Properties

Label 3332.1.o
Level $3332$
Weight $1$
Character orbit 3332.o
Rep. character $\chi_{3332}(67,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $32$
Newform subspaces $7$
Sturm bound $504$
Trace bound $13$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3332 = 2^{2} \cdot 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3332.o (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 476 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 7 \)
Sturm bound: \(504\)
Trace bound: \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(3332, [\chi])\).

Total New Old
Modular forms 80 48 32
Cusp forms 48 32 16
Eisenstein series 32 16 16

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 32 0 0 0

Trace form

\( 32 q + 2 q^{2} - 6 q^{4} - 4 q^{8} - 12 q^{9} - 6 q^{16} + 4 q^{17} + 2 q^{18} + 4 q^{25} - 4 q^{26} + 10 q^{30} - 8 q^{32} - 4 q^{33} - 16 q^{36} - 24 q^{50} + 10 q^{60} + 12 q^{64} + 8 q^{66} + 4 q^{68}+ \cdots + 4 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(3332, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
3332.1.o.a 3332.o 476.o $2$ $1.663$ \(\Q(\sqrt{-3}) \) $D_{3}$ \(\Q(\sqrt{-17}) \) None 476.1.o.a \(-1\) \(-1\) \(0\) \(0\) \(q+\zeta_{6}^{2}q^{2}-\zeta_{6}q^{3}-\zeta_{6}q^{4}+q^{6}+q^{8}+\cdots\)
3332.1.o.b 3332.o 476.o $2$ $1.663$ \(\Q(\sqrt{-3}) \) $D_{3}$ \(\Q(\sqrt{-17}) \) None 476.1.o.a \(-1\) \(1\) \(0\) \(0\) \(q+\zeta_{6}^{2}q^{2}+\zeta_{6}q^{3}-\zeta_{6}q^{4}-q^{6}+q^{8}+\cdots\)
3332.1.o.c 3332.o 476.o $2$ $1.663$ \(\Q(\sqrt{-3}) \) $D_{2}$ \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-17}) \) \(\Q(\sqrt{17}) \) 68.1.d.a \(1\) \(0\) \(0\) \(0\) \(q-\zeta_{6}^{2}q^{2}-\zeta_{6}q^{4}-q^{8}-\zeta_{6}^{2}q^{9}+\cdots\)
3332.1.o.d 3332.o 476.o $2$ $1.663$ \(\Q(\sqrt{-3}) \) $D_{2}$ \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-17}) \) \(\Q(\sqrt{17}) \) 68.1.d.a \(1\) \(0\) \(0\) \(0\) \(q-\zeta_{6}^{2}q^{2}-\zeta_{6}q^{4}-q^{8}-\zeta_{6}^{2}q^{9}+\cdots\)
3332.1.o.e 3332.o 476.o $4$ $1.663$ \(\Q(\zeta_{12})\) $D_{2}$ \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-119}) \) \(\Q(\sqrt{119}) \) 3332.1.g.h \(-2\) \(0\) \(0\) \(0\) \(q-\zeta_{12}^{2}q^{2}+\zeta_{12}^{4}q^{4}+\zeta_{12}^{5}q^{5}+\cdots\)
3332.1.o.f 3332.o 476.o $4$ $1.663$ \(\Q(\zeta_{12})\) $D_{6}$ \(\Q(\sqrt{-17}) \) None 476.1.o.c \(2\) \(0\) \(0\) \(0\) \(q+\zeta_{12}^{2}q^{2}+(-\zeta_{12}^{3}-\zeta_{12}^{5})q^{3}+\cdots\)
3332.1.o.g 3332.o 476.o $16$ $1.663$ \(\Q(\zeta_{60})\) $D_{10}$ \(\Q(\sqrt{-119}) \) None 3332.1.g.i \(2\) \(0\) \(0\) \(0\) \(q+\zeta_{60}^{4}q^{2}+(-\zeta_{60}^{11}-\zeta_{60}^{29})q^{3}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(3332, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(3332, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(476, [\chi])\)\(^{\oplus 2}\)