.955029i \(-0.595824\pi\)
−0.296513 + 0.955029i \(0.595824\pi\)
\(744\) 0 0
\(745\) −9.04893 −0.331527
\(746\) 0 0
\(747\) 21.9958 0.804783
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 44.4820 1.62317 0.811586 0.584233i \(-0.198604\pi\)
0.811586 + 0.584233i \(0.198604\pi\)
\(752\) 0 0
\(753\) −11.1458 −0.406174
\(754\) 0 0
\(755\) 74.2154 2.70097
\(756\) 0 0
\(757\) 4.00941 0.145724 0.0728622 0.997342i \(-0.476787\pi\)
0.0728622 + 0.997342i \(0.476787\pi\)
\(758\) 0 0
\(759\) −1.88526 −0.0684306
\(760\) 0 0
\(761\) 30.0752 1.09023 0.545113 0.838363i \(-0.316487\pi\)
0.545113 + 0.838363i \(0.316487\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 5.64063 0.203937
\(766\) 0 0
\(767\) 0.0884055 0.00319214
\(768\) 0 0
\(769\) 38.3403 1.38259 0.691293 0.722575i \(-0.257041\pi\)
0.691293 + 0.722575i \(0.257041\pi\)
\(770\) 0 0
\(771\) −9.05404 −0.326073
\(772\) 0 0
\(773\) −32.6953 −1.17597 −0.587983 0.808873i \(-0.700078\pi\)
−0.587983 + 0.808873i \(0.700078\pi\)
\(774\) 0 0
\(775\) −15.7263 −0.564905
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −0.400106 −0.0143353
\(780\) 0 0
\(781\) 20.6382 0.738492
\(782\) 0 0
\(783\) 32.3299 1.15538
\(784\) 0 0
\(785\) −6.05756 −0.216204
\(786\) 0 0
\(787\) 19.8276 0.706778 0.353389 0.935476i \(-0.385029\pi\)
0.353389 + 0.935476i \(0.385029\pi\)
\(788\) 0 0
\(789\) −23.6396 −0.841591
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0.234218 0.00831733
\(794\) 0 0
\(795\) 26.5226 0.940660
\(796\) 0 0
\(797\) 21.6470 0.766775 0.383387 0.923588i \(-0.374757\pi\)
0.383387 + 0.923588i \(0.374757\pi\)
\(798\) 0 0
\(799\) 1.60825 0.0568957
\(800\) 0 0
\(801\) −14.4252 −0.509689
\(802\) 0 0
\(803\) 4.86431 0.171658
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 24.1341 0.849559
\(808\) 0 0
\(809\) −2.54896 −0.0896166 −0.0448083 0.998996i \(-0.514268\pi\)
−0.0448083 + 0.998996i \(0.514268\pi\)
\(810\) 0 0
\(811\) −15.4648 −0.543042 −0.271521 0.962432i \(-0.587527\pi\)
−0.271521 + 0.962432i \(0.587527\pi\)
\(812\) 0 0
\(813\) −37.1385 −1.30250
\(814\) 0 0
\(815\) 68.6877 2.40602
\(816\) 0 0
\(817\) 2.56672 0.0897983
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −43.2553 −1.50962 −0.754811 0.655942i \(-0.772271\pi\)
−0.754811 + 0.655942i \(0.772271\pi\)
\(822\) 0 0
\(823\) −2.18064 −0.0760124 −0.0380062 0.999278i \(-0.512101\pi\)
−0.0380062 + 0.999278i \(0.512101\pi\)
\(824\) 0 0
\(825\) −23.8539 −0.830485
\(826\) 0 0
\(827\) 2.33083 0.0810508 0.0405254 0.999179i \(-0.487097\pi\)
0.0405254 + 0.999179i \(0.487097\pi\)
\(828\) 0 0
\(829\) 10.6090 0.368466 0.184233 0.982883i \(-0.441020\pi\)
0.184233 + 0.982883i \(0.441020\pi\)
\(830\) 0 0
\(831\) 0.967650 0.0335674
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 55.3719 1.91623
\(836\) 0 0
\(837\) −7.23685 −0.250142
\(838\) 0 0
\(839\) −11.5111 −0.397408 −0.198704 0.980060i \(-0.563673\pi\)
−0.198704 + 0.980060i \(0.563673\pi\)
\(840\) 0 0
\(841\) 4.54104 0.156588
\(842\) 0 0
\(843\) −25.9362 −0.893290
\(844\) 0 0
\(845\) 53.8052 1.85096
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −14.0321 −0.481582
\(850\) 0 0
\(851\) 2.65408 0.0909807
\(852\) 0 0
\(853\) −3.81565 −0.130646 −0.0653228 0.997864i \(-0.520808\pi\)
−0.0653228 + 0.997864i \(0.520808\pi\)
\(854\) 0 0
\(855\) −2.93212 −0.100277
\(856\) 0 0
\(857\) −28.4078 −0.970393 −0.485197 0.874405i \(-0.661252\pi\)
−0.485197 + 0.874405i \(0.661252\pi\)
\(858\) 0 0
\(859\) −21.7166 −0.740961 −0.370481 0.928840i \(-0.620807\pi\)
−0.370481 + 0.928840i \(0.620807\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −41.4622 −1.41139 −0.705694 0.708516i \(-0.749365\pi\)
−0.705694 + 0.708516i \(0.749365\pi\)
\(864\) 0 0
\(865\) 16.1812 0.550178
\(866\) 0 0
\(867\) −1.27952 −0.0434549
\(868\) 0 0
\(869\) −15.8628 −0.538110
\(870\) 0 0
\(871\) −0.0825053 −0.00279559
\(872\) 0 0
\(873\) 13.7021 0.463746
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 20.6058 0.695809 0.347905 0.937530i \(-0.386893\pi\)
0.347905 + 0.937530i \(0.386893\pi\)
\(878\) 0 0
\(879\) −6.40388 −0.215997
\(880\) 0 0
\(881\) 35.1391 1.18387 0.591934 0.805987i \(-0.298365\pi\)
0.591934 + 0.805987i \(0.298365\pi\)
\(882\) 0 0
\(883\) 2.56154 0.0862027 0.0431014 0.999071i \(-0.486276\pi\)
0.0431014 + 0.999071i \(0.486276\pi\)
\(884\) 0 0
\(885\) −29.1480 −0.979800
\(886\) 0 0
\(887\) 37.6761 1.26504 0.632520 0.774544i \(-0.282021\pi\)
0.632520 + 0.774544i \(0.282021\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −4.69382 −0.157249
\(892\) 0 0
\(893\) −0.836003 −0.0279758
\(894\) 0 0
\(895\) 101.058 3.37799
\(896\) 0 0
\(897\) 0.0197044 0.000657910 0
\(898\) 0 0
\(899\) −7.50797 −0.250405
\(900\) 0 0
\(901\) 5.00816 0.166846
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 63.1256 2.09836
\(906\) 0 0
\(907\) −28.4367 −0.944224 −0.472112 0.881539i \(-0.656508\pi\)
−0.472112 + 0.881539i \(0.656508\pi\)
\(908\) 0 0
\(909\) −15.7046 −0.520889
\(910\) 0 0
\(911\) −9.68890 −0.321008 −0.160504 0.987035i \(-0.551312\pi\)
−0.160504 + 0.987035i \(0.551312\pi\)
\(912\) 0 0
\(913\) −24.8038 −0.820887
\(914\) 0 0
\(915\) −77.2237 −2.55294
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 1.22717 0.0404807 0.0202404 0.999795i \(-0.493557\pi\)
0.0202404 + 0.999795i \(0.493557\pi\)
\(920\) 0 0
\(921\) −29.6290 −0.976310
\(922\) 0 0
\(923\) −0.215706 −0.00710005
\(924\) 0 0
\(925\) 33.5816 1.10416
\(926\) 0 0
\(927\) −9.67184 −0.317665
\(928\) 0 0
\(929\) −37.3244 −1.22457 −0.612287 0.790635i \(-0.709750\pi\)
−0.612287 + 0.790635i \(0.709750\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 35.0702 1.14815
\(934\) 0 0
\(935\) −6.36074 −0.208018
\(936\) 0 0
\(937\) −11.8297 −0.386459 −0.193229 0.981154i \(-0.561896\pi\)
−0.193229 + 0.981154i \(0.561896\pi\)
\(938\) 0 0
\(939\) 29.1835 0.952368
\(940\) 0 0
\(941\) 1.74652 0.0569348 0.0284674 0.999595i \(-0.490937\pi\)
0.0284674 + 0.999595i \(0.490937\pi\)
\(942\) 0 0
\(943\) 0.737947 0.0240309
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −18.3949 −0.597754 −0.298877 0.954292i \(-0.596612\pi\)
−0.298877 + 0.954292i \(0.596612\pi\)
\(948\) 0 0
\(949\) −0.0508408 −0.00165036
\(950\) 0 0
\(951\) 28.9179 0.937727
\(952\) 0 0
\(953\) −34.8806 −1.12989 −0.564947 0.825127i \(-0.691103\pi\)
−0.564947 + 0.825127i \(0.691103\pi\)
\(954\) 0 0
\(955\) −5.60855 −0.181488
\(956\) 0 0
\(957\) −11.3882 −0.368128
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −29.3194 −0.945787
\(962\) 0 0
\(963\) 17.6147 0.567626
\(964\) 0 0
\(965\) 89.3756 2.87710
\(966\) 0 0
\(967\) 45.2995 1.45674 0.728368 0.685187i \(-0.240279\pi\)
0.728368 + 0.685187i \(0.240279\pi\)
\(968\) 0 0
\(969\) 0.665125 0.0213669
\(970\) 0 0
\(971\) 8.93181 0.286635 0.143318 0.989677i \(-0.454223\pi\)
0.143318 + 0.989677i \(0.454223\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0.249316 0.00798449
\(976\) 0 0
\(977\) 24.4223 0.781338 0.390669 0.920531i \(-0.372244\pi\)
0.390669 + 0.920531i \(0.372244\pi\)
\(978\) 0 0
\(979\) 16.2668 0.519888
\(980\) 0 0
\(981\) 11.9800 0.382491
\(982\) 0 0
\(983\) −40.0513 −1.27744 −0.638719 0.769440i \(-0.720535\pi\)
−0.638719 + 0.769440i \(0.720535\pi\)
\(984\) 0 0
\(985\) −1.41610 −0.0451208
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −4.73402 −0.150533
\(990\) 0 0
\(991\) −23.4318 −0.744335 −0.372168 0.928166i \(-0.621385\pi\)
−0.372168 + 0.928166i \(0.621385\pi\)
\(992\) 0 0
\(993\) 32.7035 1.03781
\(994\) 0 0
\(995\) −76.7613 −2.43350
\(996\) 0 0
\(997\) −25.5055 −0.807768 −0.403884 0.914810i \(-0.632340\pi\)
−0.403884 + 0.914810i \(0.632340\pi\)
\(998\) 0 0
\(999\) 15.4534 0.488924
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3332.2.a.t.1.3 8
7.6 odd 2 3332.2.a.u.1.6 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3332.2.a.t.1.3 8 1.1 even 1 trivial
3332.2.a.u.1.6 yes 8 7.6 odd 2