Properties

 Label 3332.1.m.a Level $3332$ Weight $1$ Character orbit 3332.m Analytic conductor $1.663$ Analytic rank $0$ Dimension $2$ Projective image $D_{4}$ CM discriminant -4 Inner twists $4$

Related objects

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [3332,1,Mod(2843,3332)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(3332, base_ring=CyclotomicField(4))

chi = DirichletCharacter(H, H._module([2, 0, 3]))

N = Newforms(chi, 1, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("3332.2843");

S:= CuspForms(chi, 1);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$3332 = 2^{2} \cdot 7^{2} \cdot 17$$ Weight: $$k$$ $$=$$ $$1$$ Character orbit: $$[\chi]$$ $$=$$ 3332.m (of order $$4$$, degree $$2$$, minimal)

Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$1.66288462209$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(i)$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} + 1$$ x^2 + 1 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: yes Projective image: $$D_{4}$$ Projective field: Galois closure of 4.2.962948.2

$q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

The $$q$$-expansion and trace form are shown below.

 $$f(q)$$ $$=$$ $$q - i q^{2} - q^{4} + ( - i - 1) q^{5} + i q^{8} + i q^{9} +O(q^{10})$$ q - z * q^2 - q^4 + (-z - 1) * q^5 + z * q^8 + z * q^9 $$q - i q^{2} - q^{4} + ( - i - 1) q^{5} + i q^{8} + i q^{9} + (i - 1) q^{10} + 2 q^{13} + q^{16} - i q^{17} + q^{18} + (i + 1) q^{20} + i q^{25} - 2 i q^{26} + ( - i - 1) q^{29} - i q^{32} - q^{34} - i q^{36} + (i + 1) q^{37} + ( - i + 1) q^{40} + ( - i + 1) q^{41} + ( - i + 1) q^{45} + q^{50} - 2 q^{52} + (i - 1) q^{58} + ( - i + 1) q^{61} - q^{64} + ( - 2 i - 2) q^{65} + i q^{68} - q^{72} + ( - i - 1) q^{73} + ( - i + 1) q^{74} + ( - i - 1) q^{80} - q^{81} + ( - i - 1) q^{82} + (i - 1) q^{85} - 2 q^{89} + ( - i - 1) q^{90} + ( - i - 1) q^{97} +O(q^{100})$$ q - z * q^2 - q^4 + (-z - 1) * q^5 + z * q^8 + z * q^9 + (z - 1) * q^10 + 2 * q^13 + q^16 - z * q^17 + q^18 + (z + 1) * q^20 + z * q^25 - 2*z * q^26 + (-z - 1) * q^29 - z * q^32 - q^34 - z * q^36 + (z + 1) * q^37 + (-z + 1) * q^40 + (-z + 1) * q^41 + (-z + 1) * q^45 + q^50 - 2 * q^52 + (z - 1) * q^58 + (-z + 1) * q^61 - q^64 + (-2*z - 2) * q^65 + z * q^68 - q^72 + (-z - 1) * q^73 + (-z + 1) * q^74 + (-z - 1) * q^80 - q^81 + (-z - 1) * q^82 + (z - 1) * q^85 - 2 * q^89 + (-z - 1) * q^90 + (-z - 1) * q^97 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q - 2 q^{4} - 2 q^{5}+O(q^{10})$$ 2 * q - 2 * q^4 - 2 * q^5 $$2 q - 2 q^{4} - 2 q^{5} - 2 q^{10} + 4 q^{13} + 2 q^{16} + 2 q^{18} + 2 q^{20} - 2 q^{29} - 2 q^{34} + 2 q^{37} + 2 q^{40} + 2 q^{41} + 2 q^{45} + 2 q^{50} - 4 q^{52} - 2 q^{58} + 2 q^{61} - 2 q^{64} - 4 q^{65} - 2 q^{72} - 2 q^{73} + 2 q^{74} - 2 q^{80} - 2 q^{81} - 2 q^{82} - 2 q^{85} - 4 q^{89} - 2 q^{90} - 2 q^{97}+O(q^{100})$$ 2 * q - 2 * q^4 - 2 * q^5 - 2 * q^10 + 4 * q^13 + 2 * q^16 + 2 * q^18 + 2 * q^20 - 2 * q^29 - 2 * q^34 + 2 * q^37 + 2 * q^40 + 2 * q^41 + 2 * q^45 + 2 * q^50 - 4 * q^52 - 2 * q^58 + 2 * q^61 - 2 * q^64 - 4 * q^65 - 2 * q^72 - 2 * q^73 + 2 * q^74 - 2 * q^80 - 2 * q^81 - 2 * q^82 - 2 * q^85 - 4 * q^89 - 2 * q^90 - 2 * q^97

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/3332\mathbb{Z}\right)^\times$$.

 $$n$$ $$785$$ $$885$$ $$1667$$ $$\chi(n)$$ $$i$$ $$1$$ $$-1$$

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
2843.1
 − 1.00000i 1.00000i
1.00000i 0 −1.00000 −1.00000 + 1.00000i 0 0 1.00000i 1.00000i −1.00000 1.00000i
3039.1 1.00000i 0 −1.00000 −1.00000 1.00000i 0 0 1.00000i 1.00000i −1.00000 + 1.00000i
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by $$\Q(\sqrt{-1})$$
17.c even 4 1 inner
68.f odd 4 1 inner

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3332.1.m.a 2
4.b odd 2 1 CM 3332.1.m.a 2
7.b odd 2 1 3332.1.m.c yes 2
7.c even 3 2 3332.1.bc.d 4
7.d odd 6 2 3332.1.bc.a 4
17.c even 4 1 inner 3332.1.m.a 2
28.d even 2 1 3332.1.m.c yes 2
28.f even 6 2 3332.1.bc.a 4
28.g odd 6 2 3332.1.bc.d 4
68.f odd 4 1 inner 3332.1.m.a 2
119.f odd 4 1 3332.1.m.c yes 2
119.m odd 12 2 3332.1.bc.a 4
119.n even 12 2 3332.1.bc.d 4
476.k even 4 1 3332.1.m.c yes 2
476.z even 12 2 3332.1.bc.a 4
476.bb odd 12 2 3332.1.bc.d 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3332.1.m.a 2 1.a even 1 1 trivial
3332.1.m.a 2 4.b odd 2 1 CM
3332.1.m.a 2 17.c even 4 1 inner
3332.1.m.a 2 68.f odd 4 1 inner
3332.1.m.c yes 2 7.b odd 2 1
3332.1.m.c yes 2 28.d even 2 1
3332.1.m.c yes 2 119.f odd 4 1
3332.1.m.c yes 2 476.k even 4 1
3332.1.bc.a 4 7.d odd 6 2
3332.1.bc.a 4 28.f even 6 2
3332.1.bc.a 4 119.m odd 12 2
3332.1.bc.a 4 476.z even 12 2
3332.1.bc.d 4 7.c even 3 2
3332.1.bc.d 4 28.g odd 6 2
3332.1.bc.d 4 119.n even 12 2
3332.1.bc.d 4 476.bb odd 12 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{1}^{\mathrm{new}}(3332, [\chi])$$:

 $$T_{5}^{2} + 2T_{5} + 2$$ T5^2 + 2*T5 + 2 $$T_{13} - 2$$ T13 - 2

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2} + 1$$
$3$ $$T^{2}$$
$5$ $$T^{2} + 2T + 2$$
$7$ $$T^{2}$$
$11$ $$T^{2}$$
$13$ $$(T - 2)^{2}$$
$17$ $$T^{2} + 1$$
$19$ $$T^{2}$$
$23$ $$T^{2}$$
$29$ $$T^{2} + 2T + 2$$
$31$ $$T^{2}$$
$37$ $$T^{2} - 2T + 2$$
$41$ $$T^{2} - 2T + 2$$
$43$ $$T^{2}$$
$47$ $$T^{2}$$
$53$ $$T^{2}$$
$59$ $$T^{2}$$
$61$ $$T^{2} - 2T + 2$$
$67$ $$T^{2}$$
$71$ $$T^{2}$$
$73$ $$T^{2} + 2T + 2$$
$79$ $$T^{2}$$
$83$ $$T^{2}$$
$89$ $$(T + 2)^{2}$$
$97$ $$T^{2} + 2T + 2$$