Properties

 Label 3332.1.bp.b.655.1 Level $3332$ Weight $1$ Character 3332.655 Analytic conductor $1.663$ Analytic rank $0$ Dimension $8$ Projective image $D_{8}$ CM discriminant -4 Inner twists $8$

Related objects

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [3332,1,Mod(263,3332)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(3332, base_ring=CyclotomicField(24))

chi = DirichletCharacter(H, H._module([12, 16, 15]))

N = Newforms(chi, 1, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("3332.263");

S:= CuspForms(chi, 1);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$3332 = 2^{2} \cdot 7^{2} \cdot 17$$ Weight: $$k$$ $$=$$ $$1$$ Character orbit: $$[\chi]$$ $$=$$ 3332.bp (of order $$24$$, degree $$8$$, not minimal)

Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$1.66288462209$$ Analytic rank: $$0$$ Dimension: $$8$$ Coefficient field: $$\Q(\zeta_{24})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{8} - x^{4} + 1$$ x^8 - x^4 + 1 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: yes Projective image: $$D_{8}$$ Projective field: Galois closure of 8.2.3089659810545728.4

Embedding invariants

 Embedding label 655.1 Root $$-0.258819 + 0.965926i$$ of defining polynomial Character $$\chi$$ $$=$$ 3332.655 Dual form 3332.1.bp.b.3215.1

$q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+(-0.965926 - 0.258819i) q^{2} +(0.866025 + 0.500000i) q^{4} +(-1.83195 + 0.241181i) q^{5} +(-0.707107 - 0.707107i) q^{8} +(0.258819 - 0.965926i) q^{9} +O(q^{10})$$ $$q+(-0.965926 - 0.258819i) q^{2} +(0.866025 + 0.500000i) q^{4} +(-1.83195 + 0.241181i) q^{5} +(-0.707107 - 0.707107i) q^{8} +(0.258819 - 0.965926i) q^{9} +(1.83195 + 0.241181i) q^{10} +(0.500000 + 0.866025i) q^{16} +(0.258819 + 0.965926i) q^{17} +(-0.500000 + 0.866025i) q^{18} +(-1.70711 - 0.707107i) q^{20} +(2.33195 - 0.624844i) q^{25} +(-0.707107 + 1.70711i) q^{29} +(-0.258819 - 0.965926i) q^{32} -1.00000i q^{34} +(0.707107 - 0.707107i) q^{36} +(-0.241181 - 1.83195i) q^{37} +(1.46593 + 1.12484i) q^{40} +(-0.292893 - 0.707107i) q^{41} +(-0.241181 + 1.83195i) q^{45} -2.41421 q^{50} +(-0.366025 - 1.36603i) q^{53} +(1.12484 - 1.46593i) q^{58} +(-0.465926 + 0.607206i) q^{61} +1.00000i q^{64} +(-0.258819 + 0.965926i) q^{68} +(-0.866025 + 0.500000i) q^{72} +(-1.12484 - 1.46593i) q^{73} +(-0.241181 + 1.83195i) q^{74} +(-1.12484 - 1.46593i) q^{80} +(-0.866025 - 0.500000i) q^{81} +(0.0999004 + 0.758819i) q^{82} +(-0.707107 - 1.70711i) q^{85} +(1.73205 - 1.00000i) q^{89} +(0.707107 - 1.70711i) q^{90} +(0.707107 - 1.70711i) q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$8 q+O(q^{10})$$ 8 * q $$8 q + 4 q^{16} - 4 q^{18} - 8 q^{20} + 4 q^{25} - 4 q^{37} + 4 q^{40} - 8 q^{41} - 4 q^{45} - 8 q^{50} + 4 q^{53} + 4 q^{61} - 4 q^{74}+O(q^{100})$$ 8 * q + 4 * q^16 - 4 * q^18 - 8 * q^20 + 4 * q^25 - 4 * q^37 + 4 * q^40 - 8 * q^41 - 4 * q^45 - 8 * q^50 + 4 * q^53 + 4 * q^61 - 4 * q^74

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/3332\mathbb{Z}\right)^\times$$.

 $$n$$ $$785$$ $$885$$ $$1667$$ $$\chi(n)$$ $$e\left(\frac{1}{8}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$-1$$

Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.965926 0.258819i −0.965926 0.258819i
$$3$$ 0 0 0.793353 0.608761i $$-0.208333\pi$$
−0.793353 + 0.608761i $$0.791667\pi$$
$$4$$ 0.866025 + 0.500000i 0.866025 + 0.500000i
$$5$$ −1.83195 + 0.241181i −1.83195 + 0.241181i −0.965926 0.258819i $$-0.916667\pi$$
−0.866025 + 0.500000i $$0.833333\pi$$
$$6$$ 0 0
$$7$$ 0 0
$$8$$ −0.707107 0.707107i −0.707107 0.707107i
$$9$$ 0.258819 0.965926i 0.258819 0.965926i
$$10$$ 1.83195 + 0.241181i 1.83195 + 0.241181i
$$11$$ 0 0 0.130526 0.991445i $$-0.458333\pi$$
−0.130526 + 0.991445i $$0.541667\pi$$
$$12$$ 0 0
$$13$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$14$$ 0 0
$$15$$ 0 0
$$16$$ 0.500000 + 0.866025i 0.500000 + 0.866025i
$$17$$ 0.258819 + 0.965926i 0.258819 + 0.965926i
$$18$$ −0.500000 + 0.866025i −0.500000 + 0.866025i
$$19$$ 0 0 −0.965926 0.258819i $$-0.916667\pi$$
0.965926 + 0.258819i $$0.0833333\pi$$
$$20$$ −1.70711 0.707107i −1.70711 0.707107i
$$21$$ 0 0
$$22$$ 0 0
$$23$$ 0 0 −0.793353 0.608761i $$-0.791667\pi$$
0.793353 + 0.608761i $$0.208333\pi$$
$$24$$ 0 0
$$25$$ 2.33195 0.624844i 2.33195 0.624844i
$$26$$ 0 0
$$27$$ 0 0
$$28$$ 0 0
$$29$$ −0.707107 + 1.70711i −0.707107 + 1.70711i 1.00000i $$0.5\pi$$
−0.707107 + 0.707107i $$0.750000\pi$$
$$30$$ 0 0
$$31$$ 0 0 0.793353 0.608761i $$-0.208333\pi$$
−0.793353 + 0.608761i $$0.791667\pi$$
$$32$$ −0.258819 0.965926i −0.258819 0.965926i
$$33$$ 0 0
$$34$$ 1.00000i 1.00000i
$$35$$ 0 0
$$36$$ 0.707107 0.707107i 0.707107 0.707107i
$$37$$ −0.241181 1.83195i −0.241181 1.83195i −0.500000 0.866025i $$-0.666667\pi$$
0.258819 0.965926i $$-0.416667\pi$$
$$38$$ 0 0
$$39$$ 0 0
$$40$$ 1.46593 + 1.12484i 1.46593 + 1.12484i
$$41$$ −0.292893 0.707107i −0.292893 0.707107i 0.707107 0.707107i $$-0.250000\pi$$
−1.00000 $$\pi$$
$$42$$ 0 0
$$43$$ 0 0 −0.707107 0.707107i $$-0.750000\pi$$
0.707107 + 0.707107i $$0.250000\pi$$
$$44$$ 0 0
$$45$$ −0.241181 + 1.83195i −0.241181 + 1.83195i
$$46$$ 0 0
$$47$$ 0 0 0.866025 0.500000i $$-0.166667\pi$$
−0.866025 + 0.500000i $$0.833333\pi$$
$$48$$ 0 0
$$49$$ 0 0
$$50$$ −2.41421 −2.41421
$$51$$ 0 0
$$52$$ 0 0
$$53$$ −0.366025 1.36603i −0.366025 1.36603i −0.866025 0.500000i $$-0.833333\pi$$
0.500000 0.866025i $$-0.333333\pi$$
$$54$$ 0 0
$$55$$ 0 0
$$56$$ 0 0
$$57$$ 0 0
$$58$$ 1.12484 1.46593i 1.12484 1.46593i
$$59$$ 0 0 0.965926 0.258819i $$-0.0833333\pi$$
−0.965926 + 0.258819i $$0.916667\pi$$
$$60$$ 0 0
$$61$$ −0.465926 + 0.607206i −0.465926 + 0.607206i −0.965926 0.258819i $$-0.916667\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$62$$ 0 0
$$63$$ 0 0
$$64$$ 1.00000i 1.00000i
$$65$$ 0 0
$$66$$ 0 0
$$67$$ 0 0 0.500000 0.866025i $$-0.333333\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$68$$ −0.258819 + 0.965926i −0.258819 + 0.965926i
$$69$$ 0 0
$$70$$ 0 0
$$71$$ 0 0 −0.923880 0.382683i $$-0.875000\pi$$
0.923880 + 0.382683i $$0.125000\pi$$
$$72$$ −0.866025 + 0.500000i −0.866025 + 0.500000i
$$73$$ −1.12484 1.46593i −1.12484 1.46593i −0.866025 0.500000i $$-0.833333\pi$$
−0.258819 0.965926i $$-0.583333\pi$$
$$74$$ −0.241181 + 1.83195i −0.241181 + 1.83195i
$$75$$ 0 0
$$76$$ 0 0
$$77$$ 0 0
$$78$$ 0 0
$$79$$ 0 0 −0.793353 0.608761i $$-0.791667\pi$$
0.793353 + 0.608761i $$0.208333\pi$$
$$80$$ −1.12484 1.46593i −1.12484 1.46593i
$$81$$ −0.866025 0.500000i −0.866025 0.500000i
$$82$$ 0.0999004 + 0.758819i 0.0999004 + 0.758819i
$$83$$ 0 0 0.707107 0.707107i $$-0.250000\pi$$
−0.707107 + 0.707107i $$0.750000\pi$$
$$84$$ 0 0
$$85$$ −0.707107 1.70711i −0.707107 1.70711i
$$86$$ 0 0
$$87$$ 0 0
$$88$$ 0 0
$$89$$ 1.73205 1.00000i 1.73205 1.00000i 0.866025 0.500000i $$-0.166667\pi$$
0.866025 0.500000i $$-0.166667\pi$$
$$90$$ 0.707107 1.70711i 0.707107 1.70711i
$$91$$ 0 0
$$92$$ 0 0
$$93$$ 0 0
$$94$$ 0 0
$$95$$ 0 0
$$96$$ 0 0
$$97$$ 0.707107 1.70711i 0.707107 1.70711i 1.00000i $$-0.5\pi$$
0.707107 0.707107i $$-0.250000\pi$$
$$98$$ 0 0
$$99$$ 0 0
$$100$$ 2.33195 + 0.624844i 2.33195 + 0.624844i
$$101$$ 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i $$-0.333333\pi$$
0.500000 0.866025i $$-0.333333\pi$$
$$102$$ 0 0
$$103$$ 0 0 −0.500000 0.866025i $$-0.666667\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 1.41421i 1.41421i
$$107$$ 0 0 0.991445 0.130526i $$-0.0416667\pi$$
−0.991445 + 0.130526i $$0.958333\pi$$
$$108$$ 0 0
$$109$$ 0.758819 + 0.0999004i 0.758819 + 0.0999004i 0.500000 0.866025i $$-0.333333\pi$$
0.258819 + 0.965926i $$0.416667\pi$$
$$110$$ 0 0
$$111$$ 0 0
$$112$$ 0 0
$$113$$ 0.707107 0.292893i 0.707107 0.292893i 1.00000i $$-0.5\pi$$
0.707107 + 0.707107i $$0.250000\pi$$
$$114$$ 0 0
$$115$$ 0 0
$$116$$ −1.46593 + 1.12484i −1.46593 + 1.12484i
$$117$$ 0 0
$$118$$ 0 0
$$119$$ 0 0
$$120$$ 0 0
$$121$$ −0.965926 0.258819i −0.965926 0.258819i
$$122$$ 0.607206 0.465926i 0.607206 0.465926i
$$123$$ 0 0
$$124$$ 0 0
$$125$$ −2.41421 + 1.00000i −2.41421 + 1.00000i
$$126$$ 0 0
$$127$$ 0 0 −0.707107 0.707107i $$-0.750000\pi$$
0.707107 + 0.707107i $$0.250000\pi$$
$$128$$ 0.258819 0.965926i 0.258819 0.965926i
$$129$$ 0 0
$$130$$ 0 0
$$131$$ 0 0 0.991445 0.130526i $$-0.0416667\pi$$
−0.991445 + 0.130526i $$0.958333\pi$$
$$132$$ 0 0
$$133$$ 0 0
$$134$$ 0 0
$$135$$ 0 0
$$136$$ 0.500000 0.866025i 0.500000 0.866025i
$$137$$ 0.707107 1.22474i 0.707107 1.22474i −0.258819 0.965926i $$-0.583333\pi$$
0.965926 0.258819i $$-0.0833333\pi$$
$$138$$ 0 0
$$139$$ 0 0 −0.923880 0.382683i $$-0.875000\pi$$
0.923880 + 0.382683i $$0.125000\pi$$
$$140$$ 0 0
$$141$$ 0 0
$$142$$ 0 0
$$143$$ 0 0
$$144$$ 0.965926 0.258819i 0.965926 0.258819i
$$145$$ 0.883663 3.29788i 0.883663 3.29788i
$$146$$ 0.707107 + 1.70711i 0.707107 + 1.70711i
$$147$$ 0 0
$$148$$ 0.707107 1.70711i 0.707107 1.70711i
$$149$$ 0 0 −0.500000 0.866025i $$-0.666667\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$150$$ 0 0
$$151$$ 0 0 −0.258819 0.965926i $$-0.583333\pi$$
0.258819 + 0.965926i $$0.416667\pi$$
$$152$$ 0 0
$$153$$ 1.00000 1.00000
$$154$$ 0 0
$$155$$ 0 0
$$156$$ 0 0
$$157$$ −1.22474 0.707107i −1.22474 0.707107i −0.258819 0.965926i $$-0.583333\pi$$
−0.965926 + 0.258819i $$0.916667\pi$$
$$158$$ 0 0
$$159$$ 0 0
$$160$$ 0.707107 + 1.70711i 0.707107 + 1.70711i
$$161$$ 0 0
$$162$$ 0.707107 + 0.707107i 0.707107 + 0.707107i
$$163$$ 0 0 0.608761 0.793353i $$-0.291667\pi$$
−0.608761 + 0.793353i $$0.708333\pi$$
$$164$$ 0.0999004 0.758819i 0.0999004 0.758819i
$$165$$ 0 0
$$166$$ 0 0
$$167$$ 0 0 −0.923880 0.382683i $$-0.875000\pi$$
0.923880 + 0.382683i $$0.125000\pi$$
$$168$$ 0 0
$$169$$ 1.00000 1.00000
$$170$$ 0.241181 + 1.83195i 0.241181 + 1.83195i
$$171$$ 0 0
$$172$$ 0 0
$$173$$ −0.0999004 0.758819i −0.0999004 0.758819i −0.965926 0.258819i $$-0.916667\pi$$
0.866025 0.500000i $$-0.166667\pi$$
$$174$$ 0 0
$$175$$ 0 0
$$176$$ 0 0
$$177$$ 0 0
$$178$$ −1.93185 + 0.517638i −1.93185 + 0.517638i
$$179$$ 0 0 0.965926 0.258819i $$-0.0833333\pi$$
−0.965926 + 0.258819i $$0.916667\pi$$
$$180$$ −1.12484 + 1.46593i −1.12484 + 1.46593i
$$181$$ 0.707107 0.292893i 0.707107 0.292893i 1.00000i $$-0.5\pi$$
0.707107 + 0.707107i $$0.250000\pi$$
$$182$$ 0 0
$$183$$ 0 0
$$184$$ 0 0
$$185$$ 0.883663 + 3.29788i 0.883663 + 3.29788i
$$186$$ 0 0
$$187$$ 0 0
$$188$$ 0 0
$$189$$ 0 0
$$190$$ 0 0
$$191$$ 0 0 0.866025 0.500000i $$-0.166667\pi$$
−0.866025 + 0.500000i $$0.833333\pi$$
$$192$$ 0 0
$$193$$ −0.241181 + 1.83195i −0.241181 + 1.83195i 0.258819 + 0.965926i $$0.416667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$194$$ −1.12484 + 1.46593i −1.12484 + 1.46593i
$$195$$ 0 0
$$196$$ 0 0
$$197$$ −0.292893 0.707107i −0.292893 0.707107i 0.707107 0.707107i $$-0.250000\pi$$
−1.00000 $$\pi$$
$$198$$ 0 0
$$199$$ 0 0 −0.608761 0.793353i $$-0.708333\pi$$
0.608761 + 0.793353i $$0.291667\pi$$
$$200$$ −2.09077 1.20711i −2.09077 1.20711i
$$201$$ 0 0
$$202$$ −1.41421 + 1.41421i −1.41421 + 1.41421i
$$203$$ 0 0
$$204$$ 0 0
$$205$$ 0.707107 + 1.22474i 0.707107 + 1.22474i
$$206$$ 0 0
$$207$$ 0 0
$$208$$ 0 0
$$209$$ 0 0
$$210$$ 0 0
$$211$$ 0 0 −0.382683 0.923880i $$-0.625000\pi$$
0.382683 + 0.923880i $$0.375000\pi$$
$$212$$ 0.366025 1.36603i 0.366025 1.36603i
$$213$$ 0 0
$$214$$ 0 0
$$215$$ 0 0
$$216$$ 0 0
$$217$$ 0 0
$$218$$ −0.707107 0.292893i −0.707107 0.292893i
$$219$$ 0 0
$$220$$ 0 0
$$221$$ 0 0
$$222$$ 0 0
$$223$$ 0 0 0.707107 0.707107i $$-0.250000\pi$$
−0.707107 + 0.707107i $$0.750000\pi$$
$$224$$ 0 0
$$225$$ 2.41421i 2.41421i
$$226$$ −0.758819 + 0.0999004i −0.758819 + 0.0999004i
$$227$$ 0 0 0.130526 0.991445i $$-0.458333\pi$$
−0.130526 + 0.991445i $$0.541667\pi$$
$$228$$ 0 0
$$229$$ −0.366025 + 1.36603i −0.366025 + 1.36603i 0.500000 + 0.866025i $$0.333333\pi$$
−0.866025 + 0.500000i $$0.833333\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 1.70711 0.707107i 1.70711 0.707107i
$$233$$ −0.758819 + 0.0999004i −0.758819 + 0.0999004i −0.500000 0.866025i $$-0.666667\pi$$
−0.258819 + 0.965926i $$0.583333\pi$$
$$234$$ 0 0
$$235$$ 0 0
$$236$$ 0 0
$$237$$ 0 0
$$238$$ 0 0
$$239$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$240$$ 0 0
$$241$$ −1.46593 + 1.12484i −1.46593 + 1.12484i −0.500000 + 0.866025i $$0.666667\pi$$
−0.965926 + 0.258819i $$0.916667\pi$$
$$242$$ 0.866025 + 0.500000i 0.866025 + 0.500000i
$$243$$ 0 0
$$244$$ −0.707107 + 0.292893i −0.707107 + 0.292893i
$$245$$ 0 0
$$246$$ 0 0
$$247$$ 0 0
$$248$$ 0 0
$$249$$ 0 0
$$250$$ 2.59077 0.341081i 2.59077 0.341081i
$$251$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$252$$ 0 0
$$253$$ 0 0
$$254$$ 0 0
$$255$$ 0 0
$$256$$ −0.500000 + 0.866025i −0.500000 + 0.866025i
$$257$$ −1.36603 0.366025i −1.36603 0.366025i −0.500000 0.866025i $$-0.666667\pi$$
−0.866025 + 0.500000i $$0.833333\pi$$
$$258$$ 0 0
$$259$$ 0 0
$$260$$ 0 0
$$261$$ 1.46593 + 1.12484i 1.46593 + 1.12484i
$$262$$ 0 0
$$263$$ 0 0 0.965926 0.258819i $$-0.0833333\pi$$
−0.965926 + 0.258819i $$0.916667\pi$$
$$264$$ 0 0
$$265$$ 1.00000 + 2.41421i 1.00000 + 2.41421i
$$266$$ 0 0
$$267$$ 0 0
$$268$$ 0 0
$$269$$ 1.46593 1.12484i 1.46593 1.12484i 0.500000 0.866025i $$-0.333333\pi$$
0.965926 0.258819i $$-0.0833333\pi$$
$$270$$ 0 0
$$271$$ 0 0 −0.500000 0.866025i $$-0.666667\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$272$$ −0.707107 + 0.707107i −0.707107 + 0.707107i
$$273$$ 0 0
$$274$$ −1.00000 + 1.00000i −1.00000 + 1.00000i
$$275$$ 0 0
$$276$$ 0 0
$$277$$ −0.465926 0.607206i −0.465926 0.607206i 0.500000 0.866025i $$-0.333333\pi$$
−0.965926 + 0.258819i $$0.916667\pi$$
$$278$$ 0 0
$$279$$ 0 0
$$280$$ 0 0
$$281$$ −1.00000 1.00000i −1.00000 1.00000i 1.00000i $$-0.5\pi$$
−1.00000 $$\pi$$
$$282$$ 0 0
$$283$$ 0 0 0.130526 0.991445i $$-0.458333\pi$$
−0.130526 + 0.991445i $$0.541667\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ 0 0
$$288$$ −1.00000 −1.00000
$$289$$ −0.866025 + 0.500000i −0.866025 + 0.500000i
$$290$$ −1.70711 + 2.95680i −1.70711 + 2.95680i
$$291$$ 0 0
$$292$$ −0.241181 1.83195i −0.241181 1.83195i
$$293$$ 1.41421i 1.41421i 0.707107 + 0.707107i $$0.250000\pi$$
−0.707107 + 0.707107i $$0.750000\pi$$
$$294$$ 0 0
$$295$$ 0 0
$$296$$ −1.12484 + 1.46593i −1.12484 + 1.46593i
$$297$$ 0 0
$$298$$ 0 0
$$299$$ 0 0
$$300$$ 0 0
$$301$$ 0 0
$$302$$ 0 0
$$303$$ 0 0
$$304$$ 0 0
$$305$$ 0.707107 1.22474i 0.707107 1.22474i
$$306$$ −0.965926 0.258819i −0.965926 0.258819i
$$307$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$308$$ 0 0
$$309$$ 0 0
$$310$$ 0 0
$$311$$ 0 0 −0.608761 0.793353i $$-0.708333\pi$$
0.608761 + 0.793353i $$0.291667\pi$$
$$312$$ 0 0
$$313$$ 0.465926 0.607206i 0.465926 0.607206i −0.500000 0.866025i $$-0.666667\pi$$
0.965926 + 0.258819i $$0.0833333\pi$$
$$314$$ 1.00000 + 1.00000i 1.00000 + 1.00000i
$$315$$ 0 0
$$316$$ 0 0
$$317$$ −1.46593 1.12484i −1.46593 1.12484i −0.965926 0.258819i $$-0.916667\pi$$
−0.500000 0.866025i $$-0.666667\pi$$
$$318$$ 0 0
$$319$$ 0 0
$$320$$ −0.241181 1.83195i −0.241181 1.83195i
$$321$$ 0 0
$$322$$ 0 0
$$323$$ 0 0
$$324$$ −0.500000 0.866025i −0.500000 0.866025i
$$325$$ 0 0
$$326$$ 0 0
$$327$$ 0 0
$$328$$ −0.292893 + 0.707107i −0.292893 + 0.707107i
$$329$$ 0 0
$$330$$ 0 0
$$331$$ 0 0 0.258819 0.965926i $$-0.416667\pi$$
−0.258819 + 0.965926i $$0.583333\pi$$
$$332$$ 0 0
$$333$$ −1.83195 0.241181i −1.83195 0.241181i
$$334$$ 0 0
$$335$$ 0 0
$$336$$ 0 0
$$337$$ 0.707107 + 0.292893i 0.707107 + 0.292893i 0.707107 0.707107i $$-0.250000\pi$$
1.00000i $$0.5\pi$$
$$338$$ −0.965926 0.258819i −0.965926 0.258819i
$$339$$ 0 0
$$340$$ 0.241181 1.83195i 0.241181 1.83195i
$$341$$ 0 0
$$342$$ 0 0
$$343$$ 0 0
$$344$$ 0 0
$$345$$ 0 0
$$346$$ −0.0999004 + 0.758819i −0.0999004 + 0.758819i
$$347$$ 0 0 −0.991445 0.130526i $$-0.958333\pi$$
0.991445 + 0.130526i $$0.0416667\pi$$
$$348$$ 0 0
$$349$$ −1.41421 1.41421i −1.41421 1.41421i −0.707107 0.707107i $$-0.750000\pi$$
−0.707107 0.707107i $$-0.750000\pi$$
$$350$$ 0 0
$$351$$ 0 0
$$352$$ 0 0
$$353$$ −1.22474 0.707107i −1.22474 0.707107i −0.258819 0.965926i $$-0.583333\pi$$
−0.965926 + 0.258819i $$0.916667\pi$$
$$354$$ 0 0
$$355$$ 0 0
$$356$$ 2.00000 2.00000
$$357$$ 0 0
$$358$$ 0 0
$$359$$ 0 0 −0.965926 0.258819i $$-0.916667\pi$$
0.965926 + 0.258819i $$0.0833333\pi$$
$$360$$ 1.46593 1.12484i 1.46593 1.12484i
$$361$$ 0.866025 + 0.500000i 0.866025 + 0.500000i
$$362$$ −0.758819 + 0.0999004i −0.758819 + 0.0999004i
$$363$$ 0 0
$$364$$ 0 0
$$365$$ 2.41421 + 2.41421i 2.41421 + 2.41421i
$$366$$ 0 0
$$367$$ 0 0 −0.991445 0.130526i $$-0.958333\pi$$
0.991445 + 0.130526i $$0.0416667\pi$$
$$368$$ 0 0
$$369$$ −0.758819 + 0.0999004i −0.758819 + 0.0999004i
$$370$$ 3.41421i 3.41421i
$$371$$ 0 0
$$372$$ 0 0
$$373$$ 0.707107 + 1.22474i 0.707107 + 1.22474i 0.965926 + 0.258819i $$0.0833333\pi$$
−0.258819 + 0.965926i $$0.583333\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ 0 0
$$377$$ 0 0
$$378$$ 0 0
$$379$$ 0 0 0.382683 0.923880i $$-0.375000\pi$$
−0.382683 + 0.923880i $$0.625000\pi$$
$$380$$ 0 0
$$381$$ 0 0
$$382$$ 0 0
$$383$$ 0 0 0.258819 0.965926i $$-0.416667\pi$$
−0.258819 + 0.965926i $$0.583333\pi$$
$$384$$ 0 0
$$385$$ 0 0
$$386$$ 0.707107 1.70711i 0.707107 1.70711i
$$387$$ 0 0
$$388$$ 1.46593 1.12484i 1.46593 1.12484i
$$389$$ 0 0 0.965926 0.258819i $$-0.0833333\pi$$
−0.965926 + 0.258819i $$0.916667\pi$$
$$390$$ 0 0
$$391$$ 0 0
$$392$$ 0 0
$$393$$ 0 0
$$394$$ 0.0999004 + 0.758819i 0.0999004 + 0.758819i
$$395$$ 0 0
$$396$$ 0 0
$$397$$ −0.607206 0.465926i −0.607206 0.465926i 0.258819 0.965926i $$-0.416667\pi$$
−0.866025 + 0.500000i $$0.833333\pi$$
$$398$$ 0 0
$$399$$ 0 0
$$400$$ 1.70711 + 1.70711i 1.70711 + 1.70711i
$$401$$ 1.12484 1.46593i 1.12484 1.46593i 0.258819 0.965926i $$-0.416667\pi$$
0.866025 0.500000i $$-0.166667\pi$$
$$402$$ 0 0
$$403$$ 0 0
$$404$$ 1.73205 1.00000i 1.73205 1.00000i
$$405$$ 1.70711 + 0.707107i 1.70711 + 0.707107i
$$406$$ 0 0
$$407$$ 0 0
$$408$$ 0 0
$$409$$ 0.707107 1.22474i 0.707107 1.22474i −0.258819 0.965926i $$-0.583333\pi$$
0.965926 0.258819i $$-0.0833333\pi$$
$$410$$ −0.366025 1.36603i −0.366025 1.36603i
$$411$$ 0 0
$$412$$ 0 0
$$413$$ 0 0
$$414$$ 0 0
$$415$$ 0 0
$$416$$ 0 0
$$417$$ 0 0
$$418$$ 0 0
$$419$$ 0 0 0.923880 0.382683i $$-0.125000\pi$$
−0.923880 + 0.382683i $$0.875000\pi$$
$$420$$ 0 0
$$421$$ 1.41421i 1.41421i 0.707107 + 0.707107i $$0.250000\pi$$
−0.707107 + 0.707107i $$0.750000\pi$$
$$422$$ 0 0
$$423$$ 0 0
$$424$$ −0.707107 + 1.22474i −0.707107 + 1.22474i
$$425$$ 1.20711 + 2.09077i 1.20711 + 2.09077i
$$426$$ 0 0
$$427$$ 0 0
$$428$$ 0 0
$$429$$ 0 0
$$430$$ 0 0
$$431$$ 0 0 0.130526 0.991445i $$-0.458333\pi$$
−0.130526 + 0.991445i $$0.541667\pi$$
$$432$$ 0 0
$$433$$ 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 $$0$$
1.00000i $$0.5\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ 0.607206 + 0.465926i 0.607206 + 0.465926i
$$437$$ 0 0
$$438$$ 0 0
$$439$$ 0 0 −0.130526 0.991445i $$-0.541667\pi$$
0.130526 + 0.991445i $$0.458333\pi$$
$$440$$ 0 0
$$441$$ 0 0
$$442$$ 0 0
$$443$$ 0 0 −0.500000 0.866025i $$-0.666667\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$444$$ 0 0
$$445$$ −2.93185 + 2.24969i −2.93185 + 2.24969i
$$446$$ 0 0
$$447$$ 0 0
$$448$$ 0 0
$$449$$ 0.707107 + 1.70711i 0.707107 + 1.70711i 0.707107 + 0.707107i $$0.250000\pi$$
1.00000i $$0.5\pi$$
$$450$$ −0.624844 + 2.33195i −0.624844 + 2.33195i
$$451$$ 0 0
$$452$$ 0.758819 + 0.0999004i 0.758819 + 0.0999004i
$$453$$ 0 0
$$454$$ 0 0
$$455$$ 0 0
$$456$$ 0 0
$$457$$ 0 0 0.258819 0.965926i $$-0.416667\pi$$
−0.258819 + 0.965926i $$0.583333\pi$$
$$458$$ 0.707107 1.22474i 0.707107 1.22474i
$$459$$ 0 0
$$460$$ 0 0
$$461$$ 1.41421 1.41421i 1.41421 1.41421i 0.707107 0.707107i $$-0.250000\pi$$
0.707107 0.707107i $$-0.250000\pi$$
$$462$$ 0 0
$$463$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$464$$ −1.83195 + 0.241181i −1.83195 + 0.241181i
$$465$$ 0 0
$$466$$ 0.758819 + 0.0999004i 0.758819 + 0.0999004i
$$467$$ 0 0 0.258819 0.965926i $$-0.416667\pi$$
−0.258819 + 0.965926i $$0.583333\pi$$
$$468$$ 0 0
$$469$$ 0 0
$$470$$ 0 0
$$471$$ 0 0
$$472$$ 0 0
$$473$$ 0 0
$$474$$ 0 0
$$475$$ 0 0
$$476$$ 0 0
$$477$$ −1.41421 −1.41421
$$478$$ 0 0
$$479$$ 0 0 0.793353 0.608761i $$-0.208333\pi$$
−0.793353 + 0.608761i $$0.791667\pi$$
$$480$$ 0 0
$$481$$ 0 0
$$482$$ 1.70711 0.707107i 1.70711 0.707107i
$$483$$ 0 0
$$484$$ −0.707107 0.707107i −0.707107 0.707107i
$$485$$ −0.883663 + 3.29788i −0.883663 + 3.29788i
$$486$$ 0 0
$$487$$ 0 0 0.130526 0.991445i $$-0.458333\pi$$
−0.130526 + 0.991445i $$0.541667\pi$$
$$488$$ 0.758819 0.0999004i 0.758819 0.0999004i
$$489$$ 0 0
$$490$$ 0 0
$$491$$ 0 0 0.707107 0.707107i $$-0.250000\pi$$
−0.707107 + 0.707107i $$0.750000\pi$$
$$492$$ 0 0
$$493$$ −1.83195 0.241181i −1.83195 0.241181i
$$494$$ 0 0
$$495$$ 0 0
$$496$$ 0 0
$$497$$ 0 0
$$498$$ 0 0
$$499$$ 0 0 −0.793353 0.608761i $$-0.791667\pi$$
0.793353 + 0.608761i $$0.208333\pi$$
$$500$$ −2.59077 0.341081i −2.59077 0.341081i
$$501$$ 0 0
$$502$$ 0 0
$$503$$ 0 0 −0.382683 0.923880i $$-0.625000\pi$$
0.382683 + 0.923880i $$0.375000\pi$$
$$504$$ 0 0
$$505$$ −1.41421 + 3.41421i −1.41421 + 3.41421i
$$506$$ 0 0
$$507$$ 0 0
$$508$$ 0 0
$$509$$ 0.707107 + 1.22474i 0.707107 + 1.22474i 0.965926 + 0.258819i $$0.0833333\pi$$
−0.258819 + 0.965926i $$0.583333\pi$$
$$510$$ 0 0
$$511$$ 0 0
$$512$$ 0.707107 0.707107i 0.707107 0.707107i
$$513$$ 0 0
$$514$$ 1.22474 + 0.707107i 1.22474 + 0.707107i
$$515$$ 0 0
$$516$$ 0 0
$$517$$ 0 0
$$518$$ 0 0
$$519$$ 0 0
$$520$$ 0 0
$$521$$ 0.0999004 0.758819i 0.0999004 0.758819i −0.866025 0.500000i $$-0.833333\pi$$
0.965926 0.258819i $$-0.0833333\pi$$
$$522$$ −1.12484 1.46593i −1.12484 1.46593i
$$523$$ 0 0 0.866025 0.500000i $$-0.166667\pi$$
−0.866025 + 0.500000i $$0.833333\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 0 0
$$527$$ 0 0
$$528$$ 0 0
$$529$$ 0.258819 + 0.965926i 0.258819 + 0.965926i
$$530$$ −0.341081 2.59077i −0.341081 2.59077i
$$531$$ 0 0
$$532$$ 0 0
$$533$$ 0 0
$$534$$ 0 0
$$535$$ 0 0
$$536$$ 0 0
$$537$$ 0 0
$$538$$ −1.70711 + 0.707107i −1.70711 + 0.707107i
$$539$$ 0 0
$$540$$ 0 0
$$541$$ −0.0999004 0.758819i −0.0999004 0.758819i −0.965926 0.258819i $$-0.916667\pi$$
0.866025 0.500000i $$-0.166667\pi$$
$$542$$ 0 0
$$543$$ 0 0
$$544$$ 0.866025 0.500000i 0.866025 0.500000i
$$545$$ −1.41421 −1.41421
$$546$$ 0 0
$$547$$ 0 0 −0.923880 0.382683i $$-0.875000\pi$$
0.923880 + 0.382683i $$0.125000\pi$$
$$548$$ 1.22474 0.707107i 1.22474 0.707107i
$$549$$ 0.465926 + 0.607206i 0.465926 + 0.607206i
$$550$$ 0 0
$$551$$ 0 0
$$552$$ 0 0
$$553$$ 0 0
$$554$$ 0.292893 + 0.707107i 0.292893 + 0.707107i
$$555$$ 0 0
$$556$$ 0 0
$$557$$ −1.22474 0.707107i −1.22474 0.707107i −0.258819 0.965926i $$-0.583333\pi$$
−0.965926 + 0.258819i $$0.916667\pi$$
$$558$$ 0 0
$$559$$ 0 0
$$560$$ 0 0
$$561$$ 0 0
$$562$$ 0.707107 + 1.22474i 0.707107 + 1.22474i
$$563$$ 0 0 −0.258819 0.965926i $$-0.583333\pi$$
0.258819 + 0.965926i $$0.416667\pi$$
$$564$$ 0 0
$$565$$ −1.22474 + 0.707107i −1.22474 + 0.707107i
$$566$$ 0 0
$$567$$ 0 0
$$568$$ 0 0
$$569$$ −0.366025 + 1.36603i −0.366025 + 1.36603i 0.500000 + 0.866025i $$0.333333\pi$$
−0.866025 + 0.500000i $$0.833333\pi$$
$$570$$ 0 0
$$571$$ 0 0 −0.991445 0.130526i $$-0.958333\pi$$
0.991445 + 0.130526i $$0.0416667\pi$$
$$572$$ 0 0
$$573$$ 0 0
$$574$$ 0 0
$$575$$ 0 0
$$576$$ 0.965926 + 0.258819i 0.965926 + 0.258819i
$$577$$ 0 0 −0.866025 0.500000i $$-0.833333\pi$$
0.866025 + 0.500000i $$0.166667\pi$$
$$578$$ 0.965926 0.258819i 0.965926 0.258819i
$$579$$ 0 0
$$580$$ 2.41421 2.41421i 2.41421 2.41421i
$$581$$ 0 0
$$582$$ 0 0
$$583$$ 0 0
$$584$$ −0.241181 + 1.83195i −0.241181 + 1.83195i
$$585$$ 0 0
$$586$$ 0.366025 1.36603i 0.366025 1.36603i
$$587$$ 0 0 −0.707107 0.707107i $$-0.750000\pi$$
0.707107 + 0.707107i $$0.250000\pi$$
$$588$$ 0 0
$$589$$ 0 0
$$590$$ 0 0
$$591$$ 0 0
$$592$$ 1.46593 1.12484i 1.46593 1.12484i
$$593$$ 1.93185 + 0.517638i 1.93185 + 0.517638i 0.965926 + 0.258819i $$0.0833333\pi$$
0.965926 + 0.258819i $$0.0833333\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ 0 0
$$597$$ 0 0
$$598$$ 0 0
$$599$$ 0 0 −0.866025 0.500000i $$-0.833333\pi$$
0.866025 + 0.500000i $$0.166667\pi$$
$$600$$ 0 0
$$601$$ −0.707107 + 0.292893i −0.707107 + 0.292893i −0.707107 0.707107i $$-0.750000\pi$$
1.00000i $$0.5\pi$$
$$602$$ 0 0
$$603$$ 0 0
$$604$$ 0 0
$$605$$ 1.83195 + 0.241181i 1.83195 + 0.241181i
$$606$$ 0 0
$$607$$ 0 0 0.991445 0.130526i $$-0.0416667\pi$$
−0.991445 + 0.130526i $$0.958333\pi$$
$$608$$ 0 0
$$609$$ 0 0
$$610$$ −1.00000 + 1.00000i −1.00000 + 1.00000i
$$611$$ 0 0
$$612$$ 0.866025 + 0.500000i 0.866025 + 0.500000i
$$613$$ 0 0 −0.866025 0.500000i $$-0.833333\pi$$
0.866025 + 0.500000i $$0.166667\pi$$
$$614$$ 0 0
$$615$$ 0 0
$$616$$ 0 0
$$617$$ −0.292893 + 0.707107i −0.292893 + 0.707107i 0.707107 + 0.707107i $$0.250000\pi$$
−1.00000 $$\pi$$
$$618$$ 0 0
$$619$$ 0 0 −0.991445 0.130526i $$-0.958333\pi$$
0.991445 + 0.130526i $$0.0416667\pi$$
$$620$$ 0 0
$$621$$ 0 0
$$622$$ 0 0
$$623$$ 0 0
$$624$$ 0 0
$$625$$ 2.09077 1.20711i 2.09077 1.20711i
$$626$$ −0.607206 + 0.465926i −0.607206 + 0.465926i
$$627$$ 0 0
$$628$$ −0.707107 1.22474i −0.707107 1.22474i
$$629$$ 1.70711 0.707107i 1.70711 0.707107i
$$630$$ 0 0
$$631$$ 0 0 0.707107 0.707107i $$-0.250000\pi$$
−0.707107 + 0.707107i $$0.750000\pi$$
$$632$$ 0 0
$$633$$ 0 0
$$634$$ 1.12484 + 1.46593i 1.12484 + 1.46593i
$$635$$ 0 0
$$636$$ 0 0
$$637$$ 0 0
$$638$$ 0 0
$$639$$ 0 0
$$640$$ −0.241181 + 1.83195i −0.241181 + 1.83195i
$$641$$ 0.465926 + 0.607206i 0.465926 + 0.607206i 0.965926 0.258819i $$-0.0833333\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$642$$ 0 0
$$643$$ 0 0 −0.923880 0.382683i $$-0.875000\pi$$
0.923880 + 0.382683i $$0.125000\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ 0 0
$$647$$ 0 0 0.500000 0.866025i $$-0.333333\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$648$$ 0.258819 + 0.965926i 0.258819 + 0.965926i
$$649$$ 0 0
$$650$$ 0 0
$$651$$ 0 0
$$652$$ 0 0
$$653$$ −1.12484 + 1.46593i −1.12484 + 1.46593i −0.258819 + 0.965926i $$0.583333\pi$$
−0.866025 + 0.500000i $$0.833333\pi$$
$$654$$ 0 0
$$655$$ 0 0
$$656$$ 0.465926 0.607206i 0.465926 0.607206i
$$657$$ −1.70711 + 0.707107i −1.70711 + 0.707107i
$$658$$ 0 0
$$659$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$660$$ 0 0
$$661$$ 0 0 0.965926 0.258819i $$-0.0833333\pi$$
−0.965926 + 0.258819i $$0.916667\pi$$
$$662$$ 0 0
$$663$$ 0 0
$$664$$ 0 0
$$665$$ 0 0
$$666$$ 1.70711 + 0.707107i 1.70711 + 0.707107i
$$667$$ 0 0
$$668$$ 0 0
$$669$$ 0 0
$$670$$ 0 0
$$671$$ 0 0
$$672$$ 0 0
$$673$$ −0.292893 0.707107i −0.292893 0.707107i 0.707107 0.707107i $$-0.250000\pi$$
−1.00000 $$\pi$$
$$674$$ −0.607206 0.465926i −0.607206 0.465926i
$$675$$ 0 0
$$676$$ 0.866025 + 0.500000i 0.866025 + 0.500000i
$$677$$ 0.241181 + 1.83195i 0.241181 + 1.83195i 0.500000 + 0.866025i $$0.333333\pi$$
−0.258819 + 0.965926i $$0.583333\pi$$
$$678$$ 0 0
$$679$$ 0 0
$$680$$ −0.707107 + 1.70711i −0.707107 + 1.70711i
$$681$$ 0 0
$$682$$ 0 0
$$683$$ 0 0 0.793353 0.608761i $$-0.208333\pi$$
−0.793353 + 0.608761i $$0.791667\pi$$
$$684$$ 0 0
$$685$$ −1.00000 + 2.41421i −1.00000 + 2.41421i
$$686$$ 0 0
$$687$$ 0 0
$$688$$ 0 0
$$689$$ 0 0
$$690$$ 0 0
$$691$$ 0 0 −0.793353 0.608761i $$-0.791667\pi$$
0.793353 + 0.608761i $$0.208333\pi$$
$$692$$ 0.292893 0.707107i 0.292893 0.707107i
$$693$$ 0 0
$$694$$ 0 0
$$695$$ 0 0
$$696$$ 0 0
$$697$$ 0.607206 0.465926i 0.607206 0.465926i
$$698$$ 1.00000 + 1.73205i 1.00000 + 1.73205i
$$699$$ 0 0
$$700$$ 0 0
$$701$$ 1.41421i 1.41421i −0.707107 0.707107i $$-0.750000\pi$$
0.707107 0.707107i $$-0.250000\pi$$
$$702$$ 0 0
$$703$$ 0 0
$$704$$ 0 0
$$705$$ 0 0
$$706$$ 1.00000 + 1.00000i 1.00000 + 1.00000i
$$707$$ 0 0
$$708$$ 0 0
$$709$$ 1.83195 0.241181i 1.83195 0.241181i 0.866025 0.500000i $$-0.166667\pi$$
0.965926 + 0.258819i $$0.0833333\pi$$
$$710$$ 0 0
$$711$$ 0 0
$$712$$ −1.93185 0.517638i −1.93185 0.517638i
$$713$$ 0 0
$$714$$ 0 0
$$715$$ 0 0
$$716$$ 0 0
$$717$$ 0 0
$$718$$ 0 0
$$719$$ 0 0 0.991445 0.130526i $$-0.0416667\pi$$
−0.991445 + 0.130526i $$0.958333\pi$$
$$720$$ −1.70711 + 0.707107i −1.70711 + 0.707107i
$$721$$ 0 0
$$722$$ −0.707107 0.707107i −0.707107 0.707107i
$$723$$ 0 0
$$724$$ 0.758819 + 0.0999004i 0.758819 + 0.0999004i
$$725$$ −0.582262 + 4.42272i −0.582262 + 4.42272i
$$726$$ 0 0
$$727$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$728$$ 0 0
$$729$$ −0.707107 + 0.707107i −0.707107 + 0.707107i
$$730$$ −1.70711 2.95680i −1.70711 2.95680i
$$731$$ 0 0
$$732$$ 0 0
$$733$$ 1.93185 + 0.517638i 1.93185 + 0.517638i 0.965926 + 0.258819i $$0.0833333\pi$$
0.965926 + 0.258819i $$0.0833333\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ 0 0
$$738$$ 0.758819 + 0.0999004i 0.758819 + 0.0999004i
$$739$$ 0 0 0.965926 0.258819i $$-0.0833333\pi$$
−0.965926 + 0.258819i $$0.916667\pi$$
$$740$$ −0.883663 + 3.29788i −0.883663 + 3.29788i
$$741$$ 0 0
$$742$$ 0 0
$$743$$ 0 0 0.382683 0.923880i $$-0.375000\pi$$
−0.382683 + 0.923880i $$0.625000\pi$$
$$744$$ 0 0
$$745$$ 0 0
$$746$$ −0.366025 1.36603i −0.366025 1.36603i
$$747$$ 0 0
$$748$$ 0 0
$$749$$ 0 0
$$750$$ 0 0
$$751$$ 0 0 −0.130526 0.991445i $$-0.541667\pi$$
0.130526 + 0.991445i $$0.458333\pi$$
$$752$$ 0 0
$$753$$ 0 0
$$754$$ 0 0
$$755$$ 0 0
$$756$$ 0 0
$$757$$ −1.41421 1.41421i −1.41421 1.41421i −0.707107 0.707107i $$-0.750000\pi$$
−0.707107 0.707107i $$-0.750000\pi$$
$$758$$ 0 0
$$759$$ 0 0
$$760$$ 0 0
$$761$$ 0 0 −0.500000 0.866025i $$-0.666667\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$762$$ 0 0
$$763$$ 0 0
$$764$$ 0 0
$$765$$ −1.83195 + 0.241181i −1.83195 + 0.241181i
$$766$$ 0 0
$$767$$ 0 0
$$768$$ 0 0
$$769$$ 2.00000i 2.00000i 1.00000i $$-0.5\pi$$
1.00000i $$-0.5\pi$$
$$770$$ 0 0
$$771$$ 0 0
$$772$$ −1.12484 + 1.46593i −1.12484 + 1.46593i
$$773$$ 1.36603 0.366025i 1.36603 0.366025i 0.500000 0.866025i $$-0.333333\pi$$
0.866025 + 0.500000i $$0.166667\pi$$
$$774$$ 0 0
$$775$$ 0 0
$$776$$ −1.70711 + 0.707107i −1.70711 + 0.707107i
$$777$$ 0 0
$$778$$ 0 0
$$779$$ 0 0
$$780$$ 0 0
$$781$$ 0 0
$$782$$ 0 0
$$783$$ 0 0
$$784$$ 0 0
$$785$$ 2.41421 + 1.00000i 2.41421 + 1.00000i
$$786$$ 0 0
$$787$$ 0 0 −0.608761 0.793353i $$-0.708333\pi$$
0.608761 + 0.793353i $$0.291667\pi$$
$$788$$ 0.0999004 0.758819i 0.0999004 0.758819i
$$789$$ 0 0
$$790$$ 0 0
$$791$$ 0 0
$$792$$ 0 0
$$793$$ 0 0
$$794$$ 0.465926 + 0.607206i 0.465926 + 0.607206i
$$795$$ 0 0
$$796$$ 0 0
$$797$$ 0 0 −0.707107 0.707107i $$-0.750000\pi$$
0.707107 + 0.707107i $$0.250000\pi$$
$$798$$ 0 0
$$799$$ 0 0
$$800$$ −1.20711 2.09077i