Properties

Label 3332.1.cc.c.1495.1
Level $3332$
Weight $1$
Character 3332.1495
Analytic conductor $1.663$
Analytic rank $0$
Dimension $24$
Projective image $D_{42}$
CM discriminant -68
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3332,1,Mod(135,3332)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3332, base_ring=CyclotomicField(42))
 
chi = DirichletCharacter(H, H._module([21, 32, 21]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3332.135");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3332 = 2^{2} \cdot 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3332.cc (of order \(42\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.66288462209\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(2\) over \(\Q(\zeta_{42})\)
Coefficient field: \(\Q(\zeta_{84})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{24} + x^{22} - x^{18} - x^{16} + x^{12} - x^{8} - x^{6} + x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{42}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{42} - \cdots)\)

Embedding invariants

Embedding label 1495.1
Root \(-0.149042 + 0.988831i\) of defining polynomial
Character \(\chi\) \(=\) 3332.1495
Dual form 3332.1.cc.c.2991.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.955573 + 0.294755i) q^{2} +(-0.680173 - 1.73305i) q^{3} +(0.826239 - 0.563320i) q^{4} +(1.16078 + 1.45557i) q^{6} +(-0.781831 - 0.623490i) q^{7} +(-0.623490 + 0.781831i) q^{8} +(-1.80778 + 1.67738i) q^{9} +O(q^{10})\) \(q+(-0.955573 + 0.294755i) q^{2} +(-0.680173 - 1.73305i) q^{3} +(0.826239 - 0.563320i) q^{4} +(1.16078 + 1.45557i) q^{6} +(-0.781831 - 0.623490i) q^{7} +(-0.623490 + 0.781831i) q^{8} +(-1.80778 + 1.67738i) q^{9} +(-0.432142 - 0.400969i) q^{11} +(-1.53825 - 1.04876i) q^{12} +(0.425270 - 1.86323i) q^{13} +(0.930874 + 0.365341i) q^{14} +(0.365341 - 0.930874i) q^{16} +(0.0747301 - 0.997204i) q^{17} +(1.23305 - 2.13571i) q^{18} +(-0.548760 + 1.77904i) q^{21} +(0.531130 + 0.255779i) q^{22} +(-0.145713 - 1.94440i) q^{23} +(1.77904 + 0.548760i) q^{24} +(0.955573 + 0.294755i) q^{25} +(0.142820 + 1.90580i) q^{26} +(2.45921 + 1.18429i) q^{27} +(-0.997204 - 0.0747301i) q^{28} +(0.781831 - 1.35417i) q^{31} +(-0.0747301 + 0.997204i) q^{32} +(-0.400969 + 1.02165i) q^{33} +(0.222521 + 0.974928i) q^{34} +(-0.548760 + 2.40427i) q^{36} +(-3.51833 + 0.530303i) q^{39} -1.86175i q^{42} +(-0.582926 - 0.0878620i) q^{44} +(0.712362 + 1.81507i) q^{46} -1.86175 q^{48} +(0.222521 + 0.974928i) q^{49} -1.00000 q^{50} +(-1.77904 + 0.548760i) q^{51} +(-0.698220 - 1.77904i) q^{52} +(-1.63402 + 1.11406i) q^{53} +(-2.69903 - 0.406813i) q^{54} +(0.974928 - 0.222521i) q^{56} +(-0.347948 + 1.52446i) q^{62} +(2.45921 - 0.184292i) q^{63} +(-0.222521 - 0.974928i) q^{64} +(0.0820177 - 1.09445i) q^{66} +(-0.500000 - 0.866025i) q^{68} +(-3.27064 + 1.57506i) q^{69} +(0.268565 + 0.129334i) q^{71} +(-0.184292 - 2.45921i) q^{72} +(-0.139129 - 1.85654i) q^{75} +(0.0878620 + 0.582926i) q^{77} +(3.20571 - 1.54379i) q^{78} +(0.680173 + 1.17809i) q^{79} +(0.195461 - 2.60825i) q^{81} +(0.548760 + 1.77904i) q^{84} +(0.582926 - 0.0878620i) q^{88} +(0.535628 - 0.496990i) q^{89} +(-1.49419 + 1.19158i) q^{91} +(-1.21572 - 1.52446i) q^{92} +(-2.87863 - 0.433884i) q^{93} +(1.77904 - 0.548760i) q^{96} +(-0.500000 - 0.866025i) q^{98} +1.45379 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 2 q^{2} + 2 q^{4} + 4 q^{8} - 24 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 24 q - 2 q^{2} + 2 q^{4} + 4 q^{8} - 24 q^{9} + 10 q^{13} + 2 q^{16} + 2 q^{17} + 10 q^{18} + 6 q^{21} + 2 q^{25} - 2 q^{26} - 2 q^{32} + 8 q^{33} + 4 q^{34} + 6 q^{36} + 4 q^{49} - 24 q^{50} + 2 q^{52} - 2 q^{53} - 4 q^{64} - 22 q^{66} - 12 q^{68} - 14 q^{69} - 4 q^{72} - 6 q^{77} + 30 q^{81} - 6 q^{84} + 2 q^{89} - 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3332\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(885\) \(1667\)
\(\chi(n)\) \(-1\) \(e\left(\frac{8}{21}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.955573 + 0.294755i −0.955573 + 0.294755i
\(3\) −0.680173 1.73305i −0.680173 1.73305i −0.680173 0.733052i \(-0.738095\pi\)
1.00000i \(-0.5\pi\)
\(4\) 0.826239 0.563320i 0.826239 0.563320i
\(5\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(6\) 1.16078 + 1.45557i 1.16078 + 1.45557i
\(7\) −0.781831 0.623490i −0.781831 0.623490i
\(8\) −0.623490 + 0.781831i −0.623490 + 0.781831i
\(9\) −1.80778 + 1.67738i −1.80778 + 1.67738i
\(10\) 0 0
\(11\) −0.432142 0.400969i −0.432142 0.400969i 0.433884 0.900969i \(-0.357143\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(12\) −1.53825 1.04876i −1.53825 1.04876i
\(13\) 0.425270 1.86323i 0.425270 1.86323i −0.0747301 0.997204i \(-0.523810\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(14\) 0.930874 + 0.365341i 0.930874 + 0.365341i
\(15\) 0 0
\(16\) 0.365341 0.930874i 0.365341 0.930874i
\(17\) 0.0747301 0.997204i 0.0747301 0.997204i
\(18\) 1.23305 2.13571i 1.23305 2.13571i
\(19\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(20\) 0 0
\(21\) −0.548760 + 1.77904i −0.548760 + 1.77904i
\(22\) 0.531130 + 0.255779i 0.531130 + 0.255779i
\(23\) −0.145713 1.94440i −0.145713 1.94440i −0.294755 0.955573i \(-0.595238\pi\)
0.149042 0.988831i \(-0.452381\pi\)
\(24\) 1.77904 + 0.548760i 1.77904 + 0.548760i
\(25\) 0.955573 + 0.294755i 0.955573 + 0.294755i
\(26\) 0.142820 + 1.90580i 0.142820 + 1.90580i
\(27\) 2.45921 + 1.18429i 2.45921 + 1.18429i
\(28\) −0.997204 0.0747301i −0.997204 0.0747301i
\(29\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(30\) 0 0
\(31\) 0.781831 1.35417i 0.781831 1.35417i −0.149042 0.988831i \(-0.547619\pi\)
0.930874 0.365341i \(-0.119048\pi\)
\(32\) −0.0747301 + 0.997204i −0.0747301 + 0.997204i
\(33\) −0.400969 + 1.02165i −0.400969 + 1.02165i
\(34\) 0.222521 + 0.974928i 0.222521 + 0.974928i
\(35\) 0 0
\(36\) −0.548760 + 2.40427i −0.548760 + 2.40427i
\(37\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(38\) 0 0
\(39\) −3.51833 + 0.530303i −3.51833 + 0.530303i
\(40\) 0 0
\(41\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(42\) 1.86175i 1.86175i
\(43\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(44\) −0.582926 0.0878620i −0.582926 0.0878620i
\(45\) 0 0
\(46\) 0.712362 + 1.81507i 0.712362 + 1.81507i
\(47\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(48\) −1.86175 −1.86175
\(49\) 0.222521 + 0.974928i 0.222521 + 0.974928i
\(50\) −1.00000 −1.00000
\(51\) −1.77904 + 0.548760i −1.77904 + 0.548760i
\(52\) −0.698220 1.77904i −0.698220 1.77904i
\(53\) −1.63402 + 1.11406i −1.63402 + 1.11406i −0.733052 + 0.680173i \(0.761905\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(54\) −2.69903 0.406813i −2.69903 0.406813i
\(55\) 0 0
\(56\) 0.974928 0.222521i 0.974928 0.222521i
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(60\) 0 0
\(61\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(62\) −0.347948 + 1.52446i −0.347948 + 1.52446i
\(63\) 2.45921 0.184292i 2.45921 0.184292i
\(64\) −0.222521 0.974928i −0.222521 0.974928i
\(65\) 0 0
\(66\) 0.0820177 1.09445i 0.0820177 1.09445i
\(67\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(68\) −0.500000 0.866025i −0.500000 0.866025i
\(69\) −3.27064 + 1.57506i −3.27064 + 1.57506i
\(70\) 0 0
\(71\) 0.268565 + 0.129334i 0.268565 + 0.129334i 0.563320 0.826239i \(-0.309524\pi\)
−0.294755 + 0.955573i \(0.595238\pi\)
\(72\) −0.184292 2.45921i −0.184292 2.45921i
\(73\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(74\) 0 0
\(75\) −0.139129 1.85654i −0.139129 1.85654i
\(76\) 0 0
\(77\) 0.0878620 + 0.582926i 0.0878620 + 0.582926i
\(78\) 3.20571 1.54379i 3.20571 1.54379i
\(79\) 0.680173 + 1.17809i 0.680173 + 1.17809i 0.974928 + 0.222521i \(0.0714286\pi\)
−0.294755 + 0.955573i \(0.595238\pi\)
\(80\) 0 0
\(81\) 0.195461 2.60825i 0.195461 2.60825i
\(82\) 0 0
\(83\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(84\) 0.548760 + 1.77904i 0.548760 + 1.77904i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0.582926 0.0878620i 0.582926 0.0878620i
\(89\) 0.535628 0.496990i 0.535628 0.496990i −0.365341 0.930874i \(-0.619048\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(90\) 0 0
\(91\) −1.49419 + 1.19158i −1.49419 + 1.19158i
\(92\) −1.21572 1.52446i −1.21572 1.52446i
\(93\) −2.87863 0.433884i −2.87863 0.433884i
\(94\) 0 0
\(95\) 0 0
\(96\) 1.77904 0.548760i 1.77904 0.548760i
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) −0.500000 0.866025i −0.500000 0.866025i
\(99\) 1.45379 1.45379
\(100\) 0.955573 0.294755i 0.955573 0.294755i
\(101\) 0.162592 + 0.414278i 0.162592 + 0.414278i 0.988831 0.149042i \(-0.0476190\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(102\) 1.53825 1.04876i 1.53825 1.04876i
\(103\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(104\) 1.19158 + 1.49419i 1.19158 + 1.49419i
\(105\) 0 0
\(106\) 1.23305 1.54620i 1.23305 1.54620i
\(107\) −0.825886 + 0.766310i −0.825886 + 0.766310i −0.974928 0.222521i \(-0.928571\pi\)
0.149042 + 0.988831i \(0.452381\pi\)
\(108\) 2.69903 0.406813i 2.69903 0.406813i
\(109\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(113\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 2.35654 + 4.08165i 2.35654 + 4.08165i
\(118\) 0 0
\(119\) −0.680173 + 0.733052i −0.680173 + 0.733052i
\(120\) 0 0
\(121\) −0.0487597 0.650653i −0.0487597 0.650653i
\(122\) 0 0
\(123\) 0 0
\(124\) −0.116853 1.55929i −0.116853 1.55929i
\(125\) 0 0
\(126\) −2.29563 + 0.900969i −2.29563 + 0.900969i
\(127\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(128\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(129\) 0 0
\(130\) 0 0
\(131\) −0.712362 + 1.81507i −0.712362 + 1.81507i −0.149042 + 0.988831i \(0.547619\pi\)
−0.563320 + 0.826239i \(0.690476\pi\)
\(132\) 0.244221 + 1.07000i 0.244221 + 1.07000i
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0.733052 + 0.680173i 0.733052 + 0.680173i
\(137\) 0.722521 0.108903i 0.722521 0.108903i 0.222521 0.974928i \(-0.428571\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(138\) 2.66108 2.46912i 2.66108 2.46912i
\(139\) −0.848162 + 1.06356i −0.848162 + 1.06356i 0.149042 + 0.988831i \(0.452381\pi\)
−0.997204 + 0.0747301i \(0.976190\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −0.294755 0.0444272i −0.294755 0.0444272i
\(143\) −0.930874 + 0.634659i −0.930874 + 0.634659i
\(144\) 0.900969 + 2.29563i 0.900969 + 2.29563i
\(145\) 0 0
\(146\) 0 0
\(147\) 1.53825 1.04876i 1.53825 1.04876i
\(148\) 0 0
\(149\) 0.698220 0.215372i 0.698220 0.215372i 0.0747301 0.997204i \(-0.476190\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(150\) 0.680173 + 1.73305i 0.680173 + 1.73305i
\(151\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(152\) 0 0
\(153\) 1.53759 + 1.92808i 1.53759 + 1.92808i
\(154\) −0.255779 0.531130i −0.255779 0.531130i
\(155\) 0 0
\(156\) −2.60825 + 2.42010i −2.60825 + 2.42010i
\(157\) 1.44973 0.218511i 1.44973 0.218511i 0.623490 0.781831i \(-0.285714\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(158\) −0.997204 0.925270i −0.997204 0.925270i
\(159\) 3.04213 + 2.07409i 3.04213 + 2.07409i
\(160\) 0 0
\(161\) −1.09839 + 1.61105i −1.09839 + 1.61105i
\(162\) 0.582018 + 2.54999i 0.582018 + 2.54999i
\(163\) 0 0 −0.930874 0.365341i \(-0.880952\pi\)
0.930874 + 0.365341i \(0.119048\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.79690 0.865341i 1.79690 0.865341i 0.866025 0.500000i \(-0.166667\pi\)
0.930874 0.365341i \(-0.119048\pi\)
\(168\) −1.04876 1.53825i −1.04876 1.53825i
\(169\) −2.38980 1.15087i −2.38980 1.15087i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(174\) 0 0
\(175\) −0.563320 0.826239i −0.563320 0.826239i
\(176\) −0.531130 + 0.255779i −0.531130 + 0.255779i
\(177\) 0 0
\(178\) −0.365341 + 0.632789i −0.365341 + 0.632789i
\(179\) 0 0 0.0747301 0.997204i \(-0.476190\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(180\) 0 0
\(181\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(182\) 1.07659 1.57906i 1.07659 1.57906i
\(183\) 0 0
\(184\) 1.61105 + 1.09839i 1.61105 + 1.09839i
\(185\) 0 0
\(186\) 2.87863 0.433884i 2.87863 0.433884i
\(187\) −0.432142 + 0.400969i −0.432142 + 0.400969i
\(188\) 0 0
\(189\) −1.18429 2.45921i −1.18429 2.45921i
\(190\) 0 0
\(191\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(192\) −1.53825 + 1.04876i −1.53825 + 1.04876i
\(193\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0.733052 + 0.680173i 0.733052 + 0.680173i
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) −1.38921 + 0.428513i −1.38921 + 0.428513i
\(199\) 0.108903 + 0.277479i 0.108903 + 0.277479i 0.974928 0.222521i \(-0.0714286\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(200\) −0.826239 + 0.563320i −0.826239 + 0.563320i
\(201\) 0 0
\(202\) −0.277479 0.347948i −0.277479 0.347948i
\(203\) 0 0
\(204\) −1.16078 + 1.45557i −1.16078 + 1.45557i
\(205\) 0 0
\(206\) 0 0
\(207\) 3.52491 + 3.27064i 3.52491 + 3.27064i
\(208\) −1.57906 1.07659i −1.57906 1.07659i
\(209\) 0 0
\(210\) 0 0
\(211\) −0.193096 0.846011i −0.193096 0.846011i −0.974928 0.222521i \(-0.928571\pi\)
0.781831 0.623490i \(-0.214286\pi\)
\(212\) −0.722521 + 1.84095i −0.722521 + 1.84095i
\(213\) 0.0414721 0.553406i 0.0414721 0.553406i
\(214\) 0.563320 0.975699i 0.563320 0.975699i
\(215\) 0 0
\(216\) −2.45921 + 1.18429i −2.45921 + 1.18429i
\(217\) −1.45557 + 0.571270i −1.45557 + 0.571270i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −1.82624 0.563320i −1.82624 0.563320i
\(222\) 0 0
\(223\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(224\) 0.680173 0.733052i 0.680173 0.733052i
\(225\) −2.22188 + 1.07000i −2.22188 + 1.07000i
\(226\) 0 0
\(227\) −0.149042 + 0.258149i −0.149042 + 0.258149i −0.930874 0.365341i \(-0.880952\pi\)
0.781831 + 0.623490i \(0.214286\pi\)
\(228\) 0 0
\(229\) 0.658322 1.67738i 0.658322 1.67738i −0.0747301 0.997204i \(-0.523810\pi\)
0.733052 0.680173i \(-0.238095\pi\)
\(230\) 0 0
\(231\) 0.950480 0.548760i 0.950480 0.548760i
\(232\) 0 0
\(233\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(234\) −3.45493 3.20571i −3.45493 3.20571i
\(235\) 0 0
\(236\) 0 0
\(237\) 1.57906 1.98008i 1.57906 1.98008i
\(238\) 0.433884 0.900969i 0.433884 0.900969i
\(239\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(240\) 0 0
\(241\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(242\) 0.238377 + 0.607374i 0.238377 + 0.607374i
\(243\) −2.04493 + 0.630777i −2.04493 + 0.630777i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0.571270 + 1.45557i 0.571270 + 1.45557i
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(252\) 1.92808 1.53759i 1.92808 1.53759i
\(253\) −0.716677 + 0.898684i −0.716677 + 0.898684i
\(254\) 0 0
\(255\) 0 0
\(256\) −0.733052 0.680173i −0.733052 0.680173i
\(257\) 0.826239 + 0.563320i 0.826239 + 0.563320i 0.900969 0.433884i \(-0.142857\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0.145713 1.94440i 0.145713 1.94440i
\(263\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(264\) −0.548760 0.950480i −0.548760 0.950480i
\(265\) 0 0
\(266\) 0 0
\(267\) −1.22563 0.590232i −1.22563 0.590232i
\(268\) 0 0
\(269\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(270\) 0 0
\(271\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(272\) −0.900969 0.433884i −0.900969 0.433884i
\(273\) 3.08138 + 1.77904i 3.08138 + 1.77904i
\(274\) −0.658322 + 0.317031i −0.658322 + 0.317031i
\(275\) −0.294755 0.510531i −0.294755 0.510531i
\(276\) −1.81507 + 3.14379i −1.81507 + 3.14379i
\(277\) 0 0 0.0747301 0.997204i \(-0.476190\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(278\) 0.496990 1.26631i 0.496990 1.26631i
\(279\) 0.858075 + 3.75947i 0.858075 + 3.75947i
\(280\) 0 0
\(281\) 0.222521 0.974928i 0.222521 0.974928i −0.733052 0.680173i \(-0.761905\pi\)
0.955573 0.294755i \(-0.0952381\pi\)
\(282\) 0 0
\(283\) 0.432142 + 0.400969i 0.432142 + 0.400969i 0.866025 0.500000i \(-0.166667\pi\)
−0.433884 + 0.900969i \(0.642857\pi\)
\(284\) 0.294755 0.0444272i 0.294755 0.0444272i
\(285\) 0 0
\(286\) 0.702449 0.880843i 0.702449 0.880843i
\(287\) 0 0
\(288\) −1.53759 1.92808i −1.53759 1.92808i
\(289\) −0.988831 0.149042i −0.988831 0.149042i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −1.46610 −1.46610 −0.733052 0.680173i \(-0.761905\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(294\) −1.16078 + 1.45557i −1.16078 + 1.45557i
\(295\) 0 0
\(296\) 0 0
\(297\) −0.587862 1.49785i −0.587862 1.49785i
\(298\) −0.603718 + 0.411608i −0.603718 + 0.411608i
\(299\) −3.68484 0.555400i −3.68484 0.555400i
\(300\) −1.16078 1.45557i −1.16078 1.45557i
\(301\) 0 0
\(302\) 0 0
\(303\) 0.607374 0.563561i 0.607374 0.563561i
\(304\) 0 0
\(305\) 0 0
\(306\) −2.03759 1.38921i −2.03759 1.38921i
\(307\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(308\) 0.400969 + 0.432142i 0.400969 + 0.432142i
\(309\) 0 0
\(310\) 0 0
\(311\) −0.129436 + 1.72721i −0.129436 + 1.72721i 0.433884 + 0.900969i \(0.357143\pi\)
−0.563320 + 0.826239i \(0.690476\pi\)
\(312\) 1.77904 3.08138i 1.77904 3.08138i
\(313\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(314\) −1.32091 + 0.636119i −1.32091 + 0.636119i
\(315\) 0 0
\(316\) 1.22563 + 0.590232i 1.22563 + 0.590232i
\(317\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(318\) −3.51833 1.08526i −3.51833 1.08526i
\(319\) 0 0
\(320\) 0 0
\(321\) 1.88980 + 0.910080i 1.88980 + 0.910080i
\(322\) 0.574730 1.86323i 0.574730 1.86323i
\(323\) 0 0
\(324\) −1.30778 2.26514i −1.30778 2.26514i
\(325\) 0.955573 1.65510i 0.955573 1.65510i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) −1.46200 + 1.35654i −1.46200 + 1.35654i
\(335\) 0 0
\(336\) 1.45557 + 1.16078i 1.45557 + 1.16078i
\(337\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(338\) 2.62285 + 0.395331i 2.62285 + 0.395331i
\(339\) 0 0
\(340\) 0 0
\(341\) −0.880843 + 0.271704i −0.880843 + 0.271704i
\(342\) 0 0
\(343\) 0.433884 0.900969i 0.433884 0.900969i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0.716983 0.488831i 0.716983 0.488831i −0.149042 0.988831i \(-0.547619\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(348\) 0 0
\(349\) −1.12349 1.40881i −1.12349 1.40881i −0.900969 0.433884i \(-0.857143\pi\)
−0.222521 0.974928i \(-0.571429\pi\)
\(350\) 0.781831 + 0.623490i 0.781831 + 0.623490i
\(351\) 3.25243 4.07842i 3.25243 4.07842i
\(352\) 0.432142 0.400969i 0.432142 0.400969i
\(353\) 0.988831 0.149042i 0.988831 0.149042i 0.365341 0.930874i \(-0.380952\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0.162592 0.712362i 0.162592 0.712362i
\(357\) 1.73305 + 0.680173i 1.73305 + 0.680173i
\(358\) 0 0
\(359\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(360\) 0 0
\(361\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(362\) 0 0
\(363\) −1.09445 + 0.527060i −1.09445 + 0.527060i
\(364\) −0.563320 + 1.82624i −0.563320 + 1.82624i
\(365\) 0 0
\(366\) 0 0
\(367\) −1.07659 0.332083i −1.07659 0.332083i −0.294755 0.955573i \(-0.595238\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(368\) −1.86323 0.574730i −1.86323 0.574730i
\(369\) 0 0
\(370\) 0 0
\(371\) 1.97213 + 0.147791i 1.97213 + 0.147791i
\(372\) −2.62285 + 1.26310i −2.62285 + 1.26310i
\(373\) 0.955573 + 1.65510i 0.955573 + 1.65510i 0.733052 + 0.680173i \(0.238095\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(374\) 0.294755 0.510531i 0.294755 0.510531i
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 1.85654 + 2.00088i 1.85654 + 2.00088i
\(379\) 0.385418 1.68862i 0.385418 1.68862i −0.294755 0.955573i \(-0.595238\pi\)
0.680173 0.733052i \(-0.261905\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.733052 0.680173i \(-0.238095\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(384\) 1.16078 1.45557i 1.16078 1.45557i
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −0.0546039 0.139129i −0.0546039 0.139129i 0.900969 0.433884i \(-0.142857\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(390\) 0 0
\(391\) −1.94986 −1.94986
\(392\) −0.900969 0.433884i −0.900969 0.433884i
\(393\) 3.63014 3.63014
\(394\) 0 0
\(395\) 0 0
\(396\) 1.20118 0.818951i 1.20118 0.818951i
\(397\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(398\) −0.185853 0.233052i −0.185853 0.233052i
\(399\) 0 0
\(400\) 0.623490 0.781831i 0.623490 0.781831i
\(401\) 0 0 0.733052 0.680173i \(-0.238095\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(402\) 0 0
\(403\) −2.19064 2.03262i −2.19064 2.03262i
\(404\) 0.367711 + 0.250701i 0.367711 + 0.250701i
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0.680173 1.73305i 0.680173 1.73305i
\(409\) −0.147791 + 1.97213i −0.147791 + 1.97213i 0.0747301 + 0.997204i \(0.476190\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(410\) 0 0
\(411\) −0.680173 1.17809i −0.680173 1.17809i
\(412\) 0 0
\(413\) 0 0
\(414\) −4.33235 2.08635i −4.33235 2.08635i
\(415\) 0 0
\(416\) 1.82624 + 0.563320i 1.82624 + 0.563320i
\(417\) 2.42010 + 0.746503i 2.42010 + 0.746503i
\(418\) 0 0
\(419\) 1.22563 + 0.590232i 1.22563 + 0.590232i 0.930874 0.365341i \(-0.119048\pi\)
0.294755 + 0.955573i \(0.404762\pi\)
\(420\) 0 0
\(421\) 1.12349 0.541044i 1.12349 0.541044i 0.222521 0.974928i \(-0.428571\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(422\) 0.433884 + 0.751509i 0.433884 + 0.751509i
\(423\) 0 0
\(424\) 0.147791 1.97213i 0.147791 1.97213i
\(425\) 0.365341 0.930874i 0.365341 0.930874i
\(426\) 0.123490 + 0.541044i 0.123490 + 0.541044i
\(427\) 0 0
\(428\) −0.250701 + 1.09839i −0.250701 + 1.09839i
\(429\) 1.73305 + 1.18157i 1.73305 + 1.18157i
\(430\) 0 0
\(431\) 1.71271 0.258149i 1.71271 0.258149i 0.781831 0.623490i \(-0.214286\pi\)
0.930874 + 0.365341i \(0.119048\pi\)
\(432\) 2.00088 1.85654i 2.00088 1.85654i
\(433\) 0.277479 0.347948i 0.277479 0.347948i −0.623490 0.781831i \(-0.714286\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(434\) 1.22252 0.974928i 1.22252 0.974928i
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 1.29991 0.400969i 1.29991 0.400969i 0.433884 0.900969i \(-0.357143\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(440\) 0 0
\(441\) −2.03759 1.38921i −2.03759 1.38921i
\(442\) 1.91115 1.91115
\(443\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −0.848162 1.06356i −0.848162 1.06356i
\(448\) −0.433884 + 0.900969i −0.433884 + 0.900969i
\(449\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(450\) 1.80778 1.67738i 1.80778 1.67738i
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0.0663300 0.290611i 0.0663300 0.290611i
\(455\) 0 0
\(456\) 0 0
\(457\) 0.162592 0.414278i 0.162592 0.414278i −0.826239 0.563320i \(-0.809524\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(458\) −0.134659 + 1.79690i −0.134659 + 1.79690i
\(459\) 1.36476 2.36383i 1.36476 2.36383i
\(460\) 0 0
\(461\) 1.78181 0.858075i 1.78181 0.858075i 0.826239 0.563320i \(-0.190476\pi\)
0.955573 0.294755i \(-0.0952381\pi\)
\(462\) −0.746503 + 0.804539i −0.746503 + 0.804539i
\(463\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(468\) 4.24634 + 2.04493i 4.24634 + 2.04493i
\(469\) 0 0
\(470\) 0 0
\(471\) −1.36476 2.36383i −1.36476 2.36383i
\(472\) 0 0
\(473\) 0 0
\(474\) −0.925270 + 2.35755i −0.925270 + 2.35755i
\(475\) 0 0
\(476\) −0.149042 + 0.988831i −0.149042 + 0.988831i
\(477\) 1.08526 4.75484i 1.08526 4.75484i
\(478\) 0 0
\(479\) −1.42935 1.32624i −1.42935 1.32624i −0.866025 0.500000i \(-0.833333\pi\)
−0.563320 0.826239i \(-0.690476\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 3.53912 + 0.807782i 3.53912 + 0.807782i
\(484\) −0.406813 0.510127i −0.406813 0.510127i
\(485\) 0 0
\(486\) 1.76815 1.20551i 1.76815 1.20551i
\(487\) 0.632789 + 1.61232i 0.632789 + 1.61232i 0.781831 + 0.623490i \(0.214286\pi\)
−0.149042 + 0.988831i \(0.547619\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −0.974928 1.22252i −0.974928 1.22252i
\(497\) −0.129334 0.268565i −0.129334 0.268565i
\(498\) 0 0
\(499\) −0.997204 + 0.925270i −0.997204 + 0.925270i −0.997204 0.0747301i \(-0.976190\pi\)
1.00000i \(0.5\pi\)
\(500\) 0 0
\(501\) −2.72188 2.52554i −2.72188 2.52554i
\(502\) 0 0
\(503\) −0.250701 + 1.09839i −0.250701 + 1.09839i 0.680173 + 0.733052i \(0.261905\pi\)
−0.930874 + 0.365341i \(0.880952\pi\)
\(504\) −1.38921 + 2.03759i −1.38921 + 2.03759i
\(505\) 0 0
\(506\) 0.419945 1.07000i 0.419945 1.07000i
\(507\) −0.369035 + 4.92444i −0.369035 + 4.92444i
\(508\) 0 0
\(509\) 0.222521 + 0.385418i 0.222521 + 0.385418i 0.955573 0.294755i \(-0.0952381\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0.900969 + 0.433884i 0.900969 + 0.433884i
\(513\) 0 0
\(514\) −0.955573 0.294755i −0.955573 0.294755i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(522\) 0 0
\(523\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(524\) 0.433884 + 1.90097i 0.433884 + 1.90097i
\(525\) −1.04876 + 1.53825i −1.04876 + 1.53825i
\(526\) 0 0
\(527\) −1.29196 0.880843i −1.29196 0.880843i
\(528\) 0.804539 + 0.746503i 0.804539 + 0.746503i
\(529\) −2.77064 + 0.417607i −2.77064 + 0.417607i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 1.34515 + 0.202749i 1.34515 + 0.202749i
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0.294755 0.510531i 0.294755 0.510531i
\(540\) 0 0
\(541\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0.988831 + 0.149042i 0.988831 + 0.149042i
\(545\) 0 0
\(546\) −3.46886 0.791745i −3.46886 0.791745i
\(547\) −1.24349 + 1.55929i −1.24349 + 1.55929i −0.563320 + 0.826239i \(0.690476\pi\)
−0.680173 + 0.733052i \(0.738095\pi\)
\(548\) 0.535628 0.496990i 0.535628 0.496990i
\(549\) 0 0
\(550\) 0.432142 + 0.400969i 0.432142 + 0.400969i
\(551\) 0 0
\(552\) 0.807782 3.53912i 0.807782 3.53912i
\(553\) 0.202749 1.34515i 0.202749 1.34515i
\(554\) 0 0
\(555\) 0 0
\(556\) −0.101659 + 1.35654i −0.101659 + 1.35654i
\(557\) −0.988831 + 1.71271i −0.988831 + 1.71271i −0.365341 + 0.930874i \(0.619048\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(558\) −1.92808 3.33953i −1.92808 3.33953i
\(559\) 0 0
\(560\) 0 0
\(561\) 0.988831 + 0.476196i 0.988831 + 0.476196i
\(562\) 0.0747301 + 0.997204i 0.0747301 + 0.997204i
\(563\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −0.531130 0.255779i −0.531130 0.255779i
\(567\) −1.77904 + 1.91734i −1.77904 + 1.91734i
\(568\) −0.268565 + 0.129334i −0.268565 + 0.129334i
\(569\) −0.955573 1.65510i −0.955573 1.65510i −0.733052 0.680173i \(-0.761905\pi\)
−0.222521 0.974928i \(-0.571429\pi\)
\(570\) 0 0
\(571\) −0.116853 + 1.55929i −0.116853 + 1.55929i 0.563320 + 0.826239i \(0.309524\pi\)
−0.680173 + 0.733052i \(0.738095\pi\)
\(572\) −0.411608 + 1.04876i −0.411608 + 1.04876i
\(573\) 0 0
\(574\) 0 0
\(575\) 0.433884 1.90097i 0.433884 1.90097i
\(576\) 2.03759 + 1.38921i 2.03759 + 1.38921i
\(577\) 1.21135 + 1.12397i 1.21135 + 1.12397i 0.988831 + 0.149042i \(0.0476190\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(578\) 0.988831 0.149042i 0.988831 0.149042i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 1.15283 + 0.173761i 1.15283 + 0.173761i
\(584\) 0 0
\(585\) 0 0
\(586\) 1.40097 0.432142i 1.40097 0.432142i
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0.680173 1.73305i 0.680173 1.73305i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −1.63402 0.246289i −1.63402 0.246289i −0.733052 0.680173i \(-0.761905\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(594\) 1.00324 + 1.25803i 1.00324 + 1.25803i
\(595\) 0 0
\(596\) 0.455573 0.571270i 0.455573 0.571270i
\(597\) 0.406813 0.377467i 0.406813 0.377467i
\(598\) 3.68484 0.555400i 3.68484 0.555400i
\(599\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(600\) 1.53825 + 1.04876i 1.53825 + 1.04876i
\(601\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) −0.414278 + 0.717550i −0.414278 + 0.717550i
\(607\) −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(-0.5\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 2.35654 + 0.726897i 2.35654 + 0.726897i
\(613\) 0.142820 + 0.0440542i 0.142820 + 0.0440542i 0.365341 0.930874i \(-0.380952\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) −0.510531 0.294755i −0.510531 0.294755i
\(617\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(618\) 0 0
\(619\) 0.866025 1.50000i 0.866025 1.50000i 1.00000i \(-0.5\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(620\) 0 0
\(621\) 1.94440 4.95426i 1.94440 4.95426i
\(622\) −0.385418 1.68862i −0.385418 1.68862i
\(623\) −0.728639 + 0.0546039i −0.728639 + 0.0546039i
\(624\) −0.791745 + 3.46886i −0.791745 + 3.46886i
\(625\) 0.826239 + 0.563320i 0.826239 + 0.563320i
\(626\) 0 0
\(627\) 0 0
\(628\) 1.07473 0.997204i 1.07473 0.997204i
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(632\) −1.34515 0.202749i −1.34515 0.202749i
\(633\) −1.33484 + 0.910080i −1.33484 + 0.910080i
\(634\) 0 0
\(635\) 0 0
\(636\) 3.68191 3.68191
\(637\) 1.91115 1.91115
\(638\) 0 0
\(639\) −0.702449 + 0.216677i −0.702449 + 0.216677i
\(640\) 0 0
\(641\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(642\) −2.07409 0.312619i −2.07409 0.312619i
\(643\) −1.24349 1.55929i −1.24349 1.55929i −0.680173 0.733052i \(-0.738095\pi\)
−0.563320 0.826239i \(-0.690476\pi\)
\(644\) 1.94986i 1.94986i
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(648\) 1.91734 + 1.77904i 1.91734 + 1.77904i
\(649\) 0 0
\(650\) −0.425270 + 1.86323i −0.425270 + 1.86323i
\(651\) 1.98008 + 2.13402i 1.98008 + 2.13402i
\(652\) 0 0
\(653\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(660\) 0 0
\(661\) 1.19158 + 0.367554i 1.19158 + 0.367554i 0.826239 0.563320i \(-0.190476\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(662\) 0 0
\(663\) 0.265895 + 3.54812i 0.265895 + 3.54812i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0.997204 1.72721i 0.997204 1.72721i
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) −1.73305 0.680173i −1.73305 0.680173i
\(673\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(674\) 0 0
\(675\) 2.00088 + 1.85654i 2.00088 + 1.85654i
\(676\) −2.62285 + 0.395331i −2.62285 + 0.395331i
\(677\) 0 0 0.733052 0.680173i \(-0.238095\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0.548760 + 0.0827122i 0.548760 + 0.0827122i
\(682\) 0.761623 0.519266i 0.761623 0.519266i
\(683\) 0.108903 + 0.277479i 0.108903 + 0.277479i 0.974928 0.222521i \(-0.0714286\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −0.149042 + 0.988831i −0.149042 + 0.988831i
\(687\) −3.35475 −3.35475
\(688\) 0 0
\(689\) 1.38084 + 3.51833i 1.38084 + 3.51833i
\(690\) 0 0
\(691\) −1.54620 0.233052i −1.54620 0.233052i −0.680173 0.733052i \(-0.738095\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(692\) 0 0
\(693\) −1.13662 0.906426i −1.13662 0.906426i
\(694\) −0.541044 + 0.678448i −0.541044 + 0.678448i
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 1.48883 + 1.01507i 1.48883 + 1.01507i
\(699\) 0 0
\(700\) −0.930874 0.365341i −0.930874 0.365341i
\(701\) −0.440071 1.92808i −0.440071 1.92808i −0.365341 0.930874i \(-0.619048\pi\)
−0.0747301 0.997204i \(-0.523810\pi\)
\(702\) −1.90580 + 4.85590i −1.90580 + 4.85590i
\(703\) 0 0
\(704\) −0.294755 + 0.510531i −0.294755 + 0.510531i
\(705\) 0 0
\(706\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(707\) 0.131178 0.425270i 0.131178 0.425270i
\(708\) 0 0
\(709\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(710\) 0 0
\(711\) −3.20571 0.988831i −3.20571 0.988831i
\(712\) 0.0546039 + 0.728639i 0.0546039 + 0.728639i
\(713\) −2.74698 1.32288i −2.74698 1.32288i
\(714\) −1.85654 0.139129i −1.85654 0.139129i
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0.215372 0.548760i 0.215372 0.548760i −0.781831 0.623490i \(-0.785714\pi\)
0.997204 + 0.0747301i \(0.0238095\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0.222521 0.974928i 0.222521 0.974928i
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0.890474 0.826239i 0.890474 0.826239i
\(727\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(728\) 1.91115i 1.91115i
\(729\) 0.853298 + 1.07000i 0.853298 + 1.07000i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −0.955573 + 0.294755i −0.955573 + 0.294755i −0.733052 0.680173i \(-0.761905\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(734\) 1.12664 1.12664
\(735\) 0 0
\(736\) 1.94986 1.94986
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −1.92808 + 0.440071i −1.92808 + 0.440071i
\(743\) 1.16078 1.45557i 1.16078 1.45557i 0.294755 0.955573i \(-0.404762\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(744\) 2.13402 1.98008i 2.13402 1.98008i
\(745\) 0 0
\(746\) −1.40097 1.29991i −1.40097 1.29991i
\(747\) 0 0
\(748\) −0.131178 + 0.574730i −0.131178 + 0.574730i
\(749\) 1.12349 0.0841939i 1.12349 0.0841939i
\(750\) 0 0
\(751\) 0.496990 1.26631i 0.496990 1.26631i −0.433884 0.900969i \(-0.642857\pi\)
0.930874 0.365341i \(-0.119048\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) −2.36383 1.36476i −2.36383 1.36476i
\(757\) −0.900969 0.433884i −0.900969 0.433884i −0.0747301 0.997204i \(-0.523810\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(758\) 0.129436 + 1.72721i 0.129436 + 1.72721i
\(759\) 2.04493 + 0.630777i 2.04493 + 0.630777i
\(760\) 0 0
\(761\) −0.0111692 0.149042i −0.0111692 0.149042i 0.988831 0.149042i \(-0.0476190\pi\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) −0.680173 + 1.73305i −0.680173 + 1.73305i
\(769\) −0.222521 0.974928i −0.222521 0.974928i −0.955573 0.294755i \(-0.904762\pi\)
0.733052 0.680173i \(-0.238095\pi\)
\(770\) 0 0
\(771\) 0.414278 1.81507i 0.414278 1.81507i
\(772\) 0 0
\(773\) 0.109562 + 0.101659i 0.109562 + 0.101659i 0.733052 0.680173i \(-0.238095\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(774\) 0 0
\(775\) 1.14625 1.06356i 1.14625 1.06356i
\(776\) 0 0
\(777\) 0 0
\(778\) 0.0931869 + 0.116853i 0.0931869 + 0.116853i
\(779\) 0 0
\(780\) 0 0
\(781\) −0.0641992 0.163577i −0.0641992 0.163577i
\(782\) 1.86323 0.574730i 1.86323 0.574730i
\(783\) 0 0
\(784\) 0.988831 + 0.149042i 0.988831 + 0.149042i
\(785\) 0 0
\(786\) −3.46886 + 1.07000i −3.46886 + 1.07000i
\(787\) 0.317031 + 0.807782i 0.317031 +