Newspace parameters
Level: | \( N \) | \(=\) | \( 3332 = 2^{2} \cdot 7^{2} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 3332.cc (of order \(42\), degree \(12\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(1.66288462209\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(2\) over \(\Q(\zeta_{42})\) |
Coefficient field: | \(\Q(\zeta_{84})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{24} + x^{22} - x^{18} - x^{16} + x^{12} - x^{8} - x^{6} + x^{2} + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Projective image: | \(D_{42}\) |
Projective field: | Galois closure of \(\mathbb{Q}[x]/(x^{42} - \cdots)\) |
$q$-expansion
The \(q\)-expansion and trace form are shown below.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3332\mathbb{Z}\right)^\times\).
\(n\) | \(785\) | \(885\) | \(1667\) |
\(\chi(n)\) | \(-1\) | \(\zeta_{84}^{16}\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
135.1 |
|
−0.826239 | + | 0.563320i | −0.997204 | + | 0.925270i | 0.365341 | − | 0.930874i | 0 | 0.302705 | − | 1.32624i | 0.974928 | − | 0.222521i | 0.222521 | + | 0.974928i | 0.0635609 | − | 0.848162i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
135.2 | −0.826239 | + | 0.563320i | 0.997204 | − | 0.925270i | 0.365341 | − | 0.930874i | 0 | −0.302705 | + | 1.32624i | −0.974928 | + | 0.222521i | 0.222521 | + | 0.974928i | 0.0635609 | − | 0.848162i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
543.1 | −0.826239 | − | 0.563320i | −0.997204 | − | 0.925270i | 0.365341 | + | 0.930874i | 0 | 0.302705 | + | 1.32624i | 0.974928 | + | 0.222521i | 0.222521 | − | 0.974928i | 0.0635609 | + | 0.848162i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
543.2 | −0.826239 | − | 0.563320i | 0.997204 | + | 0.925270i | 0.365341 | + | 0.930874i | 0 | −0.302705 | − | 1.32624i | −0.974928 | − | 0.222521i | 0.222521 | − | 0.974928i | 0.0635609 | + | 0.848162i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
611.1 | −0.0747301 | + | 0.997204i | −0.563320 | + | 0.173761i | −0.988831 | − | 0.149042i | 0 | −0.131178 | − | 0.574730i | −0.974928 | − | 0.222521i | 0.222521 | − | 0.974928i | −0.539102 | + | 0.367554i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
611.2 | −0.0747301 | + | 0.997204i | 0.563320 | − | 0.173761i | −0.988831 | − | 0.149042i | 0 | 0.131178 | + | 0.574730i | 0.974928 | + | 0.222521i | 0.222521 | − | 0.974928i | −0.539102 | + | 0.367554i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1019.1 | 0.988831 | + | 0.149042i | −0.930874 | + | 0.634659i | 0.955573 | + | 0.294755i | 0 | −1.01507 | + | 0.488831i | 0.433884 | − | 0.900969i | 0.900969 | + | 0.433884i | 0.0983929 | − | 0.250701i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1019.2 | 0.988831 | + | 0.149042i | 0.930874 | − | 0.634659i | 0.955573 | + | 0.294755i | 0 | 1.01507 | − | 0.488831i | −0.433884 | + | 0.900969i | 0.900969 | + | 0.433884i | 0.0983929 | − | 0.250701i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1087.1 | 0.733052 | + | 0.680173i | −0.294755 | − | 0.0444272i | 0.0747301 | + | 0.997204i | 0 | −0.185853 | − | 0.233052i | −0.781831 | − | 0.623490i | −0.623490 | + | 0.781831i | −0.870666 | − | 0.268565i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1087.2 | 0.733052 | + | 0.680173i | 0.294755 | + | 0.0444272i | 0.0747301 | + | 0.997204i | 0 | 0.185853 | + | 0.233052i | 0.781831 | + | 0.623490i | −0.623490 | + | 0.781831i | −0.870666 | − | 0.268565i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1495.1 | −0.955573 | + | 0.294755i | −0.680173 | − | 1.73305i | 0.826239 | − | 0.563320i | 0 | 1.16078 | + | 1.45557i | −0.781831 | − | 0.623490i | −0.623490 | + | 0.781831i | −1.80778 | + | 1.67738i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1495.2 | −0.955573 | + | 0.294755i | 0.680173 | + | 1.73305i | 0.826239 | − | 0.563320i | 0 | −1.16078 | − | 1.45557i | 0.781831 | + | 0.623490i | −0.623490 | + | 0.781831i | −1.80778 | + | 1.67738i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1563.1 | 0.988831 | − | 0.149042i | −0.930874 | − | 0.634659i | 0.955573 | − | 0.294755i | 0 | −1.01507 | − | 0.488831i | 0.433884 | + | 0.900969i | 0.900969 | − | 0.433884i | 0.0983929 | + | 0.250701i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1563.2 | 0.988831 | − | 0.149042i | 0.930874 | + | 0.634659i | 0.955573 | − | 0.294755i | 0 | 1.01507 | + | 0.488831i | −0.433884 | − | 0.900969i | 0.900969 | − | 0.433884i | 0.0983929 | + | 0.250701i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1971.1 | 0.733052 | − | 0.680173i | −0.294755 | + | 0.0444272i | 0.0747301 | − | 0.997204i | 0 | −0.185853 | + | 0.233052i | −0.781831 | + | 0.623490i | −0.623490 | − | 0.781831i | −0.870666 | + | 0.268565i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1971.2 | 0.733052 | − | 0.680173i | 0.294755 | − | 0.0444272i | 0.0747301 | − | 0.997204i | 0 | 0.185853 | − | 0.233052i | 0.781831 | − | 0.623490i | −0.623490 | − | 0.781831i | −0.870666 | + | 0.268565i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2447.1 | −0.365341 | + | 0.930874i | −0.149042 | + | 1.98883i | −0.733052 | − | 0.680173i | 0 | −1.79690 | − | 0.865341i | −0.433884 | − | 0.900969i | 0.900969 | − | 0.433884i | −2.94440 | − | 0.443797i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2447.2 | −0.365341 | + | 0.930874i | 0.149042 | − | 1.98883i | −0.733052 | − | 0.680173i | 0 | 1.79690 | + | 0.865341i | 0.433884 | + | 0.900969i | 0.900969 | − | 0.433884i | −2.94440 | − | 0.443797i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2515.1 | −0.365341 | − | 0.930874i | −0.149042 | − | 1.98883i | −0.733052 | + | 0.680173i | 0 | −1.79690 | + | 0.865341i | −0.433884 | + | 0.900969i | 0.900969 | + | 0.433884i | −2.94440 | + | 0.443797i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2515.2 | −0.365341 | − | 0.930874i | 0.149042 | + | 1.98883i | −0.733052 | + | 0.680173i | 0 | 1.79690 | − | 0.865341i | 0.433884 | − | 0.900969i | 0.900969 | + | 0.433884i | −2.94440 | + | 0.443797i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
68.d | odd | 2 | 1 | CM by \(\Q(\sqrt{-17}) \) |
4.b | odd | 2 | 1 | inner |
17.b | even | 2 | 1 | inner |
49.g | even | 21 | 1 | inner |
196.o | odd | 42 | 1 | inner |
833.z | even | 42 | 1 | inner |
3332.cc | odd | 42 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 3332.1.cc.c | ✓ | 24 |
4.b | odd | 2 | 1 | inner | 3332.1.cc.c | ✓ | 24 |
17.b | even | 2 | 1 | inner | 3332.1.cc.c | ✓ | 24 |
49.g | even | 21 | 1 | inner | 3332.1.cc.c | ✓ | 24 |
68.d | odd | 2 | 1 | CM | 3332.1.cc.c | ✓ | 24 |
196.o | odd | 42 | 1 | inner | 3332.1.cc.c | ✓ | 24 |
833.z | even | 42 | 1 | inner | 3332.1.cc.c | ✓ | 24 |
3332.cc | odd | 42 | 1 | inner | 3332.1.cc.c | ✓ | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
3332.1.cc.c | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
3332.1.cc.c | ✓ | 24 | 4.b | odd | 2 | 1 | inner |
3332.1.cc.c | ✓ | 24 | 17.b | even | 2 | 1 | inner |
3332.1.cc.c | ✓ | 24 | 49.g | even | 21 | 1 | inner |
3332.1.cc.c | ✓ | 24 | 68.d | odd | 2 | 1 | CM |
3332.1.cc.c | ✓ | 24 | 196.o | odd | 42 | 1 | inner |
3332.1.cc.c | ✓ | 24 | 833.z | even | 42 | 1 | inner |
3332.1.cc.c | ✓ | 24 | 3332.cc | odd | 42 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{24} + 11 T_{3}^{22} + 49 T_{3}^{20} + 118 T_{3}^{18} + 192 T_{3}^{16} + 336 T_{3}^{14} + 421 T_{3}^{12} - 168 T_{3}^{10} + 999 T_{3}^{8} - 736 T_{3}^{6} + 231 T_{3}^{4} - 26 T_{3}^{2} + 1 \)
acting on \(S_{1}^{\mathrm{new}}(3332, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T^{12} + T^{11} - T^{9} - T^{8} + T^{6} - T^{4} - T^{3} + \cdots + 1)^{2} \)
$3$
\( T^{24} + 11 T^{22} + 49 T^{20} + 118 T^{18} + \cdots + 1 \)
$5$
\( T^{24} \)
$7$
\( (T^{12} - T^{10} + T^{8} - T^{6} + T^{4} - T^{2} + 1)^{2} \)
$11$
\( T^{24} - 10 T^{22} + 49 T^{20} - 134 T^{18} + \cdots + 1 \)
$13$
\( (T^{12} - 5 T^{11} + 17 T^{10} - 38 T^{9} + \cdots + 1)^{2} \)
$17$
\( (T^{12} - T^{11} + T^{9} - T^{8} + T^{6} - T^{4} + T^{3} + \cdots + 1)^{2} \)
$19$
\( T^{24} \)
$23$
\( T^{24} + 70 T^{18} - 98 T^{16} + \cdots + 2401 \)
$29$
\( T^{24} \)
$31$
\( (T^{12} + 7 T^{10} + 35 T^{8} + 84 T^{6} + \cdots + 49)^{2} \)
$37$
\( T^{24} \)
$41$
\( T^{24} \)
$43$
\( T^{24} \)
$47$
\( T^{24} \)
$53$
\( (T^{12} + T^{11} - T^{9} + 6 T^{8} - 21 T^{7} + \cdots + 1)^{2} \)
$59$
\( T^{24} \)
$61$
\( T^{24} \)
$67$
\( T^{24} \)
$71$
\( T^{24} + 6 T^{22} + 13 T^{20} + 38 T^{18} + \cdots + 1 \)
$73$
\( T^{24} \)
$79$
\( T^{24} + 11 T^{22} + 77 T^{20} + 328 T^{18} + \cdots + 1 \)
$83$
\( T^{24} \)
$89$
\( (T^{12} - T^{11} - 6 T^{9} + 6 T^{8} - 7 T^{7} + \cdots + 1)^{2} \)
$97$
\( T^{24} \)
show more
show less