Properties

Label 3332.2
Level 3332
Weight 2
Dimension 186816
Nonzero newspaces 40
Sturm bound 1354752
Trace bound 5

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 3332 = 2^{2} \cdot 7^{2} \cdot 17 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 40 \)
Sturm bound: \(1354752\)
Trace bound: \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(3332))\).

Total New Old
Modular forms 343488 189728 153760
Cusp forms 333889 186816 147073
Eisenstein series 9599 2912 6687

Trace form

\( 186816 q - 218 q^{2} - 4 q^{3} - 218 q^{4} - 448 q^{5} - 206 q^{6} - 8 q^{7} - 374 q^{8} - 428 q^{9} - 182 q^{10} + 4 q^{11} - 158 q^{12} - 404 q^{13} - 228 q^{14} - 162 q^{16} - 480 q^{17} - 442 q^{18}+ \cdots - 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(3332))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
3332.2.a \(\chi_{3332}(1, \cdot)\) 3332.2.a.a 1 1
3332.2.a.b 1
3332.2.a.c 1
3332.2.a.d 1
3332.2.a.e 1
3332.2.a.f 1
3332.2.a.g 2
3332.2.a.h 2
3332.2.a.i 2
3332.2.a.j 2
3332.2.a.k 2
3332.2.a.l 2
3332.2.a.m 2
3332.2.a.n 2
3332.2.a.o 2
3332.2.a.p 3
3332.2.a.q 3
3332.2.a.r 4
3332.2.a.s 4
3332.2.a.t 8
3332.2.a.u 8
3332.2.b \(\chi_{3332}(2549, \cdot)\) 3332.2.b.a 2 1
3332.2.b.b 8
3332.2.b.c 8
3332.2.b.d 12
3332.2.b.e 12
3332.2.b.f 20
3332.2.e \(\chi_{3332}(3331, \cdot)\) n/a 352 1
3332.2.f \(\chi_{3332}(783, \cdot)\) n/a 320 1
3332.2.i \(\chi_{3332}(1157, \cdot)\) n/a 108 2
3332.2.k \(\chi_{3332}(1959, \cdot)\) n/a 704 2
3332.2.l \(\chi_{3332}(1177, \cdot)\) n/a 124 2
3332.2.p \(\chi_{3332}(1599, \cdot)\) n/a 640 2
3332.2.q \(\chi_{3332}(815, \cdot)\) n/a 704 2
3332.2.t \(\chi_{3332}(373, \cdot)\) n/a 120 2
3332.2.u \(\chi_{3332}(477, \cdot)\) n/a 456 6
3332.2.v \(\chi_{3332}(393, \cdot)\) n/a 244 4
3332.2.x \(\chi_{3332}(195, \cdot)\) n/a 1408 4
3332.2.ba \(\chi_{3332}(803, \cdot)\) n/a 1408 4
3332.2.bb \(\chi_{3332}(361, \cdot)\) n/a 240 4
3332.2.bf \(\chi_{3332}(307, \cdot)\) n/a 2688 6
3332.2.bg \(\chi_{3332}(475, \cdot)\) n/a 3000 6
3332.2.bj \(\chi_{3332}(169, \cdot)\) n/a 504 6
3332.2.bl \(\chi_{3332}(99, \cdot)\) n/a 2872 8
3332.2.bm \(\chi_{3332}(97, \cdot)\) n/a 480 8
3332.2.bo \(\chi_{3332}(137, \cdot)\) n/a 888 12
3332.2.bq \(\chi_{3332}(569, \cdot)\) n/a 480 8
3332.2.bs \(\chi_{3332}(19, \cdot)\) n/a 2816 8
3332.2.bu \(\chi_{3332}(225, \cdot)\) n/a 1008 12
3332.2.bv \(\chi_{3332}(55, \cdot)\) n/a 6000 12
3332.2.bx \(\chi_{3332}(305, \cdot)\) n/a 1008 12
3332.2.ca \(\chi_{3332}(271, \cdot)\) n/a 6000 12
3332.2.cb \(\chi_{3332}(103, \cdot)\) n/a 5376 12
3332.2.cf \(\chi_{3332}(129, \cdot)\) n/a 960 16
3332.2.cg \(\chi_{3332}(79, \cdot)\) n/a 5632 16
3332.2.cj \(\chi_{3332}(83, \cdot)\) n/a 12000 24
3332.2.cl \(\chi_{3332}(253, \cdot)\) n/a 2016 24
3332.2.cn \(\chi_{3332}(81, \cdot)\) n/a 2016 24
3332.2.co \(\chi_{3332}(47, \cdot)\) n/a 12000 24
3332.2.cq \(\chi_{3332}(41, \cdot)\) n/a 4032 48
3332.2.ct \(\chi_{3332}(71, \cdot)\) n/a 24000 48
3332.2.cu \(\chi_{3332}(59, \cdot)\) n/a 24000 48
3332.2.cw \(\chi_{3332}(9, \cdot)\) n/a 4032 48
3332.2.cy \(\chi_{3332}(11, \cdot)\) n/a 48000 96
3332.2.db \(\chi_{3332}(5, \cdot)\) n/a 8064 96

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(3332))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(3332)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(17))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(34))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(49))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(68))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(98))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(119))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(196))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(238))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(476))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(833))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1666))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3332))\)\(^{\oplus 1}\)