Defining parameters
Level: | \( N \) | \(=\) | \( 3332 = 2^{2} \cdot 7^{2} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 3332.bp (of order \(24\) and degree \(8\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 476 \) |
Character field: | \(\Q(\zeta_{24})\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(504\) | ||
Trace bound: | \(20\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(3332, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 160 | 96 | 64 |
Cusp forms | 32 | 32 | 0 |
Eisenstein series | 128 | 64 | 64 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 32 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(3332, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
3332.1.bp.a | $8$ | $1.663$ | \(\Q(\zeta_{24})\) | $D_{8}$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(-4\) | \(0\) | \(q+\zeta_{24}^{7}q^{2}-\zeta_{24}^{2}q^{4}+(\zeta_{24}-\zeta_{24}^{4}+\cdots)q^{5}+\cdots\) |
3332.1.bp.b | $8$ | $1.663$ | \(\Q(\zeta_{24})\) | $D_{8}$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\zeta_{24}^{7}q^{2}-\zeta_{24}^{2}q^{4}+(-\zeta_{24}^{7}-\zeta_{24}^{10}+\cdots)q^{5}+\cdots\) |
3332.1.bp.c | $8$ | $1.663$ | \(\Q(\zeta_{24})\) | $D_{8}$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\zeta_{24}^{7}q^{2}-\zeta_{24}^{2}q^{4}+(\zeta_{24}^{7}+\zeta_{24}^{10}+\cdots)q^{5}+\cdots\) |
3332.1.bp.d | $8$ | $1.663$ | \(\Q(\zeta_{24})\) | $D_{8}$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(4\) | \(0\) | \(q+\zeta_{24}^{7}q^{2}-\zeta_{24}^{2}q^{4}+(-\zeta_{24}+\zeta_{24}^{4}+\cdots)q^{5}+\cdots\) |