Defining parameters
Level: | \( N \) | \(=\) | \( 3332 = 2^{2} \cdot 7^{2} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 3332.ce (of order \(48\) and degree \(16\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 476 \) |
Character field: | \(\Q(\zeta_{48})\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(504\) | ||
Trace bound: | \(18\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(3332, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 320 | 192 | 128 |
Cusp forms | 64 | 64 | 0 |
Eisenstein series | 256 | 128 | 128 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 64 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(3332, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
3332.1.ce.a | $16$ | $1.663$ | \(\Q(\zeta_{48})\) | $D_{16}$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\zeta_{48}q^{2}+\zeta_{48}^{2}q^{4}+(\zeta_{48}^{13}-\zeta_{48}^{22}+\cdots)q^{5}+\cdots\) |
3332.1.ce.b | $16$ | $1.663$ | \(\Q(\zeta_{48})\) | $D_{16}$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\zeta_{48}q^{2}+\zeta_{48}^{2}q^{4}+(-\zeta_{48}-\zeta_{48}^{10}+\cdots)q^{5}+\cdots\) |
3332.1.ce.c | $16$ | $1.663$ | \(\Q(\zeta_{48})\) | $D_{16}$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\zeta_{48}q^{2}+\zeta_{48}^{2}q^{4}+(-\zeta_{48}^{13}+\zeta_{48}^{22}+\cdots)q^{5}+\cdots\) |
3332.1.ce.d | $16$ | $1.663$ | \(\Q(\zeta_{48})\) | $D_{16}$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\zeta_{48}q^{2}+\zeta_{48}^{2}q^{4}+(\zeta_{48}+\zeta_{48}^{10}+\cdots)q^{5}+\cdots\) |