Properties

Label 3332.2.a.d.1.1
Level $3332$
Weight $2$
Character 3332.1
Self dual yes
Analytic conductor $26.606$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 3332 = 2^{2} \cdot 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3332.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(26.6061539535\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 476)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 3332.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{3} -4.00000 q^{5} -2.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{3} -4.00000 q^{5} -2.00000 q^{9} -3.00000 q^{11} -5.00000 q^{13} -4.00000 q^{15} -1.00000 q^{17} +6.00000 q^{19} -4.00000 q^{23} +11.0000 q^{25} -5.00000 q^{27} +8.00000 q^{29} -3.00000 q^{33} -8.00000 q^{37} -5.00000 q^{39} -8.00000 q^{41} +10.0000 q^{43} +8.00000 q^{45} -2.00000 q^{47} -1.00000 q^{51} +3.00000 q^{53} +12.0000 q^{55} +6.00000 q^{57} +2.00000 q^{59} -8.00000 q^{61} +20.0000 q^{65} +14.0000 q^{67} -4.00000 q^{69} +7.00000 q^{71} -8.00000 q^{73} +11.0000 q^{75} +15.0000 q^{79} +1.00000 q^{81} +12.0000 q^{83} +4.00000 q^{85} +8.00000 q^{87} +1.00000 q^{89} -24.0000 q^{95} +18.0000 q^{97} +6.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350 0.288675 0.957427i \(-0.406785\pi\)
0.288675 + 0.957427i \(0.406785\pi\)
\(4\) 0 0
\(5\) −4.00000 −1.78885 −0.894427 0.447214i \(-0.852416\pi\)
−0.894427 + 0.447214i \(0.852416\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −2.00000 −0.666667
\(10\) 0 0
\(11\) −3.00000 −0.904534 −0.452267 0.891883i \(-0.649385\pi\)
−0.452267 + 0.891883i \(0.649385\pi\)
\(12\) 0 0
\(13\) −5.00000 −1.38675 −0.693375 0.720577i \(-0.743877\pi\)
−0.693375 + 0.720577i \(0.743877\pi\)
\(14\) 0 0
\(15\) −4.00000 −1.03280
\(16\) 0 0
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) 6.00000 1.37649 0.688247 0.725476i \(-0.258380\pi\)
0.688247 + 0.725476i \(0.258380\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) 0 0
\(25\) 11.0000 2.20000
\(26\) 0 0
\(27\) −5.00000 −0.962250
\(28\) 0 0
\(29\) 8.00000 1.48556 0.742781 0.669534i \(-0.233506\pi\)
0.742781 + 0.669534i \(0.233506\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) −3.00000 −0.522233
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −8.00000 −1.31519 −0.657596 0.753371i \(-0.728427\pi\)
−0.657596 + 0.753371i \(0.728427\pi\)
\(38\) 0 0
\(39\) −5.00000 −0.800641
\(40\) 0 0
\(41\) −8.00000 −1.24939 −0.624695 0.780869i \(-0.714777\pi\)
−0.624695 + 0.780869i \(0.714777\pi\)
\(42\) 0 0
\(43\) 10.0000 1.52499 0.762493 0.646997i \(-0.223975\pi\)
0.762493 + 0.646997i \(0.223975\pi\)
\(44\) 0 0
\(45\) 8.00000 1.19257
\(46\) 0 0
\(47\) −2.00000 −0.291730 −0.145865 0.989305i \(-0.546597\pi\)
−0.145865 + 0.989305i \(0.546597\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −1.00000 −0.140028
\(52\) 0 0
\(53\) 3.00000 0.412082 0.206041 0.978543i \(-0.433942\pi\)
0.206041 + 0.978543i \(0.433942\pi\)
\(54\) 0 0
\(55\) 12.0000 1.61808
\(56\) 0 0
\(57\) 6.00000 0.794719
\(58\) 0 0
\(59\) 2.00000 0.260378 0.130189 0.991489i \(-0.458442\pi\)
0.130189 + 0.991489i \(0.458442\pi\)
\(60\) 0 0
\(61\) −8.00000 −1.02430 −0.512148 0.858898i \(-0.671150\pi\)
−0.512148 + 0.858898i \(0.671150\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 20.0000 2.48069
\(66\) 0 0
\(67\) 14.0000 1.71037 0.855186 0.518321i \(-0.173443\pi\)
0.855186 + 0.518321i \(0.173443\pi\)
\(68\) 0 0
\(69\) −4.00000 −0.481543
\(70\) 0 0
\(71\) 7.00000 0.830747 0.415374 0.909651i \(-0.363651\pi\)
0.415374 + 0.909651i \(0.363651\pi\)
\(72\) 0 0
\(73\) −8.00000 −0.936329 −0.468165 0.883641i \(-0.655085\pi\)
−0.468165 + 0.883641i \(0.655085\pi\)
\(74\) 0 0
\(75\) 11.0000 1.27017
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 15.0000 1.68763 0.843816 0.536633i \(-0.180304\pi\)
0.843816 + 0.536633i \(0.180304\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 12.0000 1.31717 0.658586 0.752506i \(-0.271155\pi\)
0.658586 + 0.752506i \(0.271155\pi\)
\(84\) 0 0
\(85\) 4.00000 0.433861
\(86\) 0 0
\(87\) 8.00000 0.857690
\(88\) 0 0
\(89\) 1.00000 0.106000 0.0529999 0.998595i \(-0.483122\pi\)
0.0529999 + 0.998595i \(0.483122\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −24.0000 −2.46235
\(96\) 0 0
\(97\) 18.0000 1.82762 0.913812 0.406138i \(-0.133125\pi\)
0.913812 + 0.406138i \(0.133125\pi\)
\(98\) 0 0
\(99\) 6.00000 0.603023
\(100\) 0 0
\(101\) −6.00000 −0.597022 −0.298511 0.954406i \(-0.596490\pi\)
−0.298511 + 0.954406i \(0.596490\pi\)
\(102\) 0 0
\(103\) 4.00000 0.394132 0.197066 0.980390i \(-0.436859\pi\)
0.197066 + 0.980390i \(0.436859\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.00000 0.0966736 0.0483368 0.998831i \(-0.484608\pi\)
0.0483368 + 0.998831i \(0.484608\pi\)
\(108\) 0 0
\(109\) −8.00000 −0.766261 −0.383131 0.923694i \(-0.625154\pi\)
−0.383131 + 0.923694i \(0.625154\pi\)
\(110\) 0 0
\(111\) −8.00000 −0.759326
\(112\) 0 0
\(113\) −8.00000 −0.752577 −0.376288 0.926503i \(-0.622800\pi\)
−0.376288 + 0.926503i \(0.622800\pi\)
\(114\) 0 0
\(115\) 16.0000 1.49201
\(116\) 0 0
\(117\) 10.0000 0.924500
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) 0 0
\(123\) −8.00000 −0.721336
\(124\) 0 0
\(125\) −24.0000 −2.14663
\(126\) 0 0
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) 0 0
\(129\) 10.0000 0.880451
\(130\) 0 0
\(131\) −4.00000 −0.349482 −0.174741 0.984614i \(-0.555909\pi\)
−0.174741 + 0.984614i \(0.555909\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 20.0000 1.72133
\(136\) 0 0
\(137\) −7.00000 −0.598050 −0.299025 0.954245i \(-0.596661\pi\)
−0.299025 + 0.954245i \(0.596661\pi\)
\(138\) 0 0
\(139\) −1.00000 −0.0848189 −0.0424094 0.999100i \(-0.513503\pi\)
−0.0424094 + 0.999100i \(0.513503\pi\)
\(140\) 0 0
\(141\) −2.00000 −0.168430
\(142\) 0 0
\(143\) 15.0000 1.25436
\(144\) 0 0
\(145\) −32.0000 −2.65746
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −11.0000 −0.901155 −0.450578 0.892737i \(-0.648782\pi\)
−0.450578 + 0.892737i \(0.648782\pi\)
\(150\) 0 0
\(151\) 10.0000 0.813788 0.406894 0.913475i \(-0.366612\pi\)
0.406894 + 0.913475i \(0.366612\pi\)
\(152\) 0 0
\(153\) 2.00000 0.161690
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 1.00000 0.0798087 0.0399043 0.999204i \(-0.487295\pi\)
0.0399043 + 0.999204i \(0.487295\pi\)
\(158\) 0 0
\(159\) 3.00000 0.237915
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 4.00000 0.313304 0.156652 0.987654i \(-0.449930\pi\)
0.156652 + 0.987654i \(0.449930\pi\)
\(164\) 0 0
\(165\) 12.0000 0.934199
\(166\) 0 0
\(167\) −19.0000 −1.47026 −0.735132 0.677924i \(-0.762880\pi\)
−0.735132 + 0.677924i \(0.762880\pi\)
\(168\) 0 0
\(169\) 12.0000 0.923077
\(170\) 0 0
\(171\) −12.0000 −0.917663
\(172\) 0 0
\(173\) −2.00000 −0.152057 −0.0760286 0.997106i \(-0.524224\pi\)
−0.0760286 + 0.997106i \(0.524224\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 2.00000 0.150329
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 18.0000 1.33793 0.668965 0.743294i \(-0.266738\pi\)
0.668965 + 0.743294i \(0.266738\pi\)
\(182\) 0 0
\(183\) −8.00000 −0.591377
\(184\) 0 0
\(185\) 32.0000 2.35269
\(186\) 0 0
\(187\) 3.00000 0.219382
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 12.0000 0.868290 0.434145 0.900843i \(-0.357051\pi\)
0.434145 + 0.900843i \(0.357051\pi\)
\(192\) 0 0
\(193\) −10.0000 −0.719816 −0.359908 0.932988i \(-0.617192\pi\)
−0.359908 + 0.932988i \(0.617192\pi\)
\(194\) 0 0
\(195\) 20.0000 1.43223
\(196\) 0 0
\(197\) 18.0000 1.28245 0.641223 0.767354i \(-0.278427\pi\)
0.641223 + 0.767354i \(0.278427\pi\)
\(198\) 0 0
\(199\) −7.00000 −0.496217 −0.248108 0.968732i \(-0.579809\pi\)
−0.248108 + 0.968732i \(0.579809\pi\)
\(200\) 0 0
\(201\) 14.0000 0.987484
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 32.0000 2.23498
\(206\) 0 0
\(207\) 8.00000 0.556038
\(208\) 0 0
\(209\) −18.0000 −1.24509
\(210\) 0 0
\(211\) −4.00000 −0.275371 −0.137686 0.990476i \(-0.543966\pi\)
−0.137686 + 0.990476i \(0.543966\pi\)
\(212\) 0 0
\(213\) 7.00000 0.479632
\(214\) 0 0
\(215\) −40.0000 −2.72798
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −8.00000 −0.540590
\(220\) 0 0
\(221\) 5.00000 0.336336
\(222\) 0 0
\(223\) −6.00000 −0.401790 −0.200895 0.979613i \(-0.564385\pi\)
−0.200895 + 0.979613i \(0.564385\pi\)
\(224\) 0 0
\(225\) −22.0000 −1.46667
\(226\) 0 0
\(227\) 25.0000 1.65931 0.829654 0.558278i \(-0.188538\pi\)
0.829654 + 0.558278i \(0.188538\pi\)
\(228\) 0 0
\(229\) −10.0000 −0.660819 −0.330409 0.943838i \(-0.607187\pi\)
−0.330409 + 0.943838i \(0.607187\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 28.0000 1.83434 0.917170 0.398495i \(-0.130467\pi\)
0.917170 + 0.398495i \(0.130467\pi\)
\(234\) 0 0
\(235\) 8.00000 0.521862
\(236\) 0 0
\(237\) 15.0000 0.974355
\(238\) 0 0
\(239\) 2.00000 0.129369 0.0646846 0.997906i \(-0.479396\pi\)
0.0646846 + 0.997906i \(0.479396\pi\)
\(240\) 0 0
\(241\) −8.00000 −0.515325 −0.257663 0.966235i \(-0.582952\pi\)
−0.257663 + 0.966235i \(0.582952\pi\)
\(242\) 0 0
\(243\) 16.0000 1.02640
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −30.0000 −1.90885
\(248\) 0 0
\(249\) 12.0000 0.760469
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 12.0000 0.754434
\(254\) 0 0
\(255\) 4.00000 0.250490
\(256\) 0 0
\(257\) 3.00000 0.187135 0.0935674 0.995613i \(-0.470173\pi\)
0.0935674 + 0.995613i \(0.470173\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −16.0000 −0.990375
\(262\) 0 0
\(263\) 4.00000 0.246651 0.123325 0.992366i \(-0.460644\pi\)
0.123325 + 0.992366i \(0.460644\pi\)
\(264\) 0 0
\(265\) −12.0000 −0.737154
\(266\) 0 0
\(267\) 1.00000 0.0611990
\(268\) 0 0
\(269\) −18.0000 −1.09748 −0.548740 0.835993i \(-0.684892\pi\)
−0.548740 + 0.835993i \(0.684892\pi\)
\(270\) 0 0
\(271\) −24.0000 −1.45790 −0.728948 0.684569i \(-0.759990\pi\)
−0.728948 + 0.684569i \(0.759990\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −33.0000 −1.98997
\(276\) 0 0
\(277\) 8.00000 0.480673 0.240337 0.970690i \(-0.422742\pi\)
0.240337 + 0.970690i \(0.422742\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −19.0000 −1.13344 −0.566722 0.823909i \(-0.691789\pi\)
−0.566722 + 0.823909i \(0.691789\pi\)
\(282\) 0 0
\(283\) 15.0000 0.891657 0.445829 0.895118i \(-0.352909\pi\)
0.445829 + 0.895118i \(0.352909\pi\)
\(284\) 0 0
\(285\) −24.0000 −1.42164
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 18.0000 1.05518
\(292\) 0 0
\(293\) −15.0000 −0.876309 −0.438155 0.898900i \(-0.644368\pi\)
−0.438155 + 0.898900i \(0.644368\pi\)
\(294\) 0 0
\(295\) −8.00000 −0.465778
\(296\) 0 0
\(297\) 15.0000 0.870388
\(298\) 0 0
\(299\) 20.0000 1.15663
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −6.00000 −0.344691
\(304\) 0 0
\(305\) 32.0000 1.83231
\(306\) 0 0
\(307\) 28.0000 1.59804 0.799022 0.601302i \(-0.205351\pi\)
0.799022 + 0.601302i \(0.205351\pi\)
\(308\) 0 0
\(309\) 4.00000 0.227552
\(310\) 0 0
\(311\) −13.0000 −0.737162 −0.368581 0.929596i \(-0.620156\pi\)
−0.368581 + 0.929596i \(0.620156\pi\)
\(312\) 0 0
\(313\) 30.0000 1.69570 0.847850 0.530236i \(-0.177897\pi\)
0.847850 + 0.530236i \(0.177897\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −2.00000 −0.112331 −0.0561656 0.998421i \(-0.517887\pi\)
−0.0561656 + 0.998421i \(0.517887\pi\)
\(318\) 0 0
\(319\) −24.0000 −1.34374
\(320\) 0 0
\(321\) 1.00000 0.0558146
\(322\) 0 0
\(323\) −6.00000 −0.333849
\(324\) 0 0
\(325\) −55.0000 −3.05085
\(326\) 0 0
\(327\) −8.00000 −0.442401
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −6.00000 −0.329790 −0.164895 0.986311i \(-0.552728\pi\)
−0.164895 + 0.986311i \(0.552728\pi\)
\(332\) 0 0
\(333\) 16.0000 0.876795
\(334\) 0 0
\(335\) −56.0000 −3.05961
\(336\) 0 0
\(337\) 8.00000 0.435788 0.217894 0.975972i \(-0.430081\pi\)
0.217894 + 0.975972i \(0.430081\pi\)
\(338\) 0 0
\(339\) −8.00000 −0.434500
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 16.0000 0.861411
\(346\) 0 0
\(347\) −12.0000 −0.644194 −0.322097 0.946707i \(-0.604388\pi\)
−0.322097 + 0.946707i \(0.604388\pi\)
\(348\) 0 0
\(349\) −2.00000 −0.107058 −0.0535288 0.998566i \(-0.517047\pi\)
−0.0535288 + 0.998566i \(0.517047\pi\)
\(350\) 0 0
\(351\) 25.0000 1.33440
\(352\) 0 0
\(353\) −21.0000 −1.11772 −0.558859 0.829263i \(-0.688761\pi\)
−0.558859 + 0.829263i \(0.688761\pi\)
\(354\) 0 0
\(355\) −28.0000 −1.48609
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 22.0000 1.16112 0.580558 0.814219i \(-0.302835\pi\)
0.580558 + 0.814219i \(0.302835\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) 0 0
\(363\) −2.00000 −0.104973
\(364\) 0 0
\(365\) 32.0000 1.67496
\(366\) 0 0
\(367\) −9.00000 −0.469796 −0.234898 0.972020i \(-0.575476\pi\)
−0.234898 + 0.972020i \(0.575476\pi\)
\(368\) 0 0
\(369\) 16.0000 0.832927
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 31.0000 1.60512 0.802560 0.596572i \(-0.203471\pi\)
0.802560 + 0.596572i \(0.203471\pi\)
\(374\) 0 0
\(375\) −24.0000 −1.23935
\(376\) 0 0
\(377\) −40.0000 −2.06010
\(378\) 0 0
\(379\) 1.00000 0.0513665 0.0256833 0.999670i \(-0.491824\pi\)
0.0256833 + 0.999670i \(0.491824\pi\)
\(380\) 0 0
\(381\) 8.00000 0.409852
\(382\) 0 0
\(383\) 2.00000 0.102195 0.0510976 0.998694i \(-0.483728\pi\)
0.0510976 + 0.998694i \(0.483728\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −20.0000 −1.01666
\(388\) 0 0
\(389\) −27.0000 −1.36895 −0.684477 0.729034i \(-0.739969\pi\)
−0.684477 + 0.729034i \(0.739969\pi\)
\(390\) 0 0
\(391\) 4.00000 0.202289
\(392\) 0 0
\(393\) −4.00000 −0.201773
\(394\) 0 0
\(395\) −60.0000 −3.01893
\(396\) 0 0
\(397\) 26.0000 1.30490 0.652451 0.757831i \(-0.273741\pi\)
0.652451 + 0.757831i \(0.273741\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −18.0000 −0.898877 −0.449439 0.893311i \(-0.648376\pi\)
−0.449439 + 0.893311i \(0.648376\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −4.00000 −0.198762
\(406\) 0 0
\(407\) 24.0000 1.18964
\(408\) 0 0
\(409\) 11.0000 0.543915 0.271957 0.962309i \(-0.412329\pi\)
0.271957 + 0.962309i \(0.412329\pi\)
\(410\) 0 0
\(411\) −7.00000 −0.345285
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −48.0000 −2.35623
\(416\) 0 0
\(417\) −1.00000 −0.0489702
\(418\) 0 0
\(419\) 37.0000 1.80757 0.903784 0.427989i \(-0.140778\pi\)
0.903784 + 0.427989i \(0.140778\pi\)
\(420\) 0 0
\(421\) 6.00000 0.292422 0.146211 0.989253i \(-0.453292\pi\)
0.146211 + 0.989253i \(0.453292\pi\)
\(422\) 0 0
\(423\) 4.00000 0.194487
\(424\) 0 0
\(425\) −11.0000 −0.533578
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 15.0000 0.724207
\(430\) 0 0
\(431\) −15.0000 −0.722525 −0.361262 0.932464i \(-0.617654\pi\)
−0.361262 + 0.932464i \(0.617654\pi\)
\(432\) 0 0
\(433\) −10.0000 −0.480569 −0.240285 0.970702i \(-0.577241\pi\)
−0.240285 + 0.970702i \(0.577241\pi\)
\(434\) 0 0
\(435\) −32.0000 −1.53428
\(436\) 0 0
\(437\) −24.0000 −1.14808
\(438\) 0 0
\(439\) −1.00000 −0.0477274 −0.0238637 0.999715i \(-0.507597\pi\)
−0.0238637 + 0.999715i \(0.507597\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 26.0000 1.23530 0.617649 0.786454i \(-0.288085\pi\)
0.617649 + 0.786454i \(0.288085\pi\)
\(444\) 0 0
\(445\) −4.00000 −0.189618
\(446\) 0 0
\(447\) −11.0000 −0.520282
\(448\) 0 0
\(449\) −18.0000 −0.849473 −0.424736 0.905317i \(-0.639633\pi\)
−0.424736 + 0.905317i \(0.639633\pi\)
\(450\) 0 0
\(451\) 24.0000 1.13012
\(452\) 0 0
\(453\) 10.0000 0.469841
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −26.0000 −1.21623 −0.608114 0.793849i \(-0.708074\pi\)
−0.608114 + 0.793849i \(0.708074\pi\)
\(458\) 0 0
\(459\) 5.00000 0.233380
\(460\) 0 0
\(461\) 15.0000 0.698620 0.349310 0.937007i \(-0.386416\pi\)
0.349310 + 0.937007i \(0.386416\pi\)
\(462\) 0 0
\(463\) −16.0000 −0.743583 −0.371792 0.928316i \(-0.621256\pi\)
−0.371792 + 0.928316i \(0.621256\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −28.0000 −1.29569 −0.647843 0.761774i \(-0.724329\pi\)
−0.647843 + 0.761774i \(0.724329\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 1.00000 0.0460776
\(472\) 0 0
\(473\) −30.0000 −1.37940
\(474\) 0 0
\(475\) 66.0000 3.02829
\(476\) 0 0
\(477\) −6.00000 −0.274721
\(478\) 0 0
\(479\) 32.0000 1.46212 0.731059 0.682315i \(-0.239027\pi\)
0.731059 + 0.682315i \(0.239027\pi\)
\(480\) 0 0
\(481\) 40.0000 1.82384
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −72.0000 −3.26935
\(486\) 0 0
\(487\) −5.00000 −0.226572 −0.113286 0.993562i \(-0.536138\pi\)
−0.113286 + 0.993562i \(0.536138\pi\)
\(488\) 0 0
\(489\) 4.00000 0.180886
\(490\) 0 0
\(491\) −18.0000 −0.812329 −0.406164 0.913800i \(-0.633134\pi\)
−0.406164 + 0.913800i \(0.633134\pi\)
\(492\) 0 0
\(493\) −8.00000 −0.360302
\(494\) 0 0
\(495\) −24.0000 −1.07872
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 39.0000 1.74588 0.872940 0.487828i \(-0.162211\pi\)
0.872940 + 0.487828i \(0.162211\pi\)
\(500\) 0 0
\(501\) −19.0000 −0.848857
\(502\) 0 0
\(503\) 21.0000 0.936344 0.468172 0.883637i \(-0.344913\pi\)
0.468172 + 0.883637i \(0.344913\pi\)
\(504\) 0 0
\(505\) 24.0000 1.06799
\(506\) 0 0
\(507\) 12.0000 0.532939
\(508\) 0 0
\(509\) 38.0000 1.68432 0.842160 0.539227i \(-0.181284\pi\)
0.842160 + 0.539227i \(0.181284\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −30.0000 −1.32453
\(514\) 0 0
\(515\) −16.0000 −0.705044
\(516\) 0 0
\(517\) 6.00000 0.263880
\(518\) 0 0
\(519\) −2.00000 −0.0877903
\(520\) 0 0
\(521\) −24.0000 −1.05146 −0.525730 0.850652i \(-0.676208\pi\)
−0.525730 + 0.850652i \(0.676208\pi\)
\(522\) 0 0
\(523\) 6.00000 0.262362 0.131181 0.991358i \(-0.458123\pi\)
0.131181 + 0.991358i \(0.458123\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) −4.00000 −0.173585
\(532\) 0 0
\(533\) 40.0000 1.73259
\(534\) 0 0
\(535\) −4.00000 −0.172935
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 14.0000 0.601907 0.300954 0.953639i \(-0.402695\pi\)
0.300954 + 0.953639i \(0.402695\pi\)
\(542\) 0 0
\(543\) 18.0000 0.772454
\(544\) 0 0
\(545\) 32.0000 1.37073
\(546\) 0 0
\(547\) −13.0000 −0.555840 −0.277920 0.960604i \(-0.589645\pi\)
−0.277920 + 0.960604i \(0.589645\pi\)
\(548\) 0 0
\(549\) 16.0000 0.682863
\(550\) 0 0
\(551\) 48.0000 2.04487
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 32.0000 1.35832
\(556\) 0 0
\(557\) 23.0000 0.974541 0.487271 0.873251i \(-0.337993\pi\)
0.487271 + 0.873251i \(0.337993\pi\)
\(558\) 0 0
\(559\) −50.0000 −2.11477
\(560\) 0 0
\(561\) 3.00000 0.126660
\(562\) 0 0
\(563\) 30.0000 1.26435 0.632175 0.774826i \(-0.282163\pi\)
0.632175 + 0.774826i \(0.282163\pi\)
\(564\) 0 0
\(565\) 32.0000 1.34625
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 33.0000 1.38343 0.691716 0.722170i \(-0.256855\pi\)
0.691716 + 0.722170i \(0.256855\pi\)
\(570\) 0 0
\(571\) 36.0000 1.50655 0.753277 0.657704i \(-0.228472\pi\)
0.753277 + 0.657704i \(0.228472\pi\)
\(572\) 0 0
\(573\) 12.0000 0.501307
\(574\) 0 0
\(575\) −44.0000 −1.83493
\(576\) 0 0
\(577\) 13.0000 0.541197 0.270599 0.962692i \(-0.412778\pi\)
0.270599 + 0.962692i \(0.412778\pi\)
\(578\) 0 0
\(579\) −10.0000 −0.415586
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −9.00000 −0.372742
\(584\) 0 0
\(585\) −40.0000 −1.65380
\(586\) 0 0
\(587\) −2.00000 −0.0825488 −0.0412744 0.999148i \(-0.513142\pi\)
−0.0412744 + 0.999148i \(0.513142\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 18.0000 0.740421
\(592\) 0 0
\(593\) 21.0000 0.862367 0.431183 0.902264i \(-0.358096\pi\)
0.431183 + 0.902264i \(0.358096\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −7.00000 −0.286491
\(598\) 0 0
\(599\) −34.0000 −1.38920 −0.694601 0.719395i \(-0.744419\pi\)
−0.694601 + 0.719395i \(0.744419\pi\)
\(600\) 0 0
\(601\) −14.0000 −0.571072 −0.285536 0.958368i \(-0.592172\pi\)
−0.285536 + 0.958368i \(0.592172\pi\)
\(602\) 0 0
\(603\) −28.0000 −1.14025
\(604\) 0 0
\(605\) 8.00000 0.325246
\(606\) 0 0
\(607\) −23.0000 −0.933541 −0.466771 0.884378i \(-0.654583\pi\)
−0.466771 + 0.884378i \(0.654583\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 10.0000 0.404557
\(612\) 0 0
\(613\) 17.0000 0.686624 0.343312 0.939222i \(-0.388451\pi\)
0.343312 + 0.939222i \(0.388451\pi\)
\(614\) 0 0
\(615\) 32.0000 1.29036
\(616\) 0 0
\(617\) −36.0000 −1.44931 −0.724653 0.689114i \(-0.758000\pi\)
−0.724653 + 0.689114i \(0.758000\pi\)
\(618\) 0 0
\(619\) −17.0000 −0.683288 −0.341644 0.939829i \(-0.610984\pi\)
−0.341644 + 0.939829i \(0.610984\pi\)
\(620\) 0 0
\(621\) 20.0000 0.802572
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 41.0000 1.64000
\(626\) 0 0
\(627\) −18.0000 −0.718851
\(628\) 0 0
\(629\) 8.00000 0.318981
\(630\) 0 0
\(631\) −30.0000 −1.19428 −0.597141 0.802137i \(-0.703697\pi\)
−0.597141 + 0.802137i \(0.703697\pi\)
\(632\) 0 0
\(633\) −4.00000 −0.158986
\(634\) 0 0
\(635\) −32.0000 −1.26988
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −14.0000 −0.553831
\(640\) 0 0
\(641\) 22.0000 0.868948 0.434474 0.900684i \(-0.356934\pi\)
0.434474 + 0.900684i \(0.356934\pi\)
\(642\) 0 0
\(643\) −1.00000 −0.0394362 −0.0197181 0.999806i \(-0.506277\pi\)
−0.0197181 + 0.999806i \(0.506277\pi\)
\(644\) 0 0
\(645\) −40.0000 −1.57500
\(646\) 0 0
\(647\) 28.0000 1.10079 0.550397 0.834903i \(-0.314476\pi\)
0.550397 + 0.834903i \(0.314476\pi\)
\(648\) 0 0
\(649\) −6.00000 −0.235521
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −10.0000 −0.391330 −0.195665 0.980671i \(-0.562687\pi\)
−0.195665 + 0.980671i \(0.562687\pi\)
\(654\) 0 0
\(655\) 16.0000 0.625172
\(656\) 0 0
\(657\) 16.0000 0.624219
\(658\) 0 0
\(659\) −30.0000 −1.16863 −0.584317 0.811525i \(-0.698638\pi\)
−0.584317 + 0.811525i \(0.698638\pi\)
\(660\) 0 0
\(661\) 18.0000 0.700119 0.350059 0.936727i \(-0.386161\pi\)
0.350059 + 0.936727i \(0.386161\pi\)
\(662\) 0 0
\(663\) 5.00000 0.194184
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −32.0000 −1.23904
\(668\) 0 0
\(669\) −6.00000 −0.231973
\(670\) 0 0
\(671\) 24.0000 0.926510
\(672\) 0 0
\(673\) 28.0000 1.07932 0.539660 0.841883i \(-0.318553\pi\)
0.539660 + 0.841883i \(0.318553\pi\)
\(674\) 0 0
\(675\) −55.0000 −2.11695
\(676\) 0 0
\(677\) −8.00000 −0.307465 −0.153732 0.988113i \(-0.549129\pi\)
−0.153732 + 0.988113i \(0.549129\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 25.0000 0.958002
\(682\) 0 0
\(683\) −21.0000 −0.803543 −0.401771 0.915740i \(-0.631605\pi\)
−0.401771 + 0.915740i \(0.631605\pi\)
\(684\) 0 0
\(685\) 28.0000 1.06983
\(686\) 0 0
\(687\) −10.0000 −0.381524
\(688\) 0 0
\(689\) −15.0000 −0.571454
\(690\) 0 0
\(691\) 8.00000 0.304334 0.152167 0.988355i \(-0.451375\pi\)
0.152167 + 0.988355i \(0.451375\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 4.00000 0.151729
\(696\) 0 0
\(697\) 8.00000 0.303022
\(698\) 0 0
\(699\) 28.0000 1.05906
\(700\) 0 0
\(701\) 31.0000 1.17085 0.585427 0.810725i \(-0.300927\pi\)
0.585427 + 0.810725i \(0.300927\pi\)
\(702\) 0 0
\(703\) −48.0000 −1.81035
\(704\) 0 0
\(705\) 8.00000 0.301297
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −50.0000 −1.87779 −0.938895 0.344204i \(-0.888149\pi\)
−0.938895 + 0.344204i \(0.888149\pi\)
\(710\) 0 0
\(711\) −30.0000 −1.12509
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −60.0000 −2.24387
\(716\) 0 0
\(717\) 2.00000 0.0746914
\(718\) 0 0
\(719\) −35.0000 −1.30528 −0.652640 0.757668i \(-0.726339\pi\)
−0.652640 + 0.757668i \(0.726339\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −8.00000 −0.297523
\(724\) 0 0
\(725\) 88.0000 3.26824
\(726\) 0 0
\(727\) 18.0000 0.667583 0.333792 0.942647i \(-0.391672\pi\)
0.333792 + 0.942647i \(0.391672\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) −10.0000 −0.369863
\(732\) 0 0
\(733\) 3.00000 0.110808 0.0554038 0.998464i \(-0.482355\pi\)
0.0554038 + 0.998464i \(0.482355\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −42.0000 −1.54709
\(738\) 0 0
\(739\) 30.0000 1.10357 0.551784 0.833987i \(-0.313947\pi\)
0.551784 + 0.833987i \(0.313947\pi\)
\(740\) 0 0
\(741\) −30.0000 −1.10208
\(742\) 0 0
\(743\) 1.00000 0.0366864 0.0183432 0.999832i \(-0.494161\pi\)
0.0183432 + 0.999832i \(0.494161\pi\)
\(744\) 0 0
\(745\) 44.0000 1.61204
\(746\) 0 0
\(747\) −24.0000 −0.878114
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 3.00000 0.109472 0.0547358 0.998501i \(-0.482568\pi\)
0.0547358 + 0.998501i \(0.482568\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −40.0000 −1.45575
\(756\) 0 0
\(757\) 9.00000 0.327111 0.163555 0.986534i \(-0.447704\pi\)
0.163555 + 0.986534i \(0.447704\pi\)
\(758\) 0 0
\(759\) 12.0000 0.435572
\(760\) 0 0
\(761\) 45.0000 1.63125 0.815624 0.578582i \(-0.196394\pi\)
0.815624 + 0.578582i \(0.196394\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −8.00000 −0.289241
\(766\) 0 0
\(767\) −10.0000 −0.361079
\(768\) 0 0
\(769\) 1.00000 0.0360609 0.0180305 0.999837i \(-0.494260\pi\)
0.0180305 + 0.999837i \(0.494260\pi\)
\(770\) 0 0
\(771\) 3.00000 0.108042
\(772\) 0 0
\(773\) 9.00000 0.323708 0.161854 0.986815i \(-0.448253\pi\)
0.161854 + 0.986815i \(0.448253\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −48.0000 −1.71978
\(780\) 0 0
\(781\) −21.0000 −0.751439
\(782\) 0 0
\(783\) −40.0000 −1.42948
\(784\) 0 0
\(785\) −4.00000 −0.142766
\(786\) 0 0
\(787\) 4.00000 0.142585 0.0712923 0.997455i \(-0.477288\pi\)
0.0712923 + 0.997455i \(0.477288\pi\)
\(788\) 0 0
\(789\) 4.00000 0.142404
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 40.0000 1.42044
\(794\) 0 0
\(795\) −12.0000 −0.425596
\(796\) 0 0
\(797\) −21.0000 −0.743858 −0.371929 0.928261i \(-0.621304\pi\)
−0.371929 + 0.928261i \(0.621304\pi\)
\(798\) 0 0
\(799\) 2.00000 0.0707549
\(800\) 0 0
\(801\) −2.00000 −0.0706665
\(802\) 0 0
\(803\) 24.0000 0.846942
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −18.0000 −0.633630
\(808\) 0 0
\(809\) −26.0000 −0.914111 −0.457056 0.889438i \(-0.651096\pi\)
−0.457056 + 0.889438i \(0.651096\pi\)
\(810\) 0 0
\(811\) 25.0000 0.877869 0.438934 0.898519i \(-0.355356\pi\)
0.438934 + 0.898519i \(0.355356\pi\)
\(812\) 0 0
\(813\) −24.0000 −0.841717
\(814\) 0 0
\(815\) −16.0000 −0.560456
\(816\) 0 0
\(817\) 60.0000 2.09913
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −8.00000 −0.279202 −0.139601 0.990208i \(-0.544582\pi\)
−0.139601 + 0.990208i \(0.544582\pi\)
\(822\) 0 0
\(823\) −51.0000 −1.77775 −0.888874 0.458151i \(-0.848512\pi\)
−0.888874 + 0.458151i \(0.848512\pi\)
\(824\) 0 0
\(825\) −33.0000 −1.14891
\(826\) 0 0
\(827\) −15.0000 −0.521601 −0.260801 0.965393i \(-0.583986\pi\)
−0.260801 + 0.965393i \(0.583986\pi\)
\(828\) 0 0
\(829\) 41.0000 1.42399 0.711994 0.702185i \(-0.247792\pi\)
0.711994 + 0.702185i \(0.247792\pi\)
\(830\) 0 0
\(831\) 8.00000 0.277517
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 76.0000 2.63009
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −24.0000 −0.828572 −0.414286 0.910147i \(-0.635969\pi\)
−0.414286 + 0.910147i \(0.635969\pi\)
\(840\) 0 0
\(841\) 35.0000 1.20690
\(842\) 0 0
\(843\) −19.0000 −0.654395
\(844\) 0 0
\(845\) −48.0000 −1.65125
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 15.0000 0.514799
\(850\) 0 0
\(851\) 32.0000 1.09695
\(852\) 0 0
\(853\) −22.0000 −0.753266 −0.376633 0.926363i \(-0.622918\pi\)
−0.376633 + 0.926363i \(0.622918\pi\)
\(854\) 0 0
\(855\) 48.0000 1.64157
\(856\) 0 0
\(857\) 22.0000 0.751506 0.375753 0.926720i \(-0.377384\pi\)
0.375753 + 0.926720i \(0.377384\pi\)
\(858\) 0 0
\(859\) −12.0000 −0.409435 −0.204717 0.978821i \(-0.565628\pi\)
−0.204717 + 0.978821i \(0.565628\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −12.0000 −0.408485 −0.204242 0.978920i \(-0.565473\pi\)
−0.204242 + 0.978920i \(0.565473\pi\)
\(864\) 0 0
\(865\) 8.00000 0.272008
\(866\) 0 0
\(867\) 1.00000 0.0339618
\(868\) 0 0
\(869\) −45.0000 −1.52652
\(870\) 0 0
\(871\) −70.0000 −2.37186
\(872\) 0 0
\(873\) −36.0000 −1.21842
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 22.0000 0.742887 0.371444 0.928456i \(-0.378863\pi\)
0.371444 + 0.928456i \(0.378863\pi\)
\(878\) 0 0
\(879\) −15.0000 −0.505937
\(880\) 0 0
\(881\) 18.0000 0.606435 0.303218 0.952921i \(-0.401939\pi\)
0.303218 + 0.952921i \(0.401939\pi\)
\(882\) 0 0
\(883\) 2.00000 0.0673054 0.0336527 0.999434i \(-0.489286\pi\)
0.0336527 + 0.999434i \(0.489286\pi\)
\(884\) 0 0
\(885\) −8.00000 −0.268917
\(886\) 0 0
\(887\) −3.00000 −0.100730 −0.0503651 0.998731i \(-0.516038\pi\)
−0.0503651 + 0.998731i \(0.516038\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −3.00000 −0.100504
\(892\) 0 0
\(893\) −12.0000 −0.401565
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 20.0000 0.667781
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) −3.00000 −0.0999445
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −72.0000 −2.39336
\(906\) 0 0
\(907\) 20.0000 0.664089 0.332045 0.943264i \(-0.392262\pi\)
0.332045 + 0.943264i \(0.392262\pi\)
\(908\) 0 0
\(909\) 12.0000 0.398015
\(910\) 0 0
\(911\) 20.0000 0.662630 0.331315 0.943520i \(-0.392508\pi\)
0.331315 + 0.943520i \(0.392508\pi\)
\(912\) 0 0
\(913\) −36.0000 −1.19143
\(914\) 0 0
\(915\) 32.0000 1.05789
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 20.0000 0.659739 0.329870 0.944027i \(-0.392995\pi\)
0.329870 + 0.944027i \(0.392995\pi\)
\(920\) 0 0
\(921\) 28.0000 0.922631
\(922\) 0 0
\(923\) −35.0000 −1.15204
\(924\) 0 0
\(925\) −88.0000 −2.89342
\(926\) 0 0
\(927\) −8.00000 −0.262754
\(928\) 0 0
\(929\) 12.0000 0.393707 0.196854 0.980433i \(-0.436928\pi\)
0.196854 + 0.980433i \(0.436928\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −13.0000 −0.425601
\(934\) 0 0
\(935\) −12.0000 −0.392442
\(936\) 0 0
\(937\) 26.0000 0.849383 0.424691 0.905338i \(-0.360383\pi\)
0.424691 + 0.905338i \(0.360383\pi\)
\(938\) 0 0
\(939\) 30.0000 0.979013
\(940\) 0 0
\(941\) −8.00000 −0.260793 −0.130396 0.991462i \(-0.541625\pi\)
−0.130396 + 0.991462i \(0.541625\pi\)
\(942\) 0 0
\(943\) 32.0000 1.04206
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −3.00000 −0.0974869 −0.0487435 0.998811i \(-0.515522\pi\)
−0.0487435 + 0.998811i \(0.515522\pi\)
\(948\) 0 0
\(949\) 40.0000 1.29845
\(950\) 0 0
\(951\) −2.00000 −0.0648544
\(952\) 0 0
\(953\) −11.0000 −0.356325 −0.178162 0.984001i \(-0.557015\pi\)
−0.178162 + 0.984001i \(0.557015\pi\)
\(954\) 0 0
\(955\) −48.0000 −1.55324
\(956\) 0 0
\(957\) −24.0000 −0.775810
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) −2.00000 −0.0644491
\(964\) 0 0
\(965\) 40.0000 1.28765
\(966\) 0 0
\(967\) −30.0000 −0.964735 −0.482367 0.875969i \(-0.660223\pi\)
−0.482367 + 0.875969i \(0.660223\pi\)
\(968\) 0 0
\(969\) −6.00000 −0.192748
\(970\) 0 0
\(971\) 30.0000 0.962746 0.481373 0.876516i \(-0.340138\pi\)
0.481373 + 0.876516i \(0.340138\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −55.0000 −1.76141
\(976\) 0 0
\(977\) 34.0000 1.08776 0.543878 0.839164i \(-0.316955\pi\)
0.543878 + 0.839164i \(0.316955\pi\)
\(978\) 0 0
\(979\) −3.00000 −0.0958804
\(980\) 0 0
\(981\) 16.0000 0.510841
\(982\) 0 0
\(983\) −9.00000 −0.287055 −0.143528 0.989646i \(-0.545845\pi\)
−0.143528 + 0.989646i \(0.545845\pi\)
\(984\) 0 0
\(985\) −72.0000 −2.29411
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −40.0000 −1.27193
\(990\) 0 0
\(991\) 9.00000 0.285894 0.142947 0.989730i \(-0.454342\pi\)
0.142947 + 0.989730i \(0.454342\pi\)
\(992\) 0 0
\(993\) −6.00000 −0.190404
\(994\) 0 0
\(995\) 28.0000 0.887660
\(996\) 0 0
\(997\) −46.0000 −1.45683 −0.728417 0.685134i \(-0.759744\pi\)
−0.728417 + 0.685134i \(0.759744\pi\)
\(998\) 0 0
\(999\) 40.0000 1.26554
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3332.2.a.d.1.1 1
7.2 even 3 476.2.i.a.137.1 2
7.4 even 3 476.2.i.a.205.1 yes 2
7.6 odd 2 3332.2.a.c.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
476.2.i.a.137.1 2 7.2 even 3
476.2.i.a.205.1 yes 2 7.4 even 3
3332.2.a.c.1.1 1 7.6 odd 2
3332.2.a.d.1.1 1 1.1 even 1 trivial