Defining parameters
Level: | \( N \) | \(=\) | \( 3332 = 2^{2} \cdot 7^{2} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 3332.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 21 \) | ||
Sturm bound: | \(1008\) | ||
Trace bound: | \(9\) | ||
Distinguishing \(T_p\): | \(3\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(3332))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 528 | 54 | 474 |
Cusp forms | 481 | 54 | 427 |
Eisenstein series | 47 | 0 | 47 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(7\) | \(17\) | Fricke | Dim |
---|---|---|---|---|
\(-\) | \(+\) | \(+\) | \(-\) | \(15\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(11\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(11\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(17\) |
Plus space | \(+\) | \(22\) | ||
Minus space | \(-\) | \(32\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(3332))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(3332))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(3332)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(34))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(68))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(98))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(119))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(196))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(238))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(476))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(833))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1666))\)\(^{\oplus 2}\)