Properties

Label 3332.1.cc.b.135.1
Level $3332$
Weight $1$
Character 3332.135
Analytic conductor $1.663$
Analytic rank $0$
Dimension $12$
Projective image $D_{21}$
CM discriminant -68
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3332,1,Mod(135,3332)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3332, base_ring=CyclotomicField(42))
 
chi = DirichletCharacter(H, H._module([21, 32, 21]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3332.135");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3332 = 2^{2} \cdot 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3332.cc (of order \(42\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.66288462209\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\Q(\zeta_{21})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + x^{9} - x^{8} + x^{6} - x^{4} + x^{3} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{21}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{21} + \cdots)\)

Embedding invariants

Embedding label 135.1
Root \(-0.988831 - 0.149042i\) of defining polynomial
Character \(\chi\) \(=\) 3332.135
Dual form 3332.1.cc.b.543.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.826239 - 0.563320i) q^{2} +(1.07473 - 0.997204i) q^{3} +(0.365341 - 0.930874i) q^{4} +(0.326239 - 1.42935i) q^{6} +(-0.222521 - 0.974928i) q^{7} +(-0.222521 - 0.974928i) q^{8} +(0.0858993 - 1.14625i) q^{9} +(0.123490 + 1.64786i) q^{11} +(-0.535628 - 1.36476i) q^{12} +(-1.48883 - 0.716983i) q^{13} +(-0.733052 - 0.680173i) q^{14} +(-0.733052 - 0.680173i) q^{16} +(-0.988831 - 0.149042i) q^{17} +(-0.574730 - 0.995462i) q^{18} +(-1.21135 - 0.825886i) q^{21} +(1.03030 + 1.29196i) q^{22} +(1.78181 - 0.268565i) q^{23} +(-1.21135 - 0.825886i) q^{24} +(0.826239 + 0.563320i) q^{25} +(-1.63402 + 0.246289i) q^{26} +(-0.136622 - 0.171318i) q^{27} +(-0.988831 - 0.149042i) q^{28} +(0.222521 + 0.385418i) q^{31} +(-0.988831 - 0.149042i) q^{32} +(1.77597 + 1.64786i) q^{33} +(-0.900969 + 0.433884i) q^{34} +(-1.03563 - 0.498732i) q^{36} +(-2.31507 + 0.714104i) q^{39} -1.46610 q^{42} +(1.57906 + 0.487076i) q^{44} +(1.32091 - 1.22563i) q^{46} -1.46610 q^{48} +(-0.900969 + 0.433884i) q^{49} +1.00000 q^{50} +(-1.21135 + 0.825886i) q^{51} +(-1.21135 + 1.12397i) q^{52} +(0.698220 - 1.77904i) q^{53} +(-0.209389 - 0.0645880i) q^{54} +(-0.900969 + 0.433884i) q^{56} +(0.400969 + 0.193096i) q^{62} +(-1.13662 + 0.171318i) q^{63} +(-0.900969 + 0.433884i) q^{64} +(2.39564 + 0.361085i) q^{66} +(-0.500000 + 0.866025i) q^{68} +(1.64715 - 2.06546i) q^{69} +(1.19158 + 1.49419i) q^{71} +(-1.13662 + 0.171318i) q^{72} +(1.44973 - 0.218511i) q^{75} +(1.57906 - 0.487076i) q^{77} +(-1.51053 + 1.89415i) q^{78} +(-0.0747301 + 0.129436i) q^{79} +(0.818951 + 0.123437i) q^{81} +(-1.21135 + 0.825886i) q^{84} +(1.57906 - 0.487076i) q^{88} +(-0.109562 + 1.46200i) q^{89} +(-0.367711 + 1.61105i) q^{91} +(0.400969 - 1.75676i) q^{92} +(0.623490 + 0.192321i) q^{93} +(-1.21135 + 0.825886i) q^{96} +(-0.500000 + 0.866025i) q^{98} +1.89946 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + q^{2} + 13 q^{3} + q^{4} - 5 q^{6} - 2 q^{7} - 2 q^{8} + 14 q^{9} - 8 q^{11} - q^{12} - 5 q^{13} + q^{14} + q^{16} + q^{17} - 7 q^{18} - q^{21} + 2 q^{22} + 2 q^{23} - q^{24} + q^{25} - q^{26}+ \cdots - 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3332\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(885\) \(1667\)
\(\chi(n)\) \(-1\) \(e\left(\frac{16}{21}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.826239 0.563320i 0.826239 0.563320i
\(3\) 1.07473 0.997204i 1.07473 0.997204i 0.0747301 0.997204i \(-0.476190\pi\)
1.00000 \(0\)
\(4\) 0.365341 0.930874i 0.365341 0.930874i
\(5\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(6\) 0.326239 1.42935i 0.326239 1.42935i
\(7\) −0.222521 0.974928i −0.222521 0.974928i
\(8\) −0.222521 0.974928i −0.222521 0.974928i
\(9\) 0.0858993 1.14625i 0.0858993 1.14625i
\(10\) 0 0
\(11\) 0.123490 + 1.64786i 0.123490 + 1.64786i 0.623490 + 0.781831i \(0.285714\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(12\) −0.535628 1.36476i −0.535628 1.36476i
\(13\) −1.48883 0.716983i −1.48883 0.716983i −0.500000 0.866025i \(-0.666667\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(14\) −0.733052 0.680173i −0.733052 0.680173i
\(15\) 0 0
\(16\) −0.733052 0.680173i −0.733052 0.680173i
\(17\) −0.988831 0.149042i −0.988831 0.149042i
\(18\) −0.574730 0.995462i −0.574730 0.995462i
\(19\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(20\) 0 0
\(21\) −1.21135 0.825886i −1.21135 0.825886i
\(22\) 1.03030 + 1.29196i 1.03030 + 1.29196i
\(23\) 1.78181 0.268565i 1.78181 0.268565i 0.826239 0.563320i \(-0.190476\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(24\) −1.21135 0.825886i −1.21135 0.825886i
\(25\) 0.826239 + 0.563320i 0.826239 + 0.563320i
\(26\) −1.63402 + 0.246289i −1.63402 + 0.246289i
\(27\) −0.136622 0.171318i −0.136622 0.171318i
\(28\) −0.988831 0.149042i −0.988831 0.149042i
\(29\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(30\) 0 0
\(31\) 0.222521 + 0.385418i 0.222521 + 0.385418i 0.955573 0.294755i \(-0.0952381\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(32\) −0.988831 0.149042i −0.988831 0.149042i
\(33\) 1.77597 + 1.64786i 1.77597 + 1.64786i
\(34\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(35\) 0 0
\(36\) −1.03563 0.498732i −1.03563 0.498732i
\(37\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(38\) 0 0
\(39\) −2.31507 + 0.714104i −2.31507 + 0.714104i
\(40\) 0 0
\(41\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(42\) −1.46610 −1.46610
\(43\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(44\) 1.57906 + 0.487076i 1.57906 + 0.487076i
\(45\) 0 0
\(46\) 1.32091 1.22563i 1.32091 1.22563i
\(47\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(48\) −1.46610 −1.46610
\(49\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(50\) 1.00000 1.00000
\(51\) −1.21135 + 0.825886i −1.21135 + 0.825886i
\(52\) −1.21135 + 1.12397i −1.21135 + 1.12397i
\(53\) 0.698220 1.77904i 0.698220 1.77904i 0.0747301 0.997204i \(-0.476190\pi\)
0.623490 0.781831i \(-0.285714\pi\)
\(54\) −0.209389 0.0645880i −0.209389 0.0645880i
\(55\) 0 0
\(56\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(60\) 0 0
\(61\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(62\) 0.400969 + 0.193096i 0.400969 + 0.193096i
\(63\) −1.13662 + 0.171318i −1.13662 + 0.171318i
\(64\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(65\) 0 0
\(66\) 2.39564 + 0.361085i 2.39564 + 0.361085i
\(67\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(68\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(69\) 1.64715 2.06546i 1.64715 2.06546i
\(70\) 0 0
\(71\) 1.19158 + 1.49419i 1.19158 + 1.49419i 0.826239 + 0.563320i \(0.190476\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(72\) −1.13662 + 0.171318i −1.13662 + 0.171318i
\(73\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(74\) 0 0
\(75\) 1.44973 0.218511i 1.44973 0.218511i
\(76\) 0 0
\(77\) 1.57906 0.487076i 1.57906 0.487076i
\(78\) −1.51053 + 1.89415i −1.51053 + 1.89415i
\(79\) −0.0747301 + 0.129436i −0.0747301 + 0.129436i −0.900969 0.433884i \(-0.857143\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(80\) 0 0
\(81\) 0.818951 + 0.123437i 0.818951 + 0.123437i
\(82\) 0 0
\(83\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(84\) −1.21135 + 0.825886i −1.21135 + 0.825886i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 1.57906 0.487076i 1.57906 0.487076i
\(89\) −0.109562 + 1.46200i −0.109562 + 1.46200i 0.623490 + 0.781831i \(0.285714\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(90\) 0 0
\(91\) −0.367711 + 1.61105i −0.367711 + 1.61105i
\(92\) 0.400969 1.75676i 0.400969 1.75676i
\(93\) 0.623490 + 0.192321i 0.623490 + 0.192321i
\(94\) 0 0
\(95\) 0 0
\(96\) −1.21135 + 0.825886i −1.21135 + 0.825886i
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(99\) 1.89946 1.89946
\(100\) 0.826239 0.563320i 0.826239 0.563320i
\(101\) 1.32091 1.22563i 1.32091 1.22563i 0.365341 0.930874i \(-0.380952\pi\)
0.955573 0.294755i \(-0.0952381\pi\)
\(102\) −0.535628 + 1.36476i −0.535628 + 1.36476i
\(103\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(104\) −0.367711 + 1.61105i −0.367711 + 1.61105i
\(105\) 0 0
\(106\) −0.425270 1.86323i −0.425270 1.86323i
\(107\) 0.0546039 0.728639i 0.0546039 0.728639i −0.900969 0.433884i \(-0.857143\pi\)
0.955573 0.294755i \(-0.0952381\pi\)
\(108\) −0.209389 + 0.0645880i −0.209389 + 0.0645880i
\(109\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(113\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −0.949729 + 1.64498i −0.949729 + 1.64498i
\(118\) 0 0
\(119\) 0.0747301 + 0.997204i 0.0747301 + 0.997204i
\(120\) 0 0
\(121\) −1.71135 + 0.257945i −1.71135 + 0.257945i
\(122\) 0 0
\(123\) 0 0
\(124\) 0.440071 0.0663300i 0.440071 0.0663300i
\(125\) 0 0
\(126\) −0.842614 + 0.781831i −0.842614 + 0.781831i
\(127\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(128\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(129\) 0 0
\(130\) 0 0
\(131\) 1.32091 + 1.22563i 1.32091 + 1.22563i 0.955573 + 0.294755i \(0.0952381\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(132\) 2.18278 1.05117i 2.18278 1.05117i
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0.0747301 + 0.997204i 0.0747301 + 0.997204i
\(137\) −1.40097 + 0.432142i −1.40097 + 0.432142i −0.900969 0.433884i \(-0.857143\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(138\) 0.197424 2.63444i 0.197424 2.63444i
\(139\) −0.0332580 0.145713i −0.0332580 0.145713i 0.955573 0.294755i \(-0.0952381\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 1.82624 + 0.563320i 1.82624 + 0.563320i
\(143\) 0.997630 2.54192i 0.997630 2.54192i
\(144\) −0.842614 + 0.781831i −0.842614 + 0.781831i
\(145\) 0 0
\(146\) 0 0
\(147\) −0.535628 + 1.36476i −0.535628 + 1.36476i
\(148\) 0 0
\(149\) −1.21135 + 0.825886i −1.21135 + 0.825886i −0.988831 0.149042i \(-0.952381\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(150\) 1.07473 0.997204i 1.07473 0.997204i
\(151\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(152\) 0 0
\(153\) −0.255779 + 1.12064i −0.255779 + 1.12064i
\(154\) 1.03030 1.29196i 1.03030 1.29196i
\(155\) 0 0
\(156\) −0.181049 + 2.41593i −0.181049 + 2.41593i
\(157\) 0.142820 0.0440542i 0.142820 0.0440542i −0.222521 0.974928i \(-0.571429\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(158\) 0.0111692 + 0.149042i 0.0111692 + 0.149042i
\(159\) −1.02366 2.60825i −1.02366 2.60825i
\(160\) 0 0
\(161\) −0.658322 1.67738i −0.658322 1.67738i
\(162\) 0.746184 0.359343i 0.746184 0.359343i
\(163\) −1.46610 1.36035i −1.46610 1.36035i −0.733052 0.680173i \(-0.761905\pi\)
−0.733052 0.680173i \(-0.761905\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1.23305 + 1.54620i −1.23305 + 1.54620i −0.500000 + 0.866025i \(0.666667\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(168\) −0.535628 + 1.36476i −0.535628 + 1.36476i
\(169\) 1.07906 + 1.35310i 1.07906 + 1.35310i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(174\) 0 0
\(175\) 0.365341 0.930874i 0.365341 0.930874i
\(176\) 1.03030 1.29196i 1.03030 1.29196i
\(177\) 0 0
\(178\) 0.733052 + 1.26968i 0.733052 + 1.26968i
\(179\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(180\) 0 0
\(181\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(182\) 0.603718 + 1.53825i 0.603718 + 1.53825i
\(183\) 0 0
\(184\) −0.658322 1.67738i −0.658322 1.67738i
\(185\) 0 0
\(186\) 0.623490 0.192321i 0.623490 0.192321i
\(187\) 0.123490 1.64786i 0.123490 1.64786i
\(188\) 0 0
\(189\) −0.136622 + 0.171318i −0.136622 + 0.171318i
\(190\) 0 0
\(191\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(192\) −0.535628 + 1.36476i −0.535628 + 1.36476i
\(193\) 0 0 0.733052 0.680173i \(-0.238095\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0.0747301 + 0.997204i 0.0747301 + 0.997204i
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 1.56941 1.07000i 1.56941 1.07000i
\(199\) −1.40097 + 1.29991i −1.40097 + 1.29991i −0.500000 + 0.866025i \(0.666667\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(200\) 0.365341 0.930874i 0.365341 0.930874i
\(201\) 0 0
\(202\) 0.400969 1.75676i 0.400969 1.75676i
\(203\) 0 0
\(204\) 0.326239 + 1.42935i 0.326239 + 1.42935i
\(205\) 0 0
\(206\) 0 0
\(207\) −0.154785 2.06546i −0.154785 2.06546i
\(208\) 0.603718 + 1.53825i 0.603718 + 1.53825i
\(209\) 0 0
\(210\) 0 0
\(211\) −1.12349 + 0.541044i −1.12349 + 0.541044i −0.900969 0.433884i \(-0.857143\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(212\) −1.40097 1.29991i −1.40097 1.29991i
\(213\) 2.77064 + 0.417607i 2.77064 + 0.417607i
\(214\) −0.365341 0.632789i −0.365341 0.632789i
\(215\) 0 0
\(216\) −0.136622 + 0.171318i −0.136622 + 0.171318i
\(217\) 0.326239 0.302705i 0.326239 0.302705i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1.36534 + 0.930874i 1.36534 + 0.930874i
\(222\) 0 0
\(223\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(224\) 0.0747301 + 0.997204i 0.0747301 + 0.997204i
\(225\) 0.716677 0.898684i 0.716677 0.898684i
\(226\) 0 0
\(227\) −0.955573 1.65510i −0.955573 1.65510i −0.733052 0.680173i \(-0.761905\pi\)
−0.222521 0.974928i \(-0.571429\pi\)
\(228\) 0 0
\(229\) −0.914101 0.848162i −0.914101 0.848162i 0.0747301 0.997204i \(-0.476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(230\) 0 0
\(231\) 1.21135 2.09812i 1.21135 2.09812i
\(232\) 0 0
\(233\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(234\) 0.141947 + 1.89415i 0.141947 + 1.89415i
\(235\) 0 0
\(236\) 0 0
\(237\) 0.0487597 + 0.213630i 0.0487597 + 0.213630i
\(238\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(239\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(240\) 0 0
\(241\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(242\) −1.26868 + 1.17716i −1.26868 + 1.17716i
\(243\) 1.18429 0.807437i 1.18429 0.807437i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0.326239 0.302705i 0.326239 0.302705i
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(252\) −0.255779 + 1.12064i −0.255779 + 1.12064i
\(253\) 0.662592 + 2.90301i 0.662592 + 2.90301i
\(254\) 0 0
\(255\) 0 0
\(256\) 0.0747301 + 0.997204i 0.0747301 + 0.997204i
\(257\) −0.365341 0.930874i −0.365341 0.930874i −0.988831 0.149042i \(-0.952381\pi\)
0.623490 0.781831i \(-0.285714\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 1.78181 + 0.268565i 1.78181 + 0.268565i
\(263\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(264\) 1.21135 2.09812i 1.21135 2.09812i
\(265\) 0 0
\(266\) 0 0
\(267\) 1.34017 + 1.68052i 1.34017 + 1.68052i
\(268\) 0 0
\(269\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(270\) 0 0
\(271\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(272\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(273\) 1.21135 + 2.09812i 1.21135 + 2.09812i
\(274\) −0.914101 + 1.14625i −0.914101 + 1.14625i
\(275\) −0.826239 + 1.43109i −0.826239 + 1.43109i
\(276\) −1.32091 2.28789i −1.32091 2.28789i
\(277\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(278\) −0.109562 0.101659i −0.109562 0.101659i
\(279\) 0.460898 0.221957i 0.460898 0.221957i
\(280\) 0 0
\(281\) 0.900969 + 0.433884i 0.900969 + 0.433884i 0.826239 0.563320i \(-0.190476\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(282\) 0 0
\(283\) 0.123490 + 1.64786i 0.123490 + 1.64786i 0.623490 + 0.781831i \(0.285714\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(284\) 1.82624 0.563320i 1.82624 0.563320i
\(285\) 0 0
\(286\) −0.607634 2.66222i −0.607634 2.66222i
\(287\) 0 0
\(288\) −0.255779 + 1.12064i −0.255779 + 1.12064i
\(289\) 0.955573 + 0.294755i 0.955573 + 0.294755i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0.149460 0.149460 0.0747301 0.997204i \(-0.476190\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(294\) 0.326239 + 1.42935i 0.326239 + 1.42935i
\(295\) 0 0
\(296\) 0 0
\(297\) 0.265436 0.246289i 0.265436 0.246289i
\(298\) −0.535628 + 1.36476i −0.535628 + 1.36476i
\(299\) −2.84537 0.877681i −2.84537 0.877681i
\(300\) 0.326239 1.42935i 0.326239 1.42935i
\(301\) 0 0
\(302\) 0 0
\(303\) 0.197424 2.63444i 0.197424 2.63444i
\(304\) 0 0
\(305\) 0 0
\(306\) 0.419945 + 1.07000i 0.419945 + 1.07000i
\(307\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(308\) 0.123490 1.64786i 0.123490 1.64786i
\(309\) 0 0
\(310\) 0 0
\(311\) 0.988831 + 0.149042i 0.988831 + 0.149042i 0.623490 0.781831i \(-0.285714\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(312\) 1.21135 + 2.09812i 1.21135 + 2.09812i
\(313\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(314\) 0.0931869 0.116853i 0.0931869 0.116853i
\(315\) 0 0
\(316\) 0.0931869 + 0.116853i 0.0931869 + 0.116853i
\(317\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(318\) −2.31507 1.57839i −2.31507 1.57839i
\(319\) 0 0
\(320\) 0 0
\(321\) −0.667917 0.837541i −0.667917 0.837541i
\(322\) −1.48883 1.01507i −1.48883 1.01507i
\(323\) 0 0
\(324\) 0.414101 0.717244i 0.414101 0.717244i
\(325\) −0.826239 1.43109i −0.826239 1.43109i
\(326\) −1.97766 0.298085i −1.97766 0.298085i
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) −0.147791 + 1.97213i −0.147791 + 1.97213i
\(335\) 0 0
\(336\) 0.326239 + 1.42935i 0.326239 + 1.42935i
\(337\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(338\) 1.65379 + 0.510127i 1.65379 + 0.510127i
\(339\) 0 0
\(340\) 0 0
\(341\) −0.607634 + 0.414278i −0.607634 + 0.414278i
\(342\) 0 0
\(343\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0.455573 1.16078i 0.455573 1.16078i −0.500000 0.866025i \(-0.666667\pi\)
0.955573 0.294755i \(-0.0952381\pi\)
\(348\) 0 0
\(349\) −0.277479 + 1.21572i −0.277479 + 1.21572i 0.623490 + 0.781831i \(0.285714\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(350\) −0.222521 0.974928i −0.222521 0.974928i
\(351\) 0.0805743 + 0.353019i 0.0805743 + 0.353019i
\(352\) 0.123490 1.64786i 0.123490 1.64786i
\(353\) −0.955573 + 0.294755i −0.955573 + 0.294755i −0.733052 0.680173i \(-0.761905\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 1.32091 + 0.636119i 1.32091 + 0.636119i
\(357\) 1.07473 + 0.997204i 1.07473 + 0.997204i
\(358\) 0 0
\(359\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(360\) 0 0
\(361\) −0.500000 0.866025i −0.500000 0.866025i
\(362\) 0 0
\(363\) −1.58202 + 1.98379i −1.58202 + 1.98379i
\(364\) 1.36534 + 0.930874i 1.36534 + 0.930874i
\(365\) 0 0
\(366\) 0 0
\(367\) 0.603718 + 0.411608i 0.603718 + 0.411608i 0.826239 0.563320i \(-0.190476\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(368\) −1.48883 1.01507i −1.48883 1.01507i
\(369\) 0 0
\(370\) 0 0
\(371\) −1.88980 0.284841i −1.88980 0.284841i
\(372\) 0.406813 0.510127i 0.406813 0.510127i
\(373\) −0.826239 + 1.43109i −0.826239 + 1.43109i 0.0747301 + 0.997204i \(0.476190\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(374\) −0.826239 1.43109i −0.826239 1.43109i
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) −0.0163752 + 0.218511i −0.0163752 + 0.218511i
\(379\) 0.900969 + 0.433884i 0.900969 + 0.433884i 0.826239 0.563320i \(-0.190476\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.0747301 0.997204i \(-0.476190\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(384\) 0.326239 + 1.42935i 0.326239 + 1.42935i
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 1.44973 1.34515i 1.44973 1.34515i 0.623490 0.781831i \(-0.285714\pi\)
0.826239 0.563320i \(-0.190476\pi\)
\(390\) 0 0
\(391\) −1.80194 −1.80194
\(392\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(393\) 2.64183 2.64183
\(394\) 0 0
\(395\) 0 0
\(396\) 0.693950 1.76815i 0.693950 1.76815i
\(397\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(398\) −0.425270 + 1.86323i −0.425270 + 1.86323i
\(399\) 0 0
\(400\) −0.222521 0.974928i −0.222521 0.974928i
\(401\) 0 0 0.0747301 0.997204i \(-0.476190\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(402\) 0 0
\(403\) −0.0549581 0.733365i −0.0549581 0.733365i
\(404\) −0.658322 1.67738i −0.658322 1.67738i
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 1.07473 + 0.997204i 1.07473 + 0.997204i
\(409\) −1.88980 0.284841i −1.88980 0.284841i −0.900969 0.433884i \(-0.857143\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(410\) 0 0
\(411\) −1.07473 + 1.86149i −1.07473 + 1.86149i
\(412\) 0 0
\(413\) 0 0
\(414\) −1.29141 1.61937i −1.29141 1.61937i
\(415\) 0 0
\(416\) 1.36534 + 0.930874i 1.36534 + 0.930874i
\(417\) −0.181049 0.123437i −0.181049 0.123437i
\(418\) 0 0
\(419\) 0.0931869 + 0.116853i 0.0931869 + 0.116853i 0.826239 0.563320i \(-0.190476\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(420\) 0 0
\(421\) −0.277479 + 0.347948i −0.277479 + 0.347948i −0.900969 0.433884i \(-0.857143\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(422\) −0.623490 + 1.07992i −0.623490 + 1.07992i
\(423\) 0 0
\(424\) −1.88980 0.284841i −1.88980 0.284841i
\(425\) −0.733052 0.680173i −0.733052 0.680173i
\(426\) 2.52446 1.21572i 2.52446 1.21572i
\(427\) 0 0
\(428\) −0.658322 0.317031i −0.658322 0.317031i
\(429\) −1.46263 3.72672i −1.46263 3.72672i
\(430\) 0 0
\(431\) −0.955573 + 0.294755i −0.955573 + 0.294755i −0.733052 0.680173i \(-0.761905\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(432\) −0.0163752 + 0.218511i −0.0163752 + 0.218511i
\(433\) 0.400969 + 1.75676i 0.400969 + 1.75676i 0.623490 + 0.781831i \(0.285714\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(434\) 0.0990311 0.433884i 0.0990311 0.433884i
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0.123490 0.0841939i 0.123490 0.0841939i −0.500000 0.866025i \(-0.666667\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(440\) 0 0
\(441\) 0.419945 + 1.07000i 0.419945 + 1.07000i
\(442\) 1.65248 1.65248
\(443\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −0.478300 + 2.09557i −0.478300 + 2.09557i
\(448\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(449\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(450\) 0.0858993 1.14625i 0.0858993 1.14625i
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) −1.72188 0.829215i −1.72188 0.829215i
\(455\) 0 0
\(456\) 0 0
\(457\) 1.32091 + 1.22563i 1.32091 + 1.22563i 0.955573 + 0.294755i \(0.0952381\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(458\) −1.23305 0.185853i −1.23305 0.185853i
\(459\) 0.109562 + 0.189767i 0.109562 + 0.189767i
\(460\) 0 0
\(461\) 1.19158 1.49419i 1.19158 1.49419i 0.365341 0.930874i \(-0.380952\pi\)
0.826239 0.563320i \(-0.190476\pi\)
\(462\) −0.181049 2.41593i −0.181049 2.41593i
\(463\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(468\) 1.18429 + 1.48506i 1.18429 + 1.48506i
\(469\) 0 0
\(470\) 0 0
\(471\) 0.109562 0.189767i 0.109562 0.189767i
\(472\) 0 0
\(473\) 0 0
\(474\) 0.160629 + 0.149042i 0.160629 + 0.149042i
\(475\) 0 0
\(476\) 0.955573 + 0.294755i 0.955573 + 0.294755i
\(477\) −1.97924 0.953150i −1.97924 0.953150i
\(478\) 0 0
\(479\) −0.134659 1.79690i −0.134659 1.79690i −0.500000 0.866025i \(-0.666667\pi\)
0.365341 0.930874i \(-0.380952\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) −2.38020 1.14625i −2.38020 1.14625i
\(484\) −0.385113 + 1.68729i −0.385113 + 1.68729i
\(485\) 0 0
\(486\) 0.523663 1.33427i 0.523663 1.33427i
\(487\) 0.733052 0.680173i 0.733052 0.680173i −0.222521 0.974928i \(-0.571429\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(488\) 0 0
\(489\) −2.93221 −2.93221
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0.0990311 0.433884i 0.0990311 0.433884i
\(497\) 1.19158 1.49419i 1.19158 1.49419i
\(498\) 0 0
\(499\) 0.0111692 0.149042i 0.0111692 0.149042i −0.988831 0.149042i \(-0.952381\pi\)
1.00000 \(0\)
\(500\) 0 0
\(501\) 0.216677 + 2.89135i 0.216677 + 2.89135i
\(502\) 0 0
\(503\) −0.658322 0.317031i −0.658322 0.317031i 0.0747301 0.997204i \(-0.476190\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(504\) 0.419945 + 1.07000i 0.419945 + 1.07000i
\(505\) 0 0
\(506\) 2.18278 + 2.02532i 2.18278 + 2.02532i
\(507\) 2.50902 + 0.378174i 2.50902 + 0.378174i
\(508\) 0 0
\(509\) 0.900969 1.56052i 0.900969 1.56052i 0.0747301 0.997204i \(-0.476190\pi\)
0.826239 0.563320i \(-0.190476\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(513\) 0 0
\(514\) −0.826239 0.563320i −0.826239 0.563320i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(522\) 0 0
\(523\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(524\) 1.62349 0.781831i 1.62349 0.781831i
\(525\) −0.535628 1.36476i −0.535628 1.36476i
\(526\) 0 0
\(527\) −0.162592 0.414278i −0.162592 0.414278i
\(528\) −0.181049 2.41593i −0.181049 2.41593i
\(529\) 2.14715 0.662309i 2.14715 0.662309i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 2.05397 + 0.633565i 2.05397 + 0.633565i
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −0.826239 1.43109i −0.826239 1.43109i
\(540\) 0 0
\(541\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0.955573 + 0.294755i 0.955573 + 0.294755i
\(545\) 0 0
\(546\) 2.18278 + 1.05117i 2.18278 + 1.05117i
\(547\) 0.440071 + 1.92808i 0.440071 + 1.92808i 0.365341 + 0.930874i \(0.380952\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(548\) −0.109562 + 1.46200i −0.109562 + 1.46200i
\(549\) 0 0
\(550\) 0.123490 + 1.64786i 0.123490 + 1.64786i
\(551\) 0 0
\(552\) −2.38020 1.14625i −2.38020 1.14625i
\(553\) 0.142820 + 0.0440542i 0.142820 + 0.0440542i
\(554\) 0 0
\(555\) 0 0
\(556\) −0.147791 0.0222759i −0.147791 0.0222759i
\(557\) −0.955573 1.65510i −0.955573 1.65510i −0.733052 0.680173i \(-0.761905\pi\)
−0.222521 0.974928i \(-0.571429\pi\)
\(558\) 0.255779 0.443022i 0.255779 0.443022i
\(559\) 0 0
\(560\) 0 0
\(561\) −1.51053 1.89415i −1.51053 1.89415i
\(562\) 0.988831 0.149042i 0.988831 0.149042i
\(563\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 1.03030 + 1.29196i 1.03030 + 1.29196i
\(567\) −0.0618916 0.825886i −0.0618916 0.825886i
\(568\) 1.19158 1.49419i 1.19158 1.49419i
\(569\) −0.826239 + 1.43109i −0.826239 + 1.43109i 0.0747301 + 0.997204i \(0.476190\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(570\) 0 0
\(571\) 0.440071 + 0.0663300i 0.440071 + 0.0663300i 0.365341 0.930874i \(-0.380952\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(572\) −2.00173 1.85734i −2.00173 1.85734i
\(573\) 0 0
\(574\) 0 0
\(575\) 1.62349 + 0.781831i 1.62349 + 0.781831i
\(576\) 0.419945 + 1.07000i 0.419945 + 1.07000i
\(577\) 0.0546039 + 0.728639i 0.0546039 + 0.728639i 0.955573 + 0.294755i \(0.0952381\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(578\) 0.955573 0.294755i 0.955573 0.294755i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 3.01782 + 0.930874i 3.01782 + 0.930874i
\(584\) 0 0
\(585\) 0 0
\(586\) 0.123490 0.0841939i 0.123490 0.0841939i
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 1.07473 + 0.997204i 1.07473 + 0.997204i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0.698220 + 0.215372i 0.698220 + 0.215372i 0.623490 0.781831i \(-0.285714\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(594\) 0.0805743 0.353019i 0.0805743 0.353019i
\(595\) 0 0
\(596\) 0.326239 + 1.42935i 0.326239 + 1.42935i
\(597\) −0.209389 + 2.79410i −0.209389 + 2.79410i
\(598\) −2.84537 + 0.877681i −2.84537 + 0.877681i
\(599\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(600\) −0.535628 1.36476i −0.535628 1.36476i
\(601\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) −1.32091 2.28789i −1.32091 2.28789i
\(607\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0.949729 + 0.647514i 0.949729 + 0.647514i
\(613\) −1.63402 1.11406i −1.63402 1.11406i −0.900969 0.433884i \(-0.857143\pi\)
−0.733052 0.680173i \(-0.761905\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) −0.826239 1.43109i −0.826239 1.43109i
\(617\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(618\) 0 0
\(619\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(620\) 0 0
\(621\) −0.289444 0.268565i −0.289444 0.268565i
\(622\) 0.900969 0.433884i 0.900969 0.433884i
\(623\) 1.44973 0.218511i 1.44973 0.218511i
\(624\) 2.18278 + 1.05117i 2.18278 + 1.05117i
\(625\) 0.365341 + 0.930874i 0.365341 + 0.930874i
\(626\) 0 0
\(627\) 0 0
\(628\) 0.0111692 0.149042i 0.0111692 0.149042i
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(632\) 0.142820 + 0.0440542i 0.142820 + 0.0440542i
\(633\) −0.667917 + 1.70182i −0.667917 + 1.70182i
\(634\) 0 0
\(635\) 0 0
\(636\) −2.80194 −2.80194
\(637\) 1.65248 1.65248
\(638\) 0 0
\(639\) 1.81507 1.23749i 1.81507 1.23749i
\(640\) 0 0
\(641\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(642\) −1.02366 0.315758i −1.02366 0.315758i
\(643\) 0.440071 1.92808i 0.440071 1.92808i 0.0747301 0.997204i \(-0.476190\pi\)
0.365341 0.930874i \(-0.380952\pi\)
\(644\) −1.80194 −1.80194
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(648\) −0.0618916 0.825886i −0.0618916 0.825886i
\(649\) 0 0
\(650\) −1.48883 0.716983i −1.48883 0.716983i
\(651\) 0.0487597 0.650653i 0.0487597 0.650653i
\(652\) −1.80194 + 0.867767i −1.80194 + 0.867767i
\(653\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(660\) 0 0
\(661\) −0.367711 0.250701i −0.367711 0.250701i 0.365341 0.930874i \(-0.380952\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(662\) 0 0
\(663\) 2.39564 0.361085i 2.39564 0.361085i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0.988831 + 1.71271i 0.988831 + 1.71271i
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 1.07473 + 0.997204i 1.07473 + 0.997204i
\(673\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(674\) 0 0
\(675\) −0.0163752 0.218511i −0.0163752 0.218511i
\(676\) 1.65379 0.510127i 1.65379 0.510127i
\(677\) 0 0 0.0747301 0.997204i \(-0.476190\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −2.67746 0.825886i −2.67746 0.825886i
\(682\) −0.268680 + 0.684585i −0.268680 + 0.684585i
\(683\) −1.40097 + 1.29991i −1.40097 + 1.29991i −0.500000 + 0.866025i \(0.666667\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0.955573 + 0.294755i 0.955573 + 0.294755i
\(687\) −1.82820 −1.82820
\(688\) 0 0
\(689\) −2.31507 + 2.14807i −2.31507 + 2.14807i
\(690\) 0 0
\(691\) −0.425270 0.131178i −0.425270 0.131178i 0.0747301 0.997204i \(-0.476190\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(692\) 0 0
\(693\) −0.422669 1.85183i −0.422669 1.85183i
\(694\) −0.277479 1.21572i −0.277479 1.21572i
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0.455573 + 1.16078i 0.455573 + 1.16078i
\(699\) 0 0
\(700\) −0.733052 0.680173i −0.733052 0.680173i
\(701\) −1.72188 + 0.829215i −1.72188 + 0.829215i −0.733052 + 0.680173i \(0.761905\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(702\) 0.265436 + 0.246289i 0.265436 + 0.246289i
\(703\) 0 0
\(704\) −0.826239 1.43109i −0.826239 1.43109i
\(705\) 0 0
\(706\) −0.623490 + 0.781831i −0.623490 + 0.781831i
\(707\) −1.48883 1.01507i −1.48883 1.01507i
\(708\) 0 0
\(709\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(710\) 0 0
\(711\) 0.141947 + 0.0967776i 0.141947 + 0.0967776i
\(712\) 1.44973 0.218511i 1.44973 0.218511i
\(713\) 0.500000 + 0.626980i 0.500000 + 0.626980i
\(714\) 1.44973 + 0.218511i 1.44973 + 0.218511i
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −1.21135 1.12397i −1.21135 1.12397i −0.988831 0.149042i \(-0.952381\pi\)
−0.222521 0.974928i \(-0.571429\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −0.900969 0.433884i −0.900969 0.433884i
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) −0.189617 + 2.53026i −0.189617 + 2.53026i
\(727\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(728\) 1.65248 1.65248
\(729\) 0.283323 1.24132i 0.283323 1.24132i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −0.826239 + 0.563320i −0.826239 + 0.563320i −0.900969 0.433884i \(-0.857143\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(734\) 0.730682 0.730682
\(735\) 0 0
\(736\) −1.80194 −1.80194
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −1.72188 + 0.829215i −1.72188 + 0.829215i
\(743\) 0.326239 + 1.42935i 0.326239 + 1.42935i 0.826239 + 0.563320i \(0.190476\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(744\) 0.0487597 0.650653i 0.0487597 0.650653i
\(745\) 0 0
\(746\) 0.123490 + 1.64786i 0.123490 + 1.64786i
\(747\) 0 0
\(748\) −1.48883 0.716983i −1.48883 0.716983i
\(749\) −0.722521 + 0.108903i −0.722521 + 0.108903i
\(750\) 0 0
\(751\) −0.109562 0.101659i −0.109562 0.101659i 0.623490 0.781831i \(-0.285714\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0.109562 + 0.189767i 0.109562 + 0.189767i
\(757\) −0.623490 0.781831i −0.623490 0.781831i 0.365341 0.930874i \(-0.380952\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(758\) 0.988831 0.149042i 0.988831 0.149042i
\(759\) 3.60700 + 2.45921i 3.60700 + 2.45921i
\(760\) 0 0
\(761\) 1.95557 0.294755i 1.95557 0.294755i 0.955573 0.294755i \(-0.0952381\pi\)
1.00000 \(0\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 1.07473 + 0.997204i 1.07473 + 0.997204i
\(769\) 0.900969 0.433884i 0.900969 0.433884i 0.0747301 0.997204i \(-0.476190\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(770\) 0 0
\(771\) −1.32091 0.636119i −1.32091 0.636119i
\(772\) 0 0
\(773\) −0.147791 1.97213i −0.147791 1.97213i −0.222521 0.974928i \(-0.571429\pi\)
0.0747301 0.997204i \(-0.476190\pi\)
\(774\) 0 0
\(775\) −0.0332580 + 0.443797i −0.0332580 + 0.443797i
\(776\) 0 0
\(777\) 0 0
\(778\) 0.440071 1.92808i 0.440071 1.92808i
\(779\) 0 0
\(780\) 0 0
\(781\) −2.31507 + 2.14807i −2.31507 + 2.14807i
\(782\) −1.48883 + 1.01507i −1.48883 + 1.01507i
\(783\) 0 0
\(784\) 0.955573 + 0.294755i 0.955573 + 0.294755i
\(785\) 0 0
\(786\) 2.18278 1.48819i 2.18278 1.48819i
\(787\) −0.914101 + 0.848162i −0.914101 + 0.848162i −0.988831 0.149042i \(-0.952381\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(788\) 0