Defining parameters
Level: | \( N \) | \(=\) | \( 3332 = 2^{2} \cdot 7^{2} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 3332.o (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 476 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 7 \) | ||
Sturm bound: | \(504\) | ||
Trace bound: | \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(3332, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 80 | 48 | 32 |
Cusp forms | 48 | 32 | 16 |
Eisenstein series | 32 | 16 | 16 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 32 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(3332, [\chi])\) into newform subspaces
Decomposition of \(S_{1}^{\mathrm{old}}(3332, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(3332, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(476, [\chi])\)\(^{\oplus 2}\)