Properties

Label 3332.1.bp.a
Level $3332$
Weight $1$
Character orbit 3332.bp
Analytic conductor $1.663$
Analytic rank $0$
Dimension $8$
Projective image $D_{8}$
CM discriminant -4
Inner twists $8$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 3332 = 2^{2} \cdot 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3332.bp (of order \(24\), degree \(8\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.66288462209\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{24})\)
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{8}\)
Projective field: Galois closure of 8.2.3089659810545728.1

$q$-expansion

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{24}^{7} q^{2} - \zeta_{24}^{2} q^{4} + ( - \zeta_{24}^{4} + \zeta_{24}) q^{5} - \zeta_{24}^{9} q^{8} - \zeta_{24} q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + \zeta_{24}^{7} q^{2} - \zeta_{24}^{2} q^{4} + ( - \zeta_{24}^{4} + \zeta_{24}) q^{5} - \zeta_{24}^{9} q^{8} - \zeta_{24} q^{9} + ( - \zeta_{24}^{11} + \zeta_{24}^{8}) q^{10} + \zeta_{24}^{6} q^{13} + \zeta_{24}^{4} q^{16} - \zeta_{24}^{5} q^{17} - \zeta_{24}^{8} q^{18} + (\zeta_{24}^{6} - \zeta_{24}^{3}) q^{20} + (\zeta_{24}^{8} - \zeta_{24}^{5} + \zeta_{24}^{2}) q^{25} - 2 \zeta_{24} q^{26} + (\zeta_{24}^{6} + \zeta_{24}^{3}) q^{29} + \zeta_{24}^{11} q^{32} + q^{34} + \zeta_{24}^{3} q^{36} + (\zeta_{24}^{4} + \zeta_{24}) q^{37} + ( - \zeta_{24}^{10} - \zeta_{24}) q^{40} + ( - \zeta_{24}^{9} - \zeta_{24}^{6}) q^{41} + (\zeta_{24}^{5} - \zeta_{24}^{2}) q^{45} + (\zeta_{24}^{9} - \zeta_{24}^{3} + 1) q^{50} - 2 \zeta_{24}^{8} q^{52} + ( - \zeta_{24}^{8} + \zeta_{24}^{2}) q^{53} + (\zeta_{24}^{10} - \zeta_{24}) q^{58} + ( - \zeta_{24}^{10} + \zeta_{24}) q^{61} - \zeta_{24}^{6} q^{64} + ( - 2 \zeta_{24}^{10} + 2 \zeta_{24}^{7}) q^{65} + \zeta_{24}^{7} q^{68} + \zeta_{24}^{10} q^{72} + (\zeta_{24}^{8} - \zeta_{24}^{5}) q^{73} + (\zeta_{24}^{11} + \zeta_{24}^{8}) q^{74} + ( - \zeta_{24}^{8} + \zeta_{24}^{5}) q^{80} + \zeta_{24}^{2} q^{81} + (\zeta_{24}^{4} + \zeta_{24}) q^{82} + (\zeta_{24}^{9} - \zeta_{24}^{6}) q^{85} + ( - \zeta_{24}^{9} - 1) q^{90} + (\zeta_{24}^{9} + 1) q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 4 q^{5} - 4 q^{10} + 4 q^{16} + 4 q^{18} - 4 q^{25} + 8 q^{34} + 4 q^{37} + 8 q^{50} + 8 q^{52} + 4 q^{53} - 4 q^{73} - 4 q^{74} + 4 q^{80} + 4 q^{82} - 8 q^{90} + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3332\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(885\) \(1667\)
\(\chi(n)\) \(-\zeta_{24}^{9}\) \(-\zeta_{24}^{4}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
263.1
0.258819 0.965926i
−0.258819 + 0.965926i
0.965926 + 0.258819i
0.258819 + 0.965926i
−0.965926 + 0.258819i
0.965926 0.258819i
−0.965926 0.258819i
−0.258819 0.965926i
−0.965926 0.258819i 0 0.866025 + 0.500000i −0.241181 1.83195i 0 0 −0.707107 0.707107i −0.258819 + 0.965926i −0.241181 + 1.83195i
655.1 0.965926 + 0.258819i 0 0.866025 + 0.500000i −0.758819 + 0.0999004i 0 0 0.707107 + 0.707107i 0.258819 0.965926i −0.758819 0.0999004i
1243.1 −0.258819 + 0.965926i 0 −0.866025 0.500000i 0.465926 0.607206i 0 0 0.707107 0.707107i −0.965926 0.258819i 0.465926 + 0.607206i
1647.1 −0.965926 + 0.258819i 0 0.866025 0.500000i −0.241181 + 1.83195i 0 0 −0.707107 + 0.707107i −0.258819 0.965926i −0.241181 1.83195i
2235.1 0.258819 + 0.965926i 0 −0.866025 + 0.500000i −1.46593 + 1.12484i 0 0 −0.707107 0.707107i 0.965926 0.258819i −1.46593 1.12484i
2627.1 −0.258819 0.965926i 0 −0.866025 + 0.500000i 0.465926 + 0.607206i 0 0 0.707107 + 0.707107i −0.965926 + 0.258819i 0.465926 0.607206i
3007.1 0.258819 0.965926i 0 −0.866025 0.500000i −1.46593 1.12484i 0 0 −0.707107 + 0.707107i 0.965926 + 0.258819i −1.46593 + 1.12484i
3215.1 0.965926 0.258819i 0 0.866025 0.500000i −0.758819 0.0999004i 0 0 0.707107 0.707107i 0.258819 + 0.965926i −0.758819 + 0.0999004i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 3215.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by \(\Q(\sqrt{-1}) \)
7.c even 3 1 inner
17.d even 8 1 inner
28.g odd 6 1 inner
68.g odd 8 1 inner
119.q even 24 1 inner
476.bg odd 24 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3332.1.bp.a 8
4.b odd 2 1 CM 3332.1.bp.a 8
7.b odd 2 1 3332.1.bp.d 8
7.c even 3 1 3332.1.w.d yes 4
7.c even 3 1 inner 3332.1.bp.a 8
7.d odd 6 1 3332.1.w.a 4
7.d odd 6 1 3332.1.bp.d 8
17.d even 8 1 inner 3332.1.bp.a 8
28.d even 2 1 3332.1.bp.d 8
28.f even 6 1 3332.1.w.a 4
28.f even 6 1 3332.1.bp.d 8
28.g odd 6 1 3332.1.w.d yes 4
28.g odd 6 1 inner 3332.1.bp.a 8
68.g odd 8 1 inner 3332.1.bp.a 8
119.l odd 8 1 3332.1.bp.d 8
119.q even 24 1 3332.1.w.d yes 4
119.q even 24 1 inner 3332.1.bp.a 8
119.r odd 24 1 3332.1.w.a 4
119.r odd 24 1 3332.1.bp.d 8
476.w even 8 1 3332.1.bp.d 8
476.bg odd 24 1 3332.1.w.d yes 4
476.bg odd 24 1 inner 3332.1.bp.a 8
476.bj even 24 1 3332.1.w.a 4
476.bj even 24 1 3332.1.bp.d 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3332.1.w.a 4 7.d odd 6 1
3332.1.w.a 4 28.f even 6 1
3332.1.w.a 4 119.r odd 24 1
3332.1.w.a 4 476.bj even 24 1
3332.1.w.d yes 4 7.c even 3 1
3332.1.w.d yes 4 28.g odd 6 1
3332.1.w.d yes 4 119.q even 24 1
3332.1.w.d yes 4 476.bg odd 24 1
3332.1.bp.a 8 1.a even 1 1 trivial
3332.1.bp.a 8 4.b odd 2 1 CM
3332.1.bp.a 8 7.c even 3 1 inner
3332.1.bp.a 8 17.d even 8 1 inner
3332.1.bp.a 8 28.g odd 6 1 inner
3332.1.bp.a 8 68.g odd 8 1 inner
3332.1.bp.a 8 119.q even 24 1 inner
3332.1.bp.a 8 476.bg odd 24 1 inner
3332.1.bp.d 8 7.b odd 2 1
3332.1.bp.d 8 7.d odd 6 1
3332.1.bp.d 8 28.d even 2 1
3332.1.bp.d 8 28.f even 6 1
3332.1.bp.d 8 119.l odd 8 1
3332.1.bp.d 8 119.r odd 24 1
3332.1.bp.d 8 476.w even 8 1
3332.1.bp.d 8 476.bj even 24 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{8} + 4T_{5}^{7} + 10T_{5}^{6} + 16T_{5}^{5} + 18T_{5}^{4} + 8T_{5}^{3} + 4T_{5}^{2} + 8T_{5} + 4 \) acting on \(S_{1}^{\mathrm{new}}(3332, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} - T^{4} + 1 \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( T^{8} + 4 T^{7} + 10 T^{6} + 16 T^{5} + \cdots + 4 \) Copy content Toggle raw display
$7$ \( T^{8} \) Copy content Toggle raw display
$11$ \( T^{8} \) Copy content Toggle raw display
$13$ \( (T^{2} + 4)^{4} \) Copy content Toggle raw display
$17$ \( T^{8} - T^{4} + 1 \) Copy content Toggle raw display
$19$ \( T^{8} \) Copy content Toggle raw display
$23$ \( T^{8} \) Copy content Toggle raw display
$29$ \( (T^{4} + 2 T^{2} + 4 T + 2)^{2} \) Copy content Toggle raw display
$31$ \( T^{8} \) Copy content Toggle raw display
$37$ \( T^{8} - 4 T^{7} + 10 T^{6} - 16 T^{5} + \cdots + 4 \) Copy content Toggle raw display
$41$ \( (T^{4} + 2 T^{2} + 4 T + 2)^{2} \) Copy content Toggle raw display
$43$ \( T^{8} \) Copy content Toggle raw display
$47$ \( T^{8} \) Copy content Toggle raw display
$53$ \( (T^{4} - 2 T^{3} + 2 T^{2} - 4 T + 4)^{2} \) Copy content Toggle raw display
$59$ \( T^{8} \) Copy content Toggle raw display
$61$ \( T^{8} - 2 T^{6} - 8 T^{5} + 2 T^{4} + \cdots + 4 \) Copy content Toggle raw display
$67$ \( T^{8} \) Copy content Toggle raw display
$71$ \( T^{8} \) Copy content Toggle raw display
$73$ \( T^{8} + 4 T^{7} + 10 T^{6} + 16 T^{5} + \cdots + 4 \) Copy content Toggle raw display
$79$ \( T^{8} \) Copy content Toggle raw display
$83$ \( T^{8} \) Copy content Toggle raw display
$89$ \( T^{8} \) Copy content Toggle raw display
$97$ \( (T^{4} - 4 T^{3} + 6 T^{2} - 4 T + 2)^{2} \) Copy content Toggle raw display
show more
show less