Properties

Label 3332.2.a.k.1.2
Level $3332$
Weight $2$
Character 3332.1
Self dual yes
Analytic conductor $26.606$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3332,2,Mod(1,3332)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3332, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3332.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3332 = 2^{2} \cdot 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3332.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.6061539535\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{13}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 476)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.30278\) of defining polynomial
Character \(\chi\) \(=\) 3332.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.30278 q^{3} +1.30278 q^{5} +2.30278 q^{9} +O(q^{10})\) \(q+2.30278 q^{3} +1.30278 q^{5} +2.30278 q^{9} +4.00000 q^{11} +4.60555 q^{13} +3.00000 q^{15} +1.00000 q^{17} -8.60555 q^{19} +4.00000 q^{23} -3.30278 q^{25} -1.60555 q^{27} +9.21110 q^{29} -7.30278 q^{31} +9.21110 q^{33} +9.81665 q^{37} +10.6056 q^{39} +11.5139 q^{41} -4.30278 q^{43} +3.00000 q^{45} +2.60555 q^{47} +2.30278 q^{51} +0.697224 q^{53} +5.21110 q^{55} -19.8167 q^{57} +8.00000 q^{59} -15.5139 q^{61} +6.00000 q^{65} +2.69722 q^{67} +9.21110 q^{69} -3.39445 q^{71} -7.51388 q^{73} -7.60555 q^{75} -2.60555 q^{79} -10.6056 q^{81} -3.21110 q^{83} +1.30278 q^{85} +21.2111 q^{87} -7.81665 q^{89} -16.8167 q^{93} -11.2111 q^{95} +13.3028 q^{97} +9.21110 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{3} - q^{5} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + q^{3} - q^{5} + q^{9} + 8 q^{11} + 2 q^{13} + 6 q^{15} + 2 q^{17} - 10 q^{19} + 8 q^{23} - 3 q^{25} + 4 q^{27} + 4 q^{29} - 11 q^{31} + 4 q^{33} - 2 q^{37} + 14 q^{39} + 5 q^{41} - 5 q^{43} + 6 q^{45} - 2 q^{47} + q^{51} + 5 q^{53} - 4 q^{55} - 18 q^{57} + 16 q^{59} - 13 q^{61} + 12 q^{65} + 9 q^{67} + 4 q^{69} - 14 q^{71} + 3 q^{73} - 8 q^{75} + 2 q^{79} - 14 q^{81} + 8 q^{83} - q^{85} + 28 q^{87} + 6 q^{89} - 12 q^{93} - 8 q^{95} + 23 q^{97} + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.30278 1.32951 0.664754 0.747062i \(-0.268536\pi\)
0.664754 + 0.747062i \(0.268536\pi\)
\(4\) 0 0
\(5\) 1.30278 0.582619 0.291309 0.956629i \(-0.405909\pi\)
0.291309 + 0.956629i \(0.405909\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 2.30278 0.767592
\(10\) 0 0
\(11\) 4.00000 1.20605 0.603023 0.797724i \(-0.293963\pi\)
0.603023 + 0.797724i \(0.293963\pi\)
\(12\) 0 0
\(13\) 4.60555 1.27735 0.638675 0.769477i \(-0.279483\pi\)
0.638675 + 0.769477i \(0.279483\pi\)
\(14\) 0 0
\(15\) 3.00000 0.774597
\(16\) 0 0
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) −8.60555 −1.97425 −0.987124 0.159954i \(-0.948865\pi\)
−0.987124 + 0.159954i \(0.948865\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.00000 0.834058 0.417029 0.908893i \(-0.363071\pi\)
0.417029 + 0.908893i \(0.363071\pi\)
\(24\) 0 0
\(25\) −3.30278 −0.660555
\(26\) 0 0
\(27\) −1.60555 −0.308988
\(28\) 0 0
\(29\) 9.21110 1.71046 0.855229 0.518250i \(-0.173416\pi\)
0.855229 + 0.518250i \(0.173416\pi\)
\(30\) 0 0
\(31\) −7.30278 −1.31162 −0.655809 0.754927i \(-0.727672\pi\)
−0.655809 + 0.754927i \(0.727672\pi\)
\(32\) 0 0
\(33\) 9.21110 1.60345
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 9.81665 1.61385 0.806924 0.590655i \(-0.201131\pi\)
0.806924 + 0.590655i \(0.201131\pi\)
\(38\) 0 0
\(39\) 10.6056 1.69825
\(40\) 0 0
\(41\) 11.5139 1.79817 0.899083 0.437779i \(-0.144235\pi\)
0.899083 + 0.437779i \(0.144235\pi\)
\(42\) 0 0
\(43\) −4.30278 −0.656167 −0.328084 0.944649i \(-0.606403\pi\)
−0.328084 + 0.944649i \(0.606403\pi\)
\(44\) 0 0
\(45\) 3.00000 0.447214
\(46\) 0 0
\(47\) 2.60555 0.380059 0.190029 0.981778i \(-0.439142\pi\)
0.190029 + 0.981778i \(0.439142\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 2.30278 0.322453
\(52\) 0 0
\(53\) 0.697224 0.0957711 0.0478856 0.998853i \(-0.484752\pi\)
0.0478856 + 0.998853i \(0.484752\pi\)
\(54\) 0 0
\(55\) 5.21110 0.702665
\(56\) 0 0
\(57\) −19.8167 −2.62478
\(58\) 0 0
\(59\) 8.00000 1.04151 0.520756 0.853706i \(-0.325650\pi\)
0.520756 + 0.853706i \(0.325650\pi\)
\(60\) 0 0
\(61\) −15.5139 −1.98635 −0.993174 0.116640i \(-0.962788\pi\)
−0.993174 + 0.116640i \(0.962788\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 6.00000 0.744208
\(66\) 0 0
\(67\) 2.69722 0.329518 0.164759 0.986334i \(-0.447315\pi\)
0.164759 + 0.986334i \(0.447315\pi\)
\(68\) 0 0
\(69\) 9.21110 1.10889
\(70\) 0 0
\(71\) −3.39445 −0.402847 −0.201423 0.979504i \(-0.564557\pi\)
−0.201423 + 0.979504i \(0.564557\pi\)
\(72\) 0 0
\(73\) −7.51388 −0.879433 −0.439716 0.898137i \(-0.644921\pi\)
−0.439716 + 0.898137i \(0.644921\pi\)
\(74\) 0 0
\(75\) −7.60555 −0.878213
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −2.60555 −0.293147 −0.146574 0.989200i \(-0.546825\pi\)
−0.146574 + 0.989200i \(0.546825\pi\)
\(80\) 0 0
\(81\) −10.6056 −1.17839
\(82\) 0 0
\(83\) −3.21110 −0.352464 −0.176232 0.984349i \(-0.556391\pi\)
−0.176232 + 0.984349i \(0.556391\pi\)
\(84\) 0 0
\(85\) 1.30278 0.141306
\(86\) 0 0
\(87\) 21.2111 2.27407
\(88\) 0 0
\(89\) −7.81665 −0.828564 −0.414282 0.910149i \(-0.635967\pi\)
−0.414282 + 0.910149i \(0.635967\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −16.8167 −1.74381
\(94\) 0 0
\(95\) −11.2111 −1.15023
\(96\) 0 0
\(97\) 13.3028 1.35069 0.675346 0.737501i \(-0.263994\pi\)
0.675346 + 0.737501i \(0.263994\pi\)
\(98\) 0 0
\(99\) 9.21110 0.925751
\(100\) 0 0
\(101\) 12.6056 1.25430 0.627150 0.778899i \(-0.284221\pi\)
0.627150 + 0.778899i \(0.284221\pi\)
\(102\) 0 0
\(103\) −14.0000 −1.37946 −0.689730 0.724066i \(-0.742271\pi\)
−0.689730 + 0.724066i \(0.742271\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −4.60555 −0.445235 −0.222618 0.974906i \(-0.571460\pi\)
−0.222618 + 0.974906i \(0.571460\pi\)
\(108\) 0 0
\(109\) 4.78890 0.458693 0.229347 0.973345i \(-0.426341\pi\)
0.229347 + 0.973345i \(0.426341\pi\)
\(110\) 0 0
\(111\) 22.6056 2.14562
\(112\) 0 0
\(113\) −9.39445 −0.883755 −0.441878 0.897075i \(-0.645687\pi\)
−0.441878 + 0.897075i \(0.645687\pi\)
\(114\) 0 0
\(115\) 5.21110 0.485938
\(116\) 0 0
\(117\) 10.6056 0.980484
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) 0 0
\(123\) 26.5139 2.39068
\(124\) 0 0
\(125\) −10.8167 −0.967471
\(126\) 0 0
\(127\) 14.5139 1.28790 0.643949 0.765068i \(-0.277295\pi\)
0.643949 + 0.765068i \(0.277295\pi\)
\(128\) 0 0
\(129\) −9.90833 −0.872380
\(130\) 0 0
\(131\) 9.21110 0.804778 0.402389 0.915469i \(-0.368180\pi\)
0.402389 + 0.915469i \(0.368180\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −2.09167 −0.180023
\(136\) 0 0
\(137\) 18.1194 1.54805 0.774024 0.633157i \(-0.218241\pi\)
0.774024 + 0.633157i \(0.218241\pi\)
\(138\) 0 0
\(139\) −8.51388 −0.722138 −0.361069 0.932539i \(-0.617588\pi\)
−0.361069 + 0.932539i \(0.617588\pi\)
\(140\) 0 0
\(141\) 6.00000 0.505291
\(142\) 0 0
\(143\) 18.4222 1.54054
\(144\) 0 0
\(145\) 12.0000 0.996546
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −4.30278 −0.352497 −0.176249 0.984346i \(-0.556396\pi\)
−0.176249 + 0.984346i \(0.556396\pi\)
\(150\) 0 0
\(151\) 11.6972 0.951907 0.475953 0.879471i \(-0.342103\pi\)
0.475953 + 0.879471i \(0.342103\pi\)
\(152\) 0 0
\(153\) 2.30278 0.186168
\(154\) 0 0
\(155\) −9.51388 −0.764173
\(156\) 0 0
\(157\) −2.00000 −0.159617 −0.0798087 0.996810i \(-0.525431\pi\)
−0.0798087 + 0.996810i \(0.525431\pi\)
\(158\) 0 0
\(159\) 1.60555 0.127328
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 1.39445 0.109222 0.0546108 0.998508i \(-0.482608\pi\)
0.0546108 + 0.998508i \(0.482608\pi\)
\(164\) 0 0
\(165\) 12.0000 0.934199
\(166\) 0 0
\(167\) −12.1194 −0.937830 −0.468915 0.883243i \(-0.655355\pi\)
−0.468915 + 0.883243i \(0.655355\pi\)
\(168\) 0 0
\(169\) 8.21110 0.631623
\(170\) 0 0
\(171\) −19.8167 −1.51542
\(172\) 0 0
\(173\) −20.7250 −1.57569 −0.787846 0.615873i \(-0.788803\pi\)
−0.787846 + 0.615873i \(0.788803\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 18.4222 1.38470
\(178\) 0 0
\(179\) 9.51388 0.711101 0.355550 0.934657i \(-0.384293\pi\)
0.355550 + 0.934657i \(0.384293\pi\)
\(180\) 0 0
\(181\) 6.00000 0.445976 0.222988 0.974821i \(-0.428419\pi\)
0.222988 + 0.974821i \(0.428419\pi\)
\(182\) 0 0
\(183\) −35.7250 −2.64087
\(184\) 0 0
\(185\) 12.7889 0.940258
\(186\) 0 0
\(187\) 4.00000 0.292509
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −11.7250 −0.848390 −0.424195 0.905571i \(-0.639443\pi\)
−0.424195 + 0.905571i \(0.639443\pi\)
\(192\) 0 0
\(193\) −15.0278 −1.08172 −0.540861 0.841112i \(-0.681901\pi\)
−0.540861 + 0.841112i \(0.681901\pi\)
\(194\) 0 0
\(195\) 13.8167 0.989431
\(196\) 0 0
\(197\) −6.60555 −0.470626 −0.235313 0.971920i \(-0.575612\pi\)
−0.235313 + 0.971920i \(0.575612\pi\)
\(198\) 0 0
\(199\) −9.69722 −0.687418 −0.343709 0.939076i \(-0.611683\pi\)
−0.343709 + 0.939076i \(0.611683\pi\)
\(200\) 0 0
\(201\) 6.21110 0.438097
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 15.0000 1.04765
\(206\) 0 0
\(207\) 9.21110 0.640216
\(208\) 0 0
\(209\) −34.4222 −2.38103
\(210\) 0 0
\(211\) 6.18335 0.425679 0.212840 0.977087i \(-0.431729\pi\)
0.212840 + 0.977087i \(0.431729\pi\)
\(212\) 0 0
\(213\) −7.81665 −0.535588
\(214\) 0 0
\(215\) −5.60555 −0.382295
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −17.3028 −1.16921
\(220\) 0 0
\(221\) 4.60555 0.309803
\(222\) 0 0
\(223\) −13.8167 −0.925232 −0.462616 0.886559i \(-0.653089\pi\)
−0.462616 + 0.886559i \(0.653089\pi\)
\(224\) 0 0
\(225\) −7.60555 −0.507037
\(226\) 0 0
\(227\) −2.09167 −0.138829 −0.0694146 0.997588i \(-0.522113\pi\)
−0.0694146 + 0.997588i \(0.522113\pi\)
\(228\) 0 0
\(229\) 1.21110 0.0800319 0.0400160 0.999199i \(-0.487259\pi\)
0.0400160 + 0.999199i \(0.487259\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 26.6056 1.74299 0.871494 0.490407i \(-0.163152\pi\)
0.871494 + 0.490407i \(0.163152\pi\)
\(234\) 0 0
\(235\) 3.39445 0.221429
\(236\) 0 0
\(237\) −6.00000 −0.389742
\(238\) 0 0
\(239\) 18.1194 1.17205 0.586024 0.810294i \(-0.300692\pi\)
0.586024 + 0.810294i \(0.300692\pi\)
\(240\) 0 0
\(241\) 26.5139 1.70791 0.853955 0.520348i \(-0.174198\pi\)
0.853955 + 0.520348i \(0.174198\pi\)
\(242\) 0 0
\(243\) −19.6056 −1.25770
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −39.6333 −2.52181
\(248\) 0 0
\(249\) −7.39445 −0.468604
\(250\) 0 0
\(251\) 2.18335 0.137812 0.0689058 0.997623i \(-0.478049\pi\)
0.0689058 + 0.997623i \(0.478049\pi\)
\(252\) 0 0
\(253\) 16.0000 1.00591
\(254\) 0 0
\(255\) 3.00000 0.187867
\(256\) 0 0
\(257\) 4.42221 0.275850 0.137925 0.990443i \(-0.455957\pi\)
0.137925 + 0.990443i \(0.455957\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 21.2111 1.31293
\(262\) 0 0
\(263\) −18.4222 −1.13596 −0.567981 0.823042i \(-0.692275\pi\)
−0.567981 + 0.823042i \(0.692275\pi\)
\(264\) 0 0
\(265\) 0.908327 0.0557981
\(266\) 0 0
\(267\) −18.0000 −1.10158
\(268\) 0 0
\(269\) −12.7889 −0.779753 −0.389876 0.920867i \(-0.627482\pi\)
−0.389876 + 0.920867i \(0.627482\pi\)
\(270\) 0 0
\(271\) 10.4222 0.633104 0.316552 0.948575i \(-0.397475\pi\)
0.316552 + 0.948575i \(0.397475\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −13.2111 −0.796659
\(276\) 0 0
\(277\) 1.57779 0.0948005 0.0474003 0.998876i \(-0.484906\pi\)
0.0474003 + 0.998876i \(0.484906\pi\)
\(278\) 0 0
\(279\) −16.8167 −1.00679
\(280\) 0 0
\(281\) −19.1194 −1.14057 −0.570285 0.821447i \(-0.693167\pi\)
−0.570285 + 0.821447i \(0.693167\pi\)
\(282\) 0 0
\(283\) −20.3305 −1.20852 −0.604262 0.796785i \(-0.706532\pi\)
−0.604262 + 0.796785i \(0.706532\pi\)
\(284\) 0 0
\(285\) −25.8167 −1.52925
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 30.6333 1.79576
\(292\) 0 0
\(293\) 11.2111 0.654960 0.327480 0.944858i \(-0.393801\pi\)
0.327480 + 0.944858i \(0.393801\pi\)
\(294\) 0 0
\(295\) 10.4222 0.606804
\(296\) 0 0
\(297\) −6.42221 −0.372654
\(298\) 0 0
\(299\) 18.4222 1.06538
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 29.0278 1.66760
\(304\) 0 0
\(305\) −20.2111 −1.15728
\(306\) 0 0
\(307\) −4.00000 −0.228292 −0.114146 0.993464i \(-0.536413\pi\)
−0.114146 + 0.993464i \(0.536413\pi\)
\(308\) 0 0
\(309\) −32.2389 −1.83400
\(310\) 0 0
\(311\) 17.7250 1.00509 0.502546 0.864551i \(-0.332397\pi\)
0.502546 + 0.864551i \(0.332397\pi\)
\(312\) 0 0
\(313\) −3.90833 −0.220912 −0.110456 0.993881i \(-0.535231\pi\)
−0.110456 + 0.993881i \(0.535231\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −33.6333 −1.88903 −0.944517 0.328461i \(-0.893470\pi\)
−0.944517 + 0.328461i \(0.893470\pi\)
\(318\) 0 0
\(319\) 36.8444 2.06289
\(320\) 0 0
\(321\) −10.6056 −0.591944
\(322\) 0 0
\(323\) −8.60555 −0.478826
\(324\) 0 0
\(325\) −15.2111 −0.843760
\(326\) 0 0
\(327\) 11.0278 0.609836
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 3.72498 0.204743 0.102372 0.994746i \(-0.467357\pi\)
0.102372 + 0.994746i \(0.467357\pi\)
\(332\) 0 0
\(333\) 22.6056 1.23878
\(334\) 0 0
\(335\) 3.51388 0.191984
\(336\) 0 0
\(337\) −14.4222 −0.785628 −0.392814 0.919618i \(-0.628498\pi\)
−0.392814 + 0.919618i \(0.628498\pi\)
\(338\) 0 0
\(339\) −21.6333 −1.17496
\(340\) 0 0
\(341\) −29.2111 −1.58187
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 12.0000 0.646058
\(346\) 0 0
\(347\) 26.8444 1.44108 0.720542 0.693412i \(-0.243893\pi\)
0.720542 + 0.693412i \(0.243893\pi\)
\(348\) 0 0
\(349\) −18.4222 −0.986118 −0.493059 0.869996i \(-0.664121\pi\)
−0.493059 + 0.869996i \(0.664121\pi\)
\(350\) 0 0
\(351\) −7.39445 −0.394686
\(352\) 0 0
\(353\) 16.0000 0.851594 0.425797 0.904819i \(-0.359994\pi\)
0.425797 + 0.904819i \(0.359994\pi\)
\(354\) 0 0
\(355\) −4.42221 −0.234706
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −1.48612 −0.0784345 −0.0392173 0.999231i \(-0.512486\pi\)
−0.0392173 + 0.999231i \(0.512486\pi\)
\(360\) 0 0
\(361\) 55.0555 2.89766
\(362\) 0 0
\(363\) 11.5139 0.604322
\(364\) 0 0
\(365\) −9.78890 −0.512374
\(366\) 0 0
\(367\) −6.90833 −0.360612 −0.180306 0.983611i \(-0.557709\pi\)
−0.180306 + 0.983611i \(0.557709\pi\)
\(368\) 0 0
\(369\) 26.5139 1.38026
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −15.3305 −0.793785 −0.396892 0.917865i \(-0.629911\pi\)
−0.396892 + 0.917865i \(0.629911\pi\)
\(374\) 0 0
\(375\) −24.9083 −1.28626
\(376\) 0 0
\(377\) 42.4222 2.18485
\(378\) 0 0
\(379\) 9.57779 0.491978 0.245989 0.969273i \(-0.420887\pi\)
0.245989 + 0.969273i \(0.420887\pi\)
\(380\) 0 0
\(381\) 33.4222 1.71227
\(382\) 0 0
\(383\) 1.57779 0.0806216 0.0403108 0.999187i \(-0.487165\pi\)
0.0403108 + 0.999187i \(0.487165\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −9.90833 −0.503669
\(388\) 0 0
\(389\) −29.7250 −1.50712 −0.753558 0.657381i \(-0.771664\pi\)
−0.753558 + 0.657381i \(0.771664\pi\)
\(390\) 0 0
\(391\) 4.00000 0.202289
\(392\) 0 0
\(393\) 21.2111 1.06996
\(394\) 0 0
\(395\) −3.39445 −0.170793
\(396\) 0 0
\(397\) 12.0917 0.606864 0.303432 0.952853i \(-0.401868\pi\)
0.303432 + 0.952853i \(0.401868\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 2.60555 0.130115 0.0650575 0.997882i \(-0.479277\pi\)
0.0650575 + 0.997882i \(0.479277\pi\)
\(402\) 0 0
\(403\) −33.6333 −1.67539
\(404\) 0 0
\(405\) −13.8167 −0.686555
\(406\) 0 0
\(407\) 39.2666 1.94637
\(408\) 0 0
\(409\) 5.81665 0.287615 0.143808 0.989606i \(-0.454065\pi\)
0.143808 + 0.989606i \(0.454065\pi\)
\(410\) 0 0
\(411\) 41.7250 2.05814
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −4.18335 −0.205352
\(416\) 0 0
\(417\) −19.6056 −0.960088
\(418\) 0 0
\(419\) 8.51388 0.415930 0.207965 0.978136i \(-0.433316\pi\)
0.207965 + 0.978136i \(0.433316\pi\)
\(420\) 0 0
\(421\) 11.0917 0.540575 0.270288 0.962780i \(-0.412881\pi\)
0.270288 + 0.962780i \(0.412881\pi\)
\(422\) 0 0
\(423\) 6.00000 0.291730
\(424\) 0 0
\(425\) −3.30278 −0.160208
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 42.4222 2.04816
\(430\) 0 0
\(431\) −28.8444 −1.38939 −0.694693 0.719306i \(-0.744460\pi\)
−0.694693 + 0.719306i \(0.744460\pi\)
\(432\) 0 0
\(433\) 7.39445 0.355355 0.177677 0.984089i \(-0.443142\pi\)
0.177677 + 0.984089i \(0.443142\pi\)
\(434\) 0 0
\(435\) 27.6333 1.32492
\(436\) 0 0
\(437\) −34.4222 −1.64664
\(438\) 0 0
\(439\) −21.0917 −1.00665 −0.503325 0.864097i \(-0.667890\pi\)
−0.503325 + 0.864097i \(0.667890\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −33.2111 −1.57791 −0.788954 0.614453i \(-0.789377\pi\)
−0.788954 + 0.614453i \(0.789377\pi\)
\(444\) 0 0
\(445\) −10.1833 −0.482737
\(446\) 0 0
\(447\) −9.90833 −0.468648
\(448\) 0 0
\(449\) −5.02776 −0.237274 −0.118637 0.992938i \(-0.537853\pi\)
−0.118637 + 0.992938i \(0.537853\pi\)
\(450\) 0 0
\(451\) 46.0555 2.16867
\(452\) 0 0
\(453\) 26.9361 1.26557
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −13.9083 −0.650604 −0.325302 0.945610i \(-0.605466\pi\)
−0.325302 + 0.945610i \(0.605466\pi\)
\(458\) 0 0
\(459\) −1.60555 −0.0749407
\(460\) 0 0
\(461\) −23.3944 −1.08959 −0.544794 0.838570i \(-0.683392\pi\)
−0.544794 + 0.838570i \(0.683392\pi\)
\(462\) 0 0
\(463\) −6.72498 −0.312536 −0.156268 0.987715i \(-0.549946\pi\)
−0.156268 + 0.987715i \(0.549946\pi\)
\(464\) 0 0
\(465\) −21.9083 −1.01597
\(466\) 0 0
\(467\) 16.6056 0.768413 0.384207 0.923247i \(-0.374475\pi\)
0.384207 + 0.923247i \(0.374475\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −4.60555 −0.212213
\(472\) 0 0
\(473\) −17.2111 −0.791367
\(474\) 0 0
\(475\) 28.4222 1.30410
\(476\) 0 0
\(477\) 1.60555 0.0735131
\(478\) 0 0
\(479\) −17.0917 −0.780938 −0.390469 0.920616i \(-0.627687\pi\)
−0.390469 + 0.920616i \(0.627687\pi\)
\(480\) 0 0
\(481\) 45.2111 2.06145
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 17.3305 0.786939
\(486\) 0 0
\(487\) −28.0000 −1.26880 −0.634401 0.773004i \(-0.718753\pi\)
−0.634401 + 0.773004i \(0.718753\pi\)
\(488\) 0 0
\(489\) 3.21110 0.145211
\(490\) 0 0
\(491\) −22.5139 −1.01604 −0.508019 0.861346i \(-0.669622\pi\)
−0.508019 + 0.861346i \(0.669622\pi\)
\(492\) 0 0
\(493\) 9.21110 0.414847
\(494\) 0 0
\(495\) 12.0000 0.539360
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −29.2111 −1.30767 −0.653834 0.756638i \(-0.726841\pi\)
−0.653834 + 0.756638i \(0.726841\pi\)
\(500\) 0 0
\(501\) −27.9083 −1.24685
\(502\) 0 0
\(503\) 31.1194 1.38755 0.693773 0.720193i \(-0.255947\pi\)
0.693773 + 0.720193i \(0.255947\pi\)
\(504\) 0 0
\(505\) 16.4222 0.730779
\(506\) 0 0
\(507\) 18.9083 0.839748
\(508\) 0 0
\(509\) −6.60555 −0.292786 −0.146393 0.989227i \(-0.546766\pi\)
−0.146393 + 0.989227i \(0.546766\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 13.8167 0.610020
\(514\) 0 0
\(515\) −18.2389 −0.803700
\(516\) 0 0
\(517\) 10.4222 0.458368
\(518\) 0 0
\(519\) −47.7250 −2.09489
\(520\) 0 0
\(521\) 0.486122 0.0212974 0.0106487 0.999943i \(-0.496610\pi\)
0.0106487 + 0.999943i \(0.496610\pi\)
\(522\) 0 0
\(523\) −38.0555 −1.66405 −0.832026 0.554737i \(-0.812819\pi\)
−0.832026 + 0.554737i \(0.812819\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −7.30278 −0.318114
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) 18.4222 0.799456
\(532\) 0 0
\(533\) 53.0278 2.29689
\(534\) 0 0
\(535\) −6.00000 −0.259403
\(536\) 0 0
\(537\) 21.9083 0.945414
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 4.00000 0.171973 0.0859867 0.996296i \(-0.472596\pi\)
0.0859867 + 0.996296i \(0.472596\pi\)
\(542\) 0 0
\(543\) 13.8167 0.592929
\(544\) 0 0
\(545\) 6.23886 0.267243
\(546\) 0 0
\(547\) 2.00000 0.0855138 0.0427569 0.999086i \(-0.486386\pi\)
0.0427569 + 0.999086i \(0.486386\pi\)
\(548\) 0 0
\(549\) −35.7250 −1.52471
\(550\) 0 0
\(551\) −79.2666 −3.37687
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 29.4500 1.25008
\(556\) 0 0
\(557\) −20.7889 −0.880854 −0.440427 0.897788i \(-0.645173\pi\)
−0.440427 + 0.897788i \(0.645173\pi\)
\(558\) 0 0
\(559\) −19.8167 −0.838155
\(560\) 0 0
\(561\) 9.21110 0.388893
\(562\) 0 0
\(563\) −4.00000 −0.168580 −0.0842900 0.996441i \(-0.526862\pi\)
−0.0842900 + 0.996441i \(0.526862\pi\)
\(564\) 0 0
\(565\) −12.2389 −0.514893
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 22.1194 0.927295 0.463647 0.886020i \(-0.346540\pi\)
0.463647 + 0.886020i \(0.346540\pi\)
\(570\) 0 0
\(571\) −45.4500 −1.90202 −0.951011 0.309158i \(-0.899953\pi\)
−0.951011 + 0.309158i \(0.899953\pi\)
\(572\) 0 0
\(573\) −27.0000 −1.12794
\(574\) 0 0
\(575\) −13.2111 −0.550941
\(576\) 0 0
\(577\) 8.18335 0.340677 0.170339 0.985386i \(-0.445514\pi\)
0.170339 + 0.985386i \(0.445514\pi\)
\(578\) 0 0
\(579\) −34.6056 −1.43816
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 2.78890 0.115504
\(584\) 0 0
\(585\) 13.8167 0.571248
\(586\) 0 0
\(587\) 11.3944 0.470299 0.235150 0.971959i \(-0.424442\pi\)
0.235150 + 0.971959i \(0.424442\pi\)
\(588\) 0 0
\(589\) 62.8444 2.58946
\(590\) 0 0
\(591\) −15.2111 −0.625701
\(592\) 0 0
\(593\) −22.1833 −0.910961 −0.455480 0.890246i \(-0.650532\pi\)
−0.455480 + 0.890246i \(0.650532\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −22.3305 −0.913928
\(598\) 0 0
\(599\) 26.7250 1.09195 0.545977 0.837800i \(-0.316159\pi\)
0.545977 + 0.837800i \(0.316159\pi\)
\(600\) 0 0
\(601\) −45.2666 −1.84646 −0.923232 0.384243i \(-0.874462\pi\)
−0.923232 + 0.384243i \(0.874462\pi\)
\(602\) 0 0
\(603\) 6.21110 0.252936
\(604\) 0 0
\(605\) 6.51388 0.264827
\(606\) 0 0
\(607\) −0.330532 −0.0134159 −0.00670794 0.999978i \(-0.502135\pi\)
−0.00670794 + 0.999978i \(0.502135\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 12.0000 0.485468
\(612\) 0 0
\(613\) −21.7250 −0.877464 −0.438732 0.898618i \(-0.644572\pi\)
−0.438732 + 0.898618i \(0.644572\pi\)
\(614\) 0 0
\(615\) 34.5416 1.39285
\(616\) 0 0
\(617\) 7.63331 0.307305 0.153653 0.988125i \(-0.450896\pi\)
0.153653 + 0.988125i \(0.450896\pi\)
\(618\) 0 0
\(619\) −37.2111 −1.49564 −0.747820 0.663901i \(-0.768900\pi\)
−0.747820 + 0.663901i \(0.768900\pi\)
\(620\) 0 0
\(621\) −6.42221 −0.257714
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 2.42221 0.0968882
\(626\) 0 0
\(627\) −79.2666 −3.16560
\(628\) 0 0
\(629\) 9.81665 0.391416
\(630\) 0 0
\(631\) 9.11943 0.363039 0.181519 0.983387i \(-0.441898\pi\)
0.181519 + 0.983387i \(0.441898\pi\)
\(632\) 0 0
\(633\) 14.2389 0.565944
\(634\) 0 0
\(635\) 18.9083 0.750354
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −7.81665 −0.309222
\(640\) 0 0
\(641\) 43.6333 1.72341 0.861706 0.507408i \(-0.169396\pi\)
0.861706 + 0.507408i \(0.169396\pi\)
\(642\) 0 0
\(643\) −7.88057 −0.310779 −0.155390 0.987853i \(-0.549663\pi\)
−0.155390 + 0.987853i \(0.549663\pi\)
\(644\) 0 0
\(645\) −12.9083 −0.508265
\(646\) 0 0
\(647\) 35.6333 1.40089 0.700445 0.713706i \(-0.252985\pi\)
0.700445 + 0.713706i \(0.252985\pi\)
\(648\) 0 0
\(649\) 32.0000 1.25611
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 40.4222 1.58184 0.790922 0.611918i \(-0.209602\pi\)
0.790922 + 0.611918i \(0.209602\pi\)
\(654\) 0 0
\(655\) 12.0000 0.468879
\(656\) 0 0
\(657\) −17.3028 −0.675046
\(658\) 0 0
\(659\) 21.1194 0.822696 0.411348 0.911478i \(-0.365058\pi\)
0.411348 + 0.911478i \(0.365058\pi\)
\(660\) 0 0
\(661\) 5.02776 0.195557 0.0977785 0.995208i \(-0.468826\pi\)
0.0977785 + 0.995208i \(0.468826\pi\)
\(662\) 0 0
\(663\) 10.6056 0.411885
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 36.8444 1.42662
\(668\) 0 0
\(669\) −31.8167 −1.23010
\(670\) 0 0
\(671\) −62.0555 −2.39563
\(672\) 0 0
\(673\) −7.02776 −0.270900 −0.135450 0.990784i \(-0.543248\pi\)
−0.135450 + 0.990784i \(0.543248\pi\)
\(674\) 0 0
\(675\) 5.30278 0.204104
\(676\) 0 0
\(677\) 6.00000 0.230599 0.115299 0.993331i \(-0.463217\pi\)
0.115299 + 0.993331i \(0.463217\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −4.81665 −0.184575
\(682\) 0 0
\(683\) 13.3944 0.512524 0.256262 0.966607i \(-0.417509\pi\)
0.256262 + 0.966607i \(0.417509\pi\)
\(684\) 0 0
\(685\) 23.6056 0.901922
\(686\) 0 0
\(687\) 2.78890 0.106403
\(688\) 0 0
\(689\) 3.21110 0.122333
\(690\) 0 0
\(691\) 1.93608 0.0736521 0.0368260 0.999322i \(-0.488275\pi\)
0.0368260 + 0.999322i \(0.488275\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −11.0917 −0.420731
\(696\) 0 0
\(697\) 11.5139 0.436119
\(698\) 0 0
\(699\) 61.2666 2.31732
\(700\) 0 0
\(701\) −11.5778 −0.437287 −0.218644 0.975805i \(-0.570163\pi\)
−0.218644 + 0.975805i \(0.570163\pi\)
\(702\) 0 0
\(703\) −84.4777 −3.18614
\(704\) 0 0
\(705\) 7.81665 0.294392
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −4.23886 −0.159194 −0.0795968 0.996827i \(-0.525363\pi\)
−0.0795968 + 0.996827i \(0.525363\pi\)
\(710\) 0 0
\(711\) −6.00000 −0.225018
\(712\) 0 0
\(713\) −29.2111 −1.09396
\(714\) 0 0
\(715\) 24.0000 0.897549
\(716\) 0 0
\(717\) 41.7250 1.55825
\(718\) 0 0
\(719\) −9.69722 −0.361645 −0.180823 0.983516i \(-0.557876\pi\)
−0.180823 + 0.983516i \(0.557876\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 61.0555 2.27068
\(724\) 0 0
\(725\) −30.4222 −1.12985
\(726\) 0 0
\(727\) 14.4222 0.534890 0.267445 0.963573i \(-0.413821\pi\)
0.267445 + 0.963573i \(0.413821\pi\)
\(728\) 0 0
\(729\) −13.3305 −0.493723
\(730\) 0 0
\(731\) −4.30278 −0.159144
\(732\) 0 0
\(733\) −16.2389 −0.599796 −0.299898 0.953971i \(-0.596953\pi\)
−0.299898 + 0.953971i \(0.596953\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 10.7889 0.397414
\(738\) 0 0
\(739\) −23.3305 −0.858227 −0.429114 0.903250i \(-0.641174\pi\)
−0.429114 + 0.903250i \(0.641174\pi\)
\(740\) 0 0
\(741\) −91.2666 −3.35276
\(742\) 0 0
\(743\) −34.6056 −1.26955 −0.634777 0.772695i \(-0.718908\pi\)
−0.634777 + 0.772695i \(0.718908\pi\)
\(744\) 0 0
\(745\) −5.60555 −0.205372
\(746\) 0 0
\(747\) −7.39445 −0.270549
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 3.39445 0.123865 0.0619326 0.998080i \(-0.480274\pi\)
0.0619326 + 0.998080i \(0.480274\pi\)
\(752\) 0 0
\(753\) 5.02776 0.183222
\(754\) 0 0
\(755\) 15.2389 0.554599
\(756\) 0 0
\(757\) −7.69722 −0.279760 −0.139880 0.990168i \(-0.544672\pi\)
−0.139880 + 0.990168i \(0.544672\pi\)
\(758\) 0 0
\(759\) 36.8444 1.33737
\(760\) 0 0
\(761\) 50.2389 1.82116 0.910579 0.413336i \(-0.135636\pi\)
0.910579 + 0.413336i \(0.135636\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 3.00000 0.108465
\(766\) 0 0
\(767\) 36.8444 1.33037
\(768\) 0 0
\(769\) 36.0555 1.30020 0.650098 0.759851i \(-0.274728\pi\)
0.650098 + 0.759851i \(0.274728\pi\)
\(770\) 0 0
\(771\) 10.1833 0.366744
\(772\) 0 0
\(773\) −17.0278 −0.612446 −0.306223 0.951960i \(-0.599065\pi\)
−0.306223 + 0.951960i \(0.599065\pi\)
\(774\) 0 0
\(775\) 24.1194 0.866395
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −99.0833 −3.55003
\(780\) 0 0
\(781\) −13.5778 −0.485852
\(782\) 0 0
\(783\) −14.7889 −0.528512
\(784\) 0 0
\(785\) −2.60555 −0.0929961
\(786\) 0 0
\(787\) −50.4222 −1.79736 −0.898679 0.438607i \(-0.855472\pi\)
−0.898679 + 0.438607i \(0.855472\pi\)
\(788\) 0 0
\(789\) −42.4222 −1.51027
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −71.4500 −2.53726
\(794\) 0 0
\(795\) 2.09167 0.0741840
\(796\) 0 0
\(797\) −48.0555 −1.70221 −0.851107 0.524993i \(-0.824068\pi\)
−0.851107 + 0.524993i \(0.824068\pi\)
\(798\) 0 0
\(799\) 2.60555 0.0921778
\(800\) 0 0
\(801\) −18.0000 −0.635999
\(802\) 0 0
\(803\) −30.0555 −1.06064
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −29.4500 −1.03669
\(808\) 0 0
\(809\) −19.8167 −0.696716 −0.348358 0.937361i \(-0.613261\pi\)
−0.348358 + 0.937361i \(0.613261\pi\)
\(810\) 0 0
\(811\) 4.48612 0.157529 0.0787645 0.996893i \(-0.474902\pi\)
0.0787645 + 0.996893i \(0.474902\pi\)
\(812\) 0 0
\(813\) 24.0000 0.841717
\(814\) 0 0
\(815\) 1.81665 0.0636346
\(816\) 0 0
\(817\) 37.0278 1.29544
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −8.23886 −0.287538 −0.143769 0.989611i \(-0.545922\pi\)
−0.143769 + 0.989611i \(0.545922\pi\)
\(822\) 0 0
\(823\) −38.6056 −1.34570 −0.672852 0.739777i \(-0.734931\pi\)
−0.672852 + 0.739777i \(0.734931\pi\)
\(824\) 0 0
\(825\) −30.4222 −1.05917
\(826\) 0 0
\(827\) 45.2111 1.57214 0.786072 0.618135i \(-0.212111\pi\)
0.786072 + 0.618135i \(0.212111\pi\)
\(828\) 0 0
\(829\) 16.2389 0.563999 0.281999 0.959415i \(-0.409002\pi\)
0.281999 + 0.959415i \(0.409002\pi\)
\(830\) 0 0
\(831\) 3.63331 0.126038
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −15.7889 −0.546397
\(836\) 0 0
\(837\) 11.7250 0.405275
\(838\) 0 0
\(839\) −18.4222 −0.636005 −0.318003 0.948090i \(-0.603012\pi\)
−0.318003 + 0.948090i \(0.603012\pi\)
\(840\) 0 0
\(841\) 55.8444 1.92567
\(842\) 0 0
\(843\) −44.0278 −1.51640
\(844\) 0 0
\(845\) 10.6972 0.367996
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −46.8167 −1.60674
\(850\) 0 0
\(851\) 39.2666 1.34604
\(852\) 0 0
\(853\) 10.0000 0.342393 0.171197 0.985237i \(-0.445237\pi\)
0.171197 + 0.985237i \(0.445237\pi\)
\(854\) 0 0
\(855\) −25.8167 −0.882911
\(856\) 0 0
\(857\) 45.9638 1.57009 0.785047 0.619436i \(-0.212639\pi\)
0.785047 + 0.619436i \(0.212639\pi\)
\(858\) 0 0
\(859\) 54.6056 1.86312 0.931559 0.363591i \(-0.118449\pi\)
0.931559 + 0.363591i \(0.118449\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 23.3583 0.795125 0.397563 0.917575i \(-0.369856\pi\)
0.397563 + 0.917575i \(0.369856\pi\)
\(864\) 0 0
\(865\) −27.0000 −0.918028
\(866\) 0 0
\(867\) 2.30278 0.0782064
\(868\) 0 0
\(869\) −10.4222 −0.353549
\(870\) 0 0
\(871\) 12.4222 0.420910
\(872\) 0 0
\(873\) 30.6333 1.03678
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −1.39445 −0.0470872 −0.0235436 0.999723i \(-0.507495\pi\)
−0.0235436 + 0.999723i \(0.507495\pi\)
\(878\) 0 0
\(879\) 25.8167 0.870774
\(880\) 0 0
\(881\) 13.1194 0.442005 0.221002 0.975273i \(-0.429067\pi\)
0.221002 + 0.975273i \(0.429067\pi\)
\(882\) 0 0
\(883\) 12.0917 0.406917 0.203459 0.979084i \(-0.434782\pi\)
0.203459 + 0.979084i \(0.434782\pi\)
\(884\) 0 0
\(885\) 24.0000 0.806751
\(886\) 0 0
\(887\) −55.7805 −1.87293 −0.936463 0.350767i \(-0.885921\pi\)
−0.936463 + 0.350767i \(0.885921\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −42.4222 −1.42120
\(892\) 0 0
\(893\) −22.4222 −0.750330
\(894\) 0 0
\(895\) 12.3944 0.414301
\(896\) 0 0
\(897\) 42.4222 1.41644
\(898\) 0 0
\(899\) −67.2666 −2.24347
\(900\) 0 0
\(901\) 0.697224 0.0232279
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 7.81665 0.259834
\(906\) 0 0
\(907\) 27.2111 0.903530 0.451765 0.892137i \(-0.350795\pi\)
0.451765 + 0.892137i \(0.350795\pi\)
\(908\) 0 0
\(909\) 29.0278 0.962790
\(910\) 0 0
\(911\) −15.8167 −0.524029 −0.262015 0.965064i \(-0.584387\pi\)
−0.262015 + 0.965064i \(0.584387\pi\)
\(912\) 0 0
\(913\) −12.8444 −0.425088
\(914\) 0 0
\(915\) −46.5416 −1.53862
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 26.3583 0.869480 0.434740 0.900556i \(-0.356840\pi\)
0.434740 + 0.900556i \(0.356840\pi\)
\(920\) 0 0
\(921\) −9.21110 −0.303516
\(922\) 0 0
\(923\) −15.6333 −0.514577
\(924\) 0 0
\(925\) −32.4222 −1.06604
\(926\) 0 0
\(927\) −32.2389 −1.05886
\(928\) 0 0
\(929\) −36.0917 −1.18413 −0.592065 0.805890i \(-0.701687\pi\)
−0.592065 + 0.805890i \(0.701687\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 40.8167 1.33628
\(934\) 0 0
\(935\) 5.21110 0.170421
\(936\) 0 0
\(937\) 37.2111 1.21563 0.607817 0.794077i \(-0.292045\pi\)
0.607817 + 0.794077i \(0.292045\pi\)
\(938\) 0 0
\(939\) −9.00000 −0.293704
\(940\) 0 0
\(941\) 33.6972 1.09850 0.549249 0.835659i \(-0.314914\pi\)
0.549249 + 0.835659i \(0.314914\pi\)
\(942\) 0 0
\(943\) 46.0555 1.49977
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 24.8444 0.807335 0.403667 0.914906i \(-0.367735\pi\)
0.403667 + 0.914906i \(0.367735\pi\)
\(948\) 0 0
\(949\) −34.6056 −1.12334
\(950\) 0 0
\(951\) −77.4500 −2.51149
\(952\) 0 0
\(953\) −21.3583 −0.691863 −0.345931 0.938260i \(-0.612437\pi\)
−0.345931 + 0.938260i \(0.612437\pi\)
\(954\) 0 0
\(955\) −15.2750 −0.494288
\(956\) 0 0
\(957\) 84.8444 2.74263
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 22.3305 0.720340
\(962\) 0 0
\(963\) −10.6056 −0.341759
\(964\) 0 0
\(965\) −19.5778 −0.630232
\(966\) 0 0
\(967\) −9.51388 −0.305946 −0.152973 0.988230i \(-0.548885\pi\)
−0.152973 + 0.988230i \(0.548885\pi\)
\(968\) 0 0
\(969\) −19.8167 −0.636603
\(970\) 0 0
\(971\) −2.78890 −0.0895000 −0.0447500 0.998998i \(-0.514249\pi\)
−0.0447500 + 0.998998i \(0.514249\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −35.0278 −1.12179
\(976\) 0 0
\(977\) −8.69722 −0.278249 −0.139124 0.990275i \(-0.544429\pi\)
−0.139124 + 0.990275i \(0.544429\pi\)
\(978\) 0 0
\(979\) −31.2666 −0.999285
\(980\) 0 0
\(981\) 11.0278 0.352089
\(982\) 0 0
\(983\) −47.7805 −1.52396 −0.761981 0.647600i \(-0.775773\pi\)
−0.761981 + 0.647600i \(0.775773\pi\)
\(984\) 0 0
\(985\) −8.60555 −0.274196
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −17.2111 −0.547281
\(990\) 0 0
\(991\) −11.2111 −0.356132 −0.178066 0.984019i \(-0.556984\pi\)
−0.178066 + 0.984019i \(0.556984\pi\)
\(992\) 0 0
\(993\) 8.57779 0.272208
\(994\) 0 0
\(995\) −12.6333 −0.400503
\(996\) 0 0
\(997\) 45.6972 1.44725 0.723623 0.690196i \(-0.242476\pi\)
0.723623 + 0.690196i \(0.242476\pi\)
\(998\) 0 0
\(999\) −15.7611 −0.498660
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3332.2.a.k.1.2 2
7.6 odd 2 476.2.a.c.1.1 2
21.20 even 2 4284.2.a.l.1.2 2
28.27 even 2 1904.2.a.k.1.2 2
56.13 odd 2 7616.2.a.t.1.2 2
56.27 even 2 7616.2.a.o.1.1 2
119.118 odd 2 8092.2.a.l.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
476.2.a.c.1.1 2 7.6 odd 2
1904.2.a.k.1.2 2 28.27 even 2
3332.2.a.k.1.2 2 1.1 even 1 trivial
4284.2.a.l.1.2 2 21.20 even 2
7616.2.a.o.1.1 2 56.27 even 2
7616.2.a.t.1.2 2 56.13 odd 2
8092.2.a.l.1.2 2 119.118 odd 2