Properties

Label 3332.1.m.b
Level $3332$
Weight $1$
Character orbit 3332.m
Analytic conductor $1.663$
Analytic rank $0$
Dimension $2$
Projective image $D_{4}$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 3332 = 2^{2} \cdot 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3332.m (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.66288462209\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Defining polynomial: \(x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 68)
Projective image: \(D_{4}\)
Projective field: Galois closure of 4.2.19652.1
Artin image: $C_2\times C_4\wr C_2$
Artin field: Galois closure of \(\mathbb{Q}[x]/(x^{16} - \cdots)\)

$q$-expansion

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + i q^{2} - q^{4} + ( 1 + i ) q^{5} -i q^{8} + i q^{9} +O(q^{10})\) \( q + i q^{2} - q^{4} + ( 1 + i ) q^{5} -i q^{8} + i q^{9} + ( -1 + i ) q^{10} + q^{16} + q^{17} - q^{18} + ( -1 - i ) q^{20} + i q^{25} + ( 1 + i ) q^{29} + i q^{32} + i q^{34} -i q^{36} + ( -1 - i ) q^{37} + ( 1 - i ) q^{40} + ( -1 + i ) q^{41} + ( -1 + i ) q^{45} - q^{50} + ( -1 + i ) q^{58} + ( 1 - i ) q^{61} - q^{64} - q^{68} + q^{72} + ( -1 - i ) q^{73} + ( 1 - i ) q^{74} + ( 1 + i ) q^{80} - q^{81} + ( -1 - i ) q^{82} + ( 1 + i ) q^{85} + ( -1 - i ) q^{90} + ( 1 + i ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 2q^{4} + 2q^{5} + O(q^{10}) \) \( 2q - 2q^{4} + 2q^{5} - 2q^{10} + 2q^{16} + 2q^{17} - 2q^{18} - 2q^{20} + 2q^{29} - 2q^{37} + 2q^{40} - 2q^{41} - 2q^{45} - 2q^{50} - 2q^{58} + 2q^{61} - 2q^{64} - 2q^{68} + 2q^{72} - 2q^{73} + 2q^{74} + 2q^{80} - 2q^{81} - 2q^{82} + 2q^{85} - 2q^{90} + 2q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3332\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(885\) \(1667\)
\(\chi(n)\) \(i\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2843.1
1.00000i
1.00000i
1.00000i 0 −1.00000 1.00000 1.00000i 0 0 1.00000i 1.00000i −1.00000 1.00000i
3039.1 1.00000i 0 −1.00000 1.00000 + 1.00000i 0 0 1.00000i 1.00000i −1.00000 + 1.00000i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by \(\Q(\sqrt{-1}) \)
17.c even 4 1 inner
68.f odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3332.1.m.b 2
4.b odd 2 1 CM 3332.1.m.b 2
7.b odd 2 1 68.1.f.a 2
7.c even 3 2 3332.1.bc.b 4
7.d odd 6 2 3332.1.bc.c 4
17.c even 4 1 inner 3332.1.m.b 2
21.c even 2 1 612.1.l.a 2
28.d even 2 1 68.1.f.a 2
28.f even 6 2 3332.1.bc.c 4
28.g odd 6 2 3332.1.bc.b 4
35.c odd 2 1 1700.1.p.a 2
35.f even 4 1 1700.1.n.a 2
35.f even 4 1 1700.1.n.b 2
56.e even 2 1 1088.1.p.a 2
56.h odd 2 1 1088.1.p.a 2
68.f odd 4 1 inner 3332.1.m.b 2
84.h odd 2 1 612.1.l.a 2
119.d odd 2 1 1156.1.f.b 2
119.f odd 4 1 68.1.f.a 2
119.f odd 4 1 1156.1.f.b 2
119.l odd 8 2 1156.1.c.b 2
119.l odd 8 2 1156.1.d.a 2
119.m odd 12 2 3332.1.bc.c 4
119.n even 12 2 3332.1.bc.b 4
119.p even 16 8 1156.1.g.b 8
140.c even 2 1 1700.1.p.a 2
140.j odd 4 1 1700.1.n.a 2
140.j odd 4 1 1700.1.n.b 2
357.l even 4 1 612.1.l.a 2
476.e even 2 1 1156.1.f.b 2
476.k even 4 1 68.1.f.a 2
476.k even 4 1 1156.1.f.b 2
476.w even 8 2 1156.1.c.b 2
476.w even 8 2 1156.1.d.a 2
476.z even 12 2 3332.1.bc.c 4
476.bb odd 12 2 3332.1.bc.b 4
476.bf odd 16 8 1156.1.g.b 8
595.l even 4 1 1700.1.n.a 2
595.r even 4 1 1700.1.n.b 2
595.u odd 4 1 1700.1.p.a 2
952.v odd 4 1 1088.1.p.a 2
952.x even 4 1 1088.1.p.a 2
1428.r odd 4 1 612.1.l.a 2
2380.t odd 4 1 1700.1.n.b 2
2380.bd even 4 1 1700.1.p.a 2
2380.bo odd 4 1 1700.1.n.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
68.1.f.a 2 7.b odd 2 1
68.1.f.a 2 28.d even 2 1
68.1.f.a 2 119.f odd 4 1
68.1.f.a 2 476.k even 4 1
612.1.l.a 2 21.c even 2 1
612.1.l.a 2 84.h odd 2 1
612.1.l.a 2 357.l even 4 1
612.1.l.a 2 1428.r odd 4 1
1088.1.p.a 2 56.e even 2 1
1088.1.p.a 2 56.h odd 2 1
1088.1.p.a 2 952.v odd 4 1
1088.1.p.a 2 952.x even 4 1
1156.1.c.b 2 119.l odd 8 2
1156.1.c.b 2 476.w even 8 2
1156.1.d.a 2 119.l odd 8 2
1156.1.d.a 2 476.w even 8 2
1156.1.f.b 2 119.d odd 2 1
1156.1.f.b 2 119.f odd 4 1
1156.1.f.b 2 476.e even 2 1
1156.1.f.b 2 476.k even 4 1
1156.1.g.b 8 119.p even 16 8
1156.1.g.b 8 476.bf odd 16 8
1700.1.n.a 2 35.f even 4 1
1700.1.n.a 2 140.j odd 4 1
1700.1.n.a 2 595.l even 4 1
1700.1.n.a 2 2380.bo odd 4 1
1700.1.n.b 2 35.f even 4 1
1700.1.n.b 2 140.j odd 4 1
1700.1.n.b 2 595.r even 4 1
1700.1.n.b 2 2380.t odd 4 1
1700.1.p.a 2 35.c odd 2 1
1700.1.p.a 2 140.c even 2 1
1700.1.p.a 2 595.u odd 4 1
1700.1.p.a 2 2380.bd even 4 1
3332.1.m.b 2 1.a even 1 1 trivial
3332.1.m.b 2 4.b odd 2 1 CM
3332.1.m.b 2 17.c even 4 1 inner
3332.1.m.b 2 68.f odd 4 1 inner
3332.1.bc.b 4 7.c even 3 2
3332.1.bc.b 4 28.g odd 6 2
3332.1.bc.b 4 119.n even 12 2
3332.1.bc.b 4 476.bb odd 12 2
3332.1.bc.c 4 7.d odd 6 2
3332.1.bc.c 4 28.f even 6 2
3332.1.bc.c 4 119.m odd 12 2
3332.1.bc.c 4 476.z even 12 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(3332, [\chi])\):

\( T_{5}^{2} - 2 T_{5} + 2 \)
\( T_{13} \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + T^{2} \)
$3$ \( T^{2} \)
$5$ \( 2 - 2 T + T^{2} \)
$7$ \( T^{2} \)
$11$ \( T^{2} \)
$13$ \( T^{2} \)
$17$ \( ( -1 + T )^{2} \)
$19$ \( T^{2} \)
$23$ \( T^{2} \)
$29$ \( 2 - 2 T + T^{2} \)
$31$ \( T^{2} \)
$37$ \( 2 + 2 T + T^{2} \)
$41$ \( 2 + 2 T + T^{2} \)
$43$ \( T^{2} \)
$47$ \( T^{2} \)
$53$ \( T^{2} \)
$59$ \( T^{2} \)
$61$ \( 2 - 2 T + T^{2} \)
$67$ \( T^{2} \)
$71$ \( T^{2} \)
$73$ \( 2 + 2 T + T^{2} \)
$79$ \( T^{2} \)
$83$ \( T^{2} \)
$89$ \( T^{2} \)
$97$ \( 2 - 2 T + T^{2} \)
show more
show less