Properties

 Label 3332.1.bn.b.2743.1 Level $3332$ Weight $1$ Character 3332.2743 Analytic conductor $1.663$ Analytic rank $0$ Dimension $8$ Projective image $D_{16}$ CM discriminant -4 Inner twists $4$

Related objects

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [3332,1,Mod(979,3332)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(3332, base_ring=CyclotomicField(16))

chi = DirichletCharacter(H, H._module([8, 8, 3]))

N = Newforms(chi, 1, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("3332.979");

S:= CuspForms(chi, 1);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$3332 = 2^{2} \cdot 7^{2} \cdot 17$$ Weight: $$k$$ $$=$$ $$1$$ Character orbit: $$[\chi]$$ $$=$$ 3332.bn (of order $$16$$, degree $$8$$, minimal)

Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$1.66288462209$$ Analytic rank: $$0$$ Dimension: $$8$$ Coefficient field: $$\Q(\zeta_{16})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{8} + 1$$ x^8 + 1 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: yes Projective image: $$D_{16}$$ Projective field: Galois closure of $$\mathbb{Q}[x]/(x^{16} - \cdots)$$

Embedding invariants

 Embedding label 2743.1 Root $$0.382683 - 0.923880i$$ of defining polynomial Character $$\chi$$ $$=$$ 3332.2743 Dual form 3332.1.bn.b.1567.1

$q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+(-0.923880 - 0.382683i) q^{2} +(0.707107 + 0.707107i) q^{4} +(0.324423 + 0.216773i) q^{5} +(-0.382683 - 0.923880i) q^{8} +(-0.923880 + 0.382683i) q^{9} +O(q^{10})$$ $$q+(-0.923880 - 0.382683i) q^{2} +(0.707107 + 0.707107i) q^{4} +(0.324423 + 0.216773i) q^{5} +(-0.382683 - 0.923880i) q^{8} +(-0.923880 + 0.382683i) q^{9} +(-0.216773 - 0.324423i) q^{10} +(-1.00000 - 1.00000i) q^{13} +1.00000i q^{16} +(0.382683 - 0.923880i) q^{17} +1.00000 q^{18} +(0.0761205 + 0.382683i) q^{20} +(-0.324423 - 0.783227i) q^{25} +(0.541196 + 1.30656i) q^{26} +(-0.324423 - 0.216773i) q^{29} +(0.382683 - 0.923880i) q^{32} +(-0.707107 + 0.707107i) q^{34} +(-0.923880 - 0.382683i) q^{36} +(-1.92388 + 0.382683i) q^{37} +(0.0761205 - 0.382683i) q^{40} +(1.38268 - 0.923880i) q^{41} +(-0.382683 - 0.0761205i) q^{45} +0.847759i q^{50} -1.41421i q^{52} +(-0.707107 - 0.292893i) q^{53} +(0.216773 + 0.324423i) q^{58} +(-0.617317 - 0.923880i) q^{61} +(-0.707107 + 0.707107i) q^{64} +(-0.107651 - 0.541196i) q^{65} +(0.923880 - 0.382683i) q^{68} +(0.707107 + 0.707107i) q^{72} +(-1.63099 - 1.08979i) q^{73} +(1.92388 + 0.382683i) q^{74} +(-0.216773 + 0.324423i) q^{80} +(0.707107 - 0.707107i) q^{81} +(-1.63099 + 0.324423i) q^{82} +(0.324423 - 0.216773i) q^{85} +(0.324423 + 0.216773i) q^{90} +(1.08979 - 1.63099i) q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$8 q+O(q^{10})$$ 8 * q $$8 q - 8 q^{13} + 8 q^{18} + 8 q^{20} - 8 q^{37} + 8 q^{40} + 8 q^{41} - 8 q^{61} + 8 q^{74}+O(q^{100})$$ 8 * q - 8 * q^13 + 8 * q^18 + 8 * q^20 - 8 * q^37 + 8 * q^40 + 8 * q^41 - 8 * q^61 + 8 * q^74

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/3332\mathbb{Z}\right)^\times$$.

 $$n$$ $$785$$ $$885$$ $$1667$$ $$\chi(n)$$ $$e\left(\frac{15}{16}\right)$$ $$-1$$ $$-1$$

Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.923880 0.382683i −0.923880 0.382683i
$$3$$ 0 0 −0.195090 0.980785i $$-0.562500\pi$$
0.195090 + 0.980785i $$0.437500\pi$$
$$4$$ 0.707107 + 0.707107i 0.707107 + 0.707107i
$$5$$ 0.324423 + 0.216773i 0.324423 + 0.216773i 0.707107 0.707107i $$-0.250000\pi$$
−0.382683 + 0.923880i $$0.625000\pi$$
$$6$$ 0 0
$$7$$ 0 0
$$8$$ −0.382683 0.923880i −0.382683 0.923880i
$$9$$ −0.923880 + 0.382683i −0.923880 + 0.382683i
$$10$$ −0.216773 0.324423i −0.216773 0.324423i
$$11$$ 0 0 0.195090 0.980785i $$-0.437500\pi$$
−0.195090 + 0.980785i $$0.562500\pi$$
$$12$$ 0 0
$$13$$ −1.00000 1.00000i −1.00000 1.00000i 1.00000i $$-0.5\pi$$
−1.00000 $$\pi$$
$$14$$ 0 0
$$15$$ 0 0
$$16$$ 1.00000i 1.00000i
$$17$$ 0.382683 0.923880i 0.382683 0.923880i
$$18$$ 1.00000 1.00000
$$19$$ 0 0 0.382683 0.923880i $$-0.375000\pi$$
−0.382683 + 0.923880i $$0.625000\pi$$
$$20$$ 0.0761205 + 0.382683i 0.0761205 + 0.382683i
$$21$$ 0 0
$$22$$ 0 0
$$23$$ 0 0 −0.980785 0.195090i $$-0.937500\pi$$
0.980785 + 0.195090i $$0.0625000\pi$$
$$24$$ 0 0
$$25$$ −0.324423 0.783227i −0.324423 0.783227i
$$26$$ 0.541196 + 1.30656i 0.541196 + 1.30656i
$$27$$ 0 0
$$28$$ 0 0
$$29$$ −0.324423 0.216773i −0.324423 0.216773i 0.382683 0.923880i $$-0.375000\pi$$
−0.707107 + 0.707107i $$0.750000\pi$$
$$30$$ 0 0
$$31$$ 0 0 0.980785 0.195090i $$-0.0625000\pi$$
−0.980785 + 0.195090i $$0.937500\pi$$
$$32$$ 0.382683 0.923880i 0.382683 0.923880i
$$33$$ 0 0
$$34$$ −0.707107 + 0.707107i −0.707107 + 0.707107i
$$35$$ 0 0
$$36$$ −0.923880 0.382683i −0.923880 0.382683i
$$37$$ −1.92388 + 0.382683i −1.92388 + 0.382683i −0.923880 + 0.382683i $$0.875000\pi$$
−1.00000 $$\pi$$
$$38$$ 0 0
$$39$$ 0 0
$$40$$ 0.0761205 0.382683i 0.0761205 0.382683i
$$41$$ 1.38268 0.923880i 1.38268 0.923880i 0.382683 0.923880i $$-0.375000\pi$$
1.00000 $$0$$
$$42$$ 0 0
$$43$$ 0 0 0.923880 0.382683i $$-0.125000\pi$$
−0.923880 + 0.382683i $$0.875000\pi$$
$$44$$ 0 0
$$45$$ −0.382683 0.0761205i −0.382683 0.0761205i
$$46$$ 0 0
$$47$$ 0 0 −0.707107 0.707107i $$-0.750000\pi$$
0.707107 + 0.707107i $$0.250000\pi$$
$$48$$ 0 0
$$49$$ 0 0
$$50$$ 0.847759i 0.847759i
$$51$$ 0 0
$$52$$ 1.41421i 1.41421i
$$53$$ −0.707107 0.292893i −0.707107 0.292893i 1.00000i $$-0.5\pi$$
−0.707107 + 0.707107i $$0.750000\pi$$
$$54$$ 0 0
$$55$$ 0 0
$$56$$ 0 0
$$57$$ 0 0
$$58$$ 0.216773 + 0.324423i 0.216773 + 0.324423i
$$59$$ 0 0 0.923880 0.382683i $$-0.125000\pi$$
−0.923880 + 0.382683i $$0.875000\pi$$
$$60$$ 0 0
$$61$$ −0.617317 0.923880i −0.617317 0.923880i 0.382683 0.923880i $$-0.375000\pi$$
−1.00000 $$\pi$$
$$62$$ 0 0
$$63$$ 0 0
$$64$$ −0.707107 + 0.707107i −0.707107 + 0.707107i
$$65$$ −0.107651 0.541196i −0.107651 0.541196i
$$66$$ 0 0
$$67$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$68$$ 0.923880 0.382683i 0.923880 0.382683i
$$69$$ 0 0
$$70$$ 0 0
$$71$$ 0 0 0.980785 0.195090i $$-0.0625000\pi$$
−0.980785 + 0.195090i $$0.937500\pi$$
$$72$$ 0.707107 + 0.707107i 0.707107 + 0.707107i
$$73$$ −1.63099 1.08979i −1.63099 1.08979i −0.923880 0.382683i $$-0.875000\pi$$
−0.707107 0.707107i $$-0.750000\pi$$
$$74$$ 1.92388 + 0.382683i 1.92388 + 0.382683i
$$75$$ 0 0
$$76$$ 0 0
$$77$$ 0 0
$$78$$ 0 0
$$79$$ 0 0 0.195090 0.980785i $$-0.437500\pi$$
−0.195090 + 0.980785i $$0.562500\pi$$
$$80$$ −0.216773 + 0.324423i −0.216773 + 0.324423i
$$81$$ 0.707107 0.707107i 0.707107 0.707107i
$$82$$ −1.63099 + 0.324423i −1.63099 + 0.324423i
$$83$$ 0 0 −0.923880 0.382683i $$-0.875000\pi$$
0.923880 + 0.382683i $$0.125000\pi$$
$$84$$ 0 0
$$85$$ 0.324423 0.216773i 0.324423 0.216773i
$$86$$ 0 0
$$87$$ 0 0
$$88$$ 0 0
$$89$$ 0 0 −0.707107 0.707107i $$-0.750000\pi$$
0.707107 + 0.707107i $$0.250000\pi$$
$$90$$ 0.324423 + 0.216773i 0.324423 + 0.216773i
$$91$$ 0 0
$$92$$ 0 0
$$93$$ 0 0
$$94$$ 0 0
$$95$$ 0 0
$$96$$ 0 0
$$97$$ 1.08979 1.63099i 1.08979 1.63099i 0.382683 0.923880i $$-0.375000\pi$$
0.707107 0.707107i $$-0.250000\pi$$
$$98$$ 0 0
$$99$$ 0 0
$$100$$ 0.324423 0.783227i 0.324423 0.783227i
$$101$$ 2.00000 2.00000 1.00000 $$0$$
1.00000 $$0$$
$$102$$ 0 0
$$103$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$104$$ −0.541196 + 1.30656i −0.541196 + 1.30656i
$$105$$ 0 0
$$106$$ 0.541196 + 0.541196i 0.541196 + 0.541196i
$$107$$ 0 0 0.555570 0.831470i $$-0.312500\pi$$
−0.555570 + 0.831470i $$0.687500\pi$$
$$108$$ 0 0
$$109$$ 0.923880 + 1.38268i 0.923880 + 1.38268i 0.923880 + 0.382683i $$0.125000\pi$$
1.00000i $$0.5\pi$$
$$110$$ 0 0
$$111$$ 0 0
$$112$$ 0 0
$$113$$ −0.216773 + 1.08979i −0.216773 + 1.08979i 0.707107 + 0.707107i $$0.250000\pi$$
−0.923880 + 0.382683i $$0.875000\pi$$
$$114$$ 0 0
$$115$$ 0 0
$$116$$ −0.0761205 0.382683i −0.0761205 0.382683i
$$117$$ 1.30656 + 0.541196i 1.30656 + 0.541196i
$$118$$ 0 0
$$119$$ 0 0
$$120$$ 0 0
$$121$$ −0.923880 0.382683i −0.923880 0.382683i
$$122$$ 0.216773 + 1.08979i 0.216773 + 1.08979i
$$123$$ 0 0
$$124$$ 0 0
$$125$$ 0.140652 0.707107i 0.140652 0.707107i
$$126$$ 0 0
$$127$$ 0 0 −0.382683 0.923880i $$-0.625000\pi$$
0.382683 + 0.923880i $$0.375000\pi$$
$$128$$ 0.923880 0.382683i 0.923880 0.382683i
$$129$$ 0 0
$$130$$ −0.107651 + 0.541196i −0.107651 + 0.541196i
$$131$$ 0 0 0.555570 0.831470i $$-0.312500\pi$$
−0.555570 + 0.831470i $$0.687500\pi$$
$$132$$ 0 0
$$133$$ 0 0
$$134$$ 0 0
$$135$$ 0 0
$$136$$ −1.00000 −1.00000
$$137$$ −0.765367 −0.765367 −0.382683 0.923880i $$-0.625000\pi$$
−0.382683 + 0.923880i $$0.625000\pi$$
$$138$$ 0 0
$$139$$ 0 0 −0.195090 0.980785i $$-0.562500\pi$$
0.195090 + 0.980785i $$0.437500\pi$$
$$140$$ 0 0
$$141$$ 0 0
$$142$$ 0 0
$$143$$ 0 0
$$144$$ −0.382683 0.923880i −0.382683 0.923880i
$$145$$ −0.0582601 0.140652i −0.0582601 0.140652i
$$146$$ 1.08979 + 1.63099i 1.08979 + 1.63099i
$$147$$ 0 0
$$148$$ −1.63099 1.08979i −1.63099 1.08979i
$$149$$ 1.00000 1.00000i 1.00000 1.00000i 1.00000i $$-0.5\pi$$
1.00000 $$0$$
$$150$$ 0 0
$$151$$ 0 0 0.382683 0.923880i $$-0.375000\pi$$
−0.382683 + 0.923880i $$0.625000\pi$$
$$152$$ 0 0
$$153$$ 1.00000i 1.00000i
$$154$$ 0 0
$$155$$ 0 0
$$156$$ 0 0
$$157$$ 0.541196 0.541196i 0.541196 0.541196i −0.382683 0.923880i $$-0.625000\pi$$
0.923880 + 0.382683i $$0.125000\pi$$
$$158$$ 0 0
$$159$$ 0 0
$$160$$ 0.324423 0.216773i 0.324423 0.216773i
$$161$$ 0 0
$$162$$ −0.923880 + 0.382683i −0.923880 + 0.382683i
$$163$$ 0 0 0.831470 0.555570i $$-0.187500\pi$$
−0.831470 + 0.555570i $$0.812500\pi$$
$$164$$ 1.63099 + 0.324423i 1.63099 + 0.324423i
$$165$$ 0 0
$$166$$ 0 0
$$167$$ 0 0 0.980785 0.195090i $$-0.0625000\pi$$
−0.980785 + 0.195090i $$0.937500\pi$$
$$168$$ 0 0
$$169$$ 1.00000i 1.00000i
$$170$$ −0.382683 + 0.0761205i −0.382683 + 0.0761205i
$$171$$ 0 0
$$172$$ 0 0
$$173$$ −0.324423 1.63099i −0.324423 1.63099i −0.707107 0.707107i $$-0.750000\pi$$
0.382683 0.923880i $$-0.375000\pi$$
$$174$$ 0 0
$$175$$ 0 0
$$176$$ 0 0
$$177$$ 0 0
$$178$$ 0 0
$$179$$ 0 0 0.923880 0.382683i $$-0.125000\pi$$
−0.923880 + 0.382683i $$0.875000\pi$$
$$180$$ −0.216773 0.324423i −0.216773 0.324423i
$$181$$ −1.08979 0.216773i −1.08979 0.216773i −0.382683 0.923880i $$-0.625000\pi$$
−0.707107 + 0.707107i $$0.750000\pi$$
$$182$$ 0 0
$$183$$ 0 0
$$184$$ 0 0
$$185$$ −0.707107 0.292893i −0.707107 0.292893i
$$186$$ 0 0
$$187$$ 0 0
$$188$$ 0 0
$$189$$ 0 0
$$190$$ 0 0
$$191$$ 0 0 −0.707107 0.707107i $$-0.750000\pi$$
0.707107 + 0.707107i $$0.250000\pi$$
$$192$$ 0 0
$$193$$ −1.92388 0.382683i −1.92388 0.382683i −0.923880 0.382683i $$-0.875000\pi$$
−1.00000 $$\pi$$
$$194$$ −1.63099 + 1.08979i −1.63099 + 1.08979i
$$195$$ 0 0
$$196$$ 0 0
$$197$$ 0.923880 0.617317i 0.923880 0.617317i 1.00000i $$-0.5\pi$$
0.923880 + 0.382683i $$0.125000\pi$$
$$198$$ 0 0
$$199$$ 0 0 0.555570 0.831470i $$-0.312500\pi$$
−0.555570 + 0.831470i $$0.687500\pi$$
$$200$$ −0.599456 + 0.599456i −0.599456 + 0.599456i
$$201$$ 0 0
$$202$$ −1.84776 0.765367i −1.84776 0.765367i
$$203$$ 0 0
$$204$$ 0 0
$$205$$ 0.648847 0.648847
$$206$$ 0 0
$$207$$ 0 0
$$208$$ 1.00000 1.00000i 1.00000 1.00000i
$$209$$ 0 0
$$210$$ 0 0
$$211$$ 0 0 −0.555570 0.831470i $$-0.687500\pi$$
0.555570 + 0.831470i $$0.312500\pi$$
$$212$$ −0.292893 0.707107i −0.292893 0.707107i
$$213$$ 0 0
$$214$$ 0 0
$$215$$ 0 0
$$216$$ 0 0
$$217$$ 0 0
$$218$$ −0.324423 1.63099i −0.324423 1.63099i
$$219$$ 0 0
$$220$$ 0 0
$$221$$ −1.30656 + 0.541196i −1.30656 + 0.541196i
$$222$$ 0 0
$$223$$ 0 0 0.382683 0.923880i $$-0.375000\pi$$
−0.382683 + 0.923880i $$0.625000\pi$$
$$224$$ 0 0
$$225$$ 0.599456 + 0.599456i 0.599456 + 0.599456i
$$226$$ 0.617317 0.923880i 0.617317 0.923880i
$$227$$ 0 0 0.195090 0.980785i $$-0.437500\pi$$
−0.195090 + 0.980785i $$0.562500\pi$$
$$228$$ 0 0
$$229$$ −1.70711 + 0.707107i −1.70711 + 0.707107i −0.707107 + 0.707107i $$0.750000\pi$$
−1.00000 $$\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ −0.0761205 + 0.382683i −0.0761205 + 0.382683i
$$233$$ 1.38268 + 0.923880i 1.38268 + 0.923880i 1.00000 $$0$$
0.382683 + 0.923880i $$0.375000\pi$$
$$234$$ −1.00000 1.00000i −1.00000 1.00000i
$$235$$ 0 0
$$236$$ 0 0
$$237$$ 0 0
$$238$$ 0 0
$$239$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$240$$ 0 0
$$241$$ 0.382683 + 1.92388i 0.382683 + 1.92388i 0.382683 + 0.923880i $$0.375000\pi$$
1.00000i $$0.5\pi$$
$$242$$ 0.707107 + 0.707107i 0.707107 + 0.707107i
$$243$$ 0 0
$$244$$ 0.216773 1.08979i 0.216773 1.08979i
$$245$$ 0 0
$$246$$ 0 0
$$247$$ 0 0
$$248$$ 0 0
$$249$$ 0 0
$$250$$ −0.400544 + 0.599456i −0.400544 + 0.599456i
$$251$$ 0 0 −0.707107 0.707107i $$-0.750000\pi$$
0.707107 + 0.707107i $$0.250000\pi$$
$$252$$ 0 0
$$253$$ 0 0
$$254$$ 0 0
$$255$$ 0 0
$$256$$ −1.00000 −1.00000
$$257$$ 0.707107 1.70711i 0.707107 1.70711i 1.00000i $$-0.5\pi$$
0.707107 0.707107i $$-0.250000\pi$$
$$258$$ 0 0
$$259$$ 0 0
$$260$$ 0.306563 0.458804i 0.306563 0.458804i
$$261$$ 0.382683 + 0.0761205i 0.382683 + 0.0761205i
$$262$$ 0 0
$$263$$ 0 0 −0.382683 0.923880i $$-0.625000\pi$$
0.382683 + 0.923880i $$0.375000\pi$$
$$264$$ 0 0
$$265$$ −0.165911 0.248303i −0.165911 0.248303i
$$266$$ 0 0
$$267$$ 0 0
$$268$$ 0 0
$$269$$ −1.92388 + 0.382683i −1.92388 + 0.382683i −0.923880 + 0.382683i $$0.875000\pi$$
−1.00000 $$\pi$$
$$270$$ 0 0
$$271$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$272$$ 0.923880 + 0.382683i 0.923880 + 0.382683i
$$273$$ 0 0
$$274$$ 0.707107 + 0.292893i 0.707107 + 0.292893i
$$275$$ 0 0
$$276$$ 0 0
$$277$$ −0.923880 + 1.38268i −0.923880 + 1.38268i 1.00000i $$0.5\pi$$
−0.923880 + 0.382683i $$0.875000\pi$$
$$278$$ 0 0
$$279$$ 0 0
$$280$$ 0 0
$$281$$ −0.707107 + 0.292893i −0.707107 + 0.292893i −0.707107 0.707107i $$-0.750000\pi$$
1.00000i $$0.5\pi$$
$$282$$ 0 0
$$283$$ 0 0 −0.980785 0.195090i $$-0.937500\pi$$
0.980785 + 0.195090i $$0.0625000\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ 0 0
$$288$$ 1.00000i 1.00000i
$$289$$ −0.707107 0.707107i −0.707107 0.707107i
$$290$$ 0.152241i 0.152241i
$$291$$ 0 0
$$292$$ −0.382683 1.92388i −0.382683 1.92388i
$$293$$ −0.541196 + 0.541196i −0.541196 + 0.541196i −0.923880 0.382683i $$-0.875000\pi$$
0.382683 + 0.923880i $$0.375000\pi$$
$$294$$ 0 0
$$295$$ 0 0
$$296$$ 1.08979 + 1.63099i 1.08979 + 1.63099i
$$297$$ 0 0
$$298$$ −1.30656 + 0.541196i −1.30656 + 0.541196i
$$299$$ 0 0
$$300$$ 0 0
$$301$$ 0 0
$$302$$ 0 0
$$303$$ 0 0
$$304$$ 0 0
$$305$$ 0.433546i 0.433546i
$$306$$ 0.382683 0.923880i 0.382683 0.923880i
$$307$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$308$$ 0 0
$$309$$ 0 0
$$310$$ 0 0
$$311$$ 0 0 −0.831470 0.555570i $$-0.812500\pi$$
0.831470 + 0.555570i $$0.187500\pi$$
$$312$$ 0 0
$$313$$ 0.923880 0.617317i 0.923880 0.617317i 1.00000i $$-0.5\pi$$
0.923880 + 0.382683i $$0.125000\pi$$
$$314$$ −0.707107 + 0.292893i −0.707107 + 0.292893i
$$315$$ 0 0
$$316$$ 0 0
$$317$$ −0.0761205 + 0.382683i −0.0761205 + 0.382683i 0.923880 + 0.382683i $$0.125000\pi$$
−1.00000 $$\pi$$
$$318$$ 0 0
$$319$$ 0 0
$$320$$ −0.382683 + 0.0761205i −0.382683 + 0.0761205i
$$321$$ 0 0
$$322$$ 0 0
$$323$$ 0 0
$$324$$ 1.00000 1.00000
$$325$$ −0.458804 + 1.10765i −0.458804 + 1.10765i
$$326$$ 0 0
$$327$$ 0 0
$$328$$ −1.38268 0.923880i −1.38268 0.923880i
$$329$$ 0 0
$$330$$ 0 0
$$331$$ 0 0 −0.382683 0.923880i $$-0.625000\pi$$
0.382683 + 0.923880i $$0.375000\pi$$
$$332$$ 0 0
$$333$$ 1.63099 1.08979i 1.63099 1.08979i
$$334$$ 0 0
$$335$$ 0 0
$$336$$ 0 0
$$337$$ −0.216773 1.08979i −0.216773 1.08979i −0.923880 0.382683i $$-0.875000\pi$$
0.707107 0.707107i $$-0.250000\pi$$
$$338$$ 0.382683 0.923880i 0.382683 0.923880i
$$339$$ 0 0
$$340$$ 0.382683 + 0.0761205i 0.382683 + 0.0761205i
$$341$$ 0 0
$$342$$ 0 0
$$343$$ 0 0
$$344$$ 0 0
$$345$$ 0 0
$$346$$ −0.324423 + 1.63099i −0.324423 + 1.63099i
$$347$$ 0 0 −0.555570 0.831470i $$-0.687500\pi$$
0.555570 + 0.831470i $$0.312500\pi$$
$$348$$ 0 0
$$349$$ 0 0 0.923880 0.382683i $$-0.125000\pi$$
−0.923880 + 0.382683i $$0.875000\pi$$
$$350$$ 0 0
$$351$$ 0 0
$$352$$ 0 0
$$353$$ 1.30656 + 1.30656i 1.30656 + 1.30656i 0.923880 + 0.382683i $$0.125000\pi$$
0.382683 + 0.923880i $$0.375000\pi$$
$$354$$ 0 0
$$355$$ 0 0
$$356$$ 0 0
$$357$$ 0 0
$$358$$ 0 0
$$359$$ 0 0 −0.923880 0.382683i $$-0.875000\pi$$
0.923880 + 0.382683i $$0.125000\pi$$
$$360$$ 0.0761205 + 0.382683i 0.0761205 + 0.382683i
$$361$$ −0.707107 0.707107i −0.707107 0.707107i
$$362$$ 0.923880 + 0.617317i 0.923880 + 0.617317i
$$363$$ 0 0
$$364$$ 0 0
$$365$$ −0.292893 0.707107i −0.292893 0.707107i
$$366$$ 0 0
$$367$$ 0 0 −0.555570 0.831470i $$-0.687500\pi$$
0.555570 + 0.831470i $$0.312500\pi$$
$$368$$ 0 0
$$369$$ −0.923880 + 1.38268i −0.923880 + 1.38268i
$$370$$ 0.541196 + 0.541196i 0.541196 + 0.541196i
$$371$$ 0 0
$$372$$ 0 0
$$373$$ 1.84776i 1.84776i 0.382683 + 0.923880i $$0.375000\pi$$
−0.382683 + 0.923880i $$0.625000\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ 0 0
$$377$$ 0.107651 + 0.541196i 0.107651 + 0.541196i
$$378$$ 0 0
$$379$$ 0 0 0.555570 0.831470i $$-0.312500\pi$$
−0.555570 + 0.831470i $$0.687500\pi$$
$$380$$ 0 0
$$381$$ 0 0
$$382$$ 0 0
$$383$$ 0 0 −0.382683 0.923880i $$-0.625000\pi$$
0.382683 + 0.923880i $$0.375000\pi$$
$$384$$ 0 0
$$385$$ 0 0
$$386$$ 1.63099 + 1.08979i 1.63099 + 1.08979i
$$387$$ 0 0
$$388$$ 1.92388 0.382683i 1.92388 0.382683i
$$389$$ −0.541196 + 1.30656i −0.541196 + 1.30656i 0.382683 + 0.923880i $$0.375000\pi$$
−0.923880 + 0.382683i $$0.875000\pi$$
$$390$$ 0 0
$$391$$ 0 0
$$392$$ 0 0
$$393$$ 0 0
$$394$$ −1.08979 + 0.216773i −1.08979 + 0.216773i
$$395$$ 0 0
$$396$$ 0 0
$$397$$ −0.324423 + 1.63099i −0.324423 + 1.63099i 0.382683 + 0.923880i $$0.375000\pi$$
−0.707107 + 0.707107i $$0.750000\pi$$
$$398$$ 0 0
$$399$$ 0 0
$$400$$ 0.783227 0.324423i 0.783227 0.324423i
$$401$$ 1.63099 1.08979i 1.63099 1.08979i 0.707107 0.707107i $$-0.250000\pi$$
0.923880 0.382683i $$-0.125000\pi$$
$$402$$ 0 0
$$403$$ 0 0
$$404$$ 1.41421 + 1.41421i 1.41421 + 1.41421i
$$405$$ 0.382683 0.0761205i 0.382683 0.0761205i
$$406$$ 0 0
$$407$$ 0 0
$$408$$ 0 0
$$409$$ 0.765367i 0.765367i −0.923880 0.382683i $$-0.875000\pi$$
0.923880 0.382683i $$-0.125000\pi$$
$$410$$ −0.599456 0.248303i −0.599456 0.248303i
$$411$$ 0 0
$$412$$ 0 0
$$413$$ 0 0
$$414$$ 0 0
$$415$$ 0 0
$$416$$ −1.30656 + 0.541196i −1.30656 + 0.541196i
$$417$$ 0 0
$$418$$ 0 0
$$419$$ 0 0 −0.980785 0.195090i $$-0.937500\pi$$
0.980785 + 0.195090i $$0.0625000\pi$$
$$420$$ 0 0
$$421$$ 1.30656 1.30656i 1.30656 1.30656i 0.382683 0.923880i $$-0.375000\pi$$
0.923880 0.382683i $$-0.125000\pi$$
$$422$$ 0 0
$$423$$ 0 0
$$424$$ 0.765367i 0.765367i
$$425$$ −0.847759 −0.847759
$$426$$ 0 0
$$427$$ 0 0
$$428$$ 0 0
$$429$$ 0 0
$$430$$ 0 0
$$431$$ 0 0 −0.980785 0.195090i $$-0.937500\pi$$
0.980785 + 0.195090i $$0.0625000\pi$$
$$432$$ 0 0
$$433$$ 0.707107 0.292893i 0.707107 0.292893i 1.00000i $$-0.5\pi$$
0.707107 + 0.707107i $$0.250000\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ −0.324423 + 1.63099i −0.324423 + 1.63099i
$$437$$ 0 0
$$438$$ 0 0
$$439$$ 0 0 0.980785 0.195090i $$-0.0625000\pi$$
−0.980785 + 0.195090i $$0.937500\pi$$
$$440$$ 0 0
$$441$$ 0 0
$$442$$ 1.41421 1.41421
$$443$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$444$$ 0 0
$$445$$ 0 0
$$446$$ 0 0
$$447$$ 0 0
$$448$$ 0 0
$$449$$ 0.216773 + 0.324423i 0.216773 + 0.324423i 0.923880 0.382683i $$-0.125000\pi$$
−0.707107 + 0.707107i $$0.750000\pi$$
$$450$$ −0.324423 0.783227i −0.324423 0.783227i
$$451$$ 0 0
$$452$$ −0.923880 + 0.617317i −0.923880 + 0.617317i
$$453$$ 0 0
$$454$$ 0 0
$$455$$ 0 0
$$456$$ 0 0
$$457$$ 0.541196 1.30656i 0.541196 1.30656i −0.382683 0.923880i $$-0.625000\pi$$
0.923880 0.382683i $$-0.125000\pi$$
$$458$$ 1.84776 1.84776
$$459$$ 0 0
$$460$$ 0 0
$$461$$ −0.765367 + 1.84776i −0.765367 + 1.84776i −0.382683 + 0.923880i $$0.625000\pi$$
−0.382683 + 0.923880i $$0.625000\pi$$
$$462$$ 0 0
$$463$$ 0 0 −0.707107 0.707107i $$-0.750000\pi$$
0.707107 + 0.707107i $$0.250000\pi$$
$$464$$ 0.216773 0.324423i 0.216773 0.324423i
$$465$$ 0 0
$$466$$ −0.923880 1.38268i −0.923880 1.38268i
$$467$$ 0 0 0.923880 0.382683i $$-0.125000\pi$$
−0.923880 + 0.382683i $$0.875000\pi$$
$$468$$ 0.541196 + 1.30656i 0.541196 + 1.30656i
$$469$$ 0 0
$$470$$ 0 0
$$471$$ 0 0
$$472$$ 0 0
$$473$$ 0 0
$$474$$ 0 0
$$475$$ 0 0
$$476$$ 0 0
$$477$$ 0.765367 0.765367
$$478$$ 0 0
$$479$$ 0 0 −0.195090 0.980785i $$-0.562500\pi$$
0.195090 + 0.980785i $$0.437500\pi$$
$$480$$ 0 0
$$481$$ 2.30656 + 1.54120i 2.30656 + 1.54120i
$$482$$ 0.382683 1.92388i 0.382683 1.92388i
$$483$$ 0 0
$$484$$ −0.382683 0.923880i −0.382683 0.923880i
$$485$$ 0.707107 0.292893i 0.707107 0.292893i
$$486$$ 0 0
$$487$$ 0 0 0.195090 0.980785i $$-0.437500\pi$$
−0.195090 + 0.980785i $$0.562500\pi$$
$$488$$ −0.617317 + 0.923880i −0.617317 + 0.923880i
$$489$$ 0 0
$$490$$ 0 0
$$491$$ 0 0 0.382683 0.923880i $$-0.375000\pi$$
−0.382683 + 0.923880i $$0.625000\pi$$
$$492$$ 0 0
$$493$$ −0.324423 + 0.216773i −0.324423 + 0.216773i
$$494$$ 0 0
$$495$$ 0 0
$$496$$ 0 0
$$497$$ 0 0
$$498$$ 0 0
$$499$$ 0 0 −0.980785 0.195090i $$-0.937500\pi$$
0.980785 + 0.195090i $$0.0625000\pi$$
$$500$$ 0.599456 0.400544i 0.599456 0.400544i
$$501$$ 0 0
$$502$$ 0 0
$$503$$ 0 0 −0.555570 0.831470i $$-0.687500\pi$$
0.555570 + 0.831470i $$0.312500\pi$$
$$504$$ 0 0
$$505$$ 0.648847 + 0.433546i 0.648847 + 0.433546i
$$506$$ 0 0
$$507$$ 0 0
$$508$$ 0 0
$$509$$ −1.84776 −1.84776 −0.923880 0.382683i $$-0.875000\pi$$
−0.923880 + 0.382683i $$0.875000\pi$$
$$510$$ 0 0
$$511$$ 0 0
$$512$$ 0.923880 + 0.382683i 0.923880 + 0.382683i
$$513$$ 0 0
$$514$$ −1.30656 + 1.30656i −1.30656 + 1.30656i
$$515$$ 0 0
$$516$$ 0 0
$$517$$ 0 0
$$518$$ 0 0
$$519$$ 0 0
$$520$$ −0.458804 + 0.306563i −0.458804 + 0.306563i
$$521$$ 1.63099 + 0.324423i 1.63099 + 0.324423i 0.923880 0.382683i $$-0.125000\pi$$
0.707107 + 0.707107i $$0.250000\pi$$
$$522$$ −0.324423 0.216773i −0.324423 0.216773i
$$523$$ 0 0 −0.707107 0.707107i $$-0.750000\pi$$
0.707107 + 0.707107i $$0.250000\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 0 0
$$527$$ 0 0
$$528$$ 0 0
$$529$$ 0.923880 + 0.382683i 0.923880 + 0.382683i
$$530$$ 0.0582601 + 0.292893i 0.0582601 + 0.292893i
$$531$$ 0 0
$$532$$ 0 0
$$533$$ −2.30656 0.458804i −2.30656 0.458804i
$$534$$ 0 0
$$535$$ 0 0
$$536$$ 0 0
$$537$$ 0 0
$$538$$ 1.92388 + 0.382683i 1.92388 + 0.382683i
$$539$$ 0 0
$$540$$ 0 0
$$541$$ 0.216773 + 1.08979i 0.216773 + 1.08979i 0.923880 + 0.382683i $$0.125000\pi$$
−0.707107 + 0.707107i $$0.750000\pi$$
$$542$$ 0 0
$$543$$ 0 0
$$544$$ −0.707107 0.707107i −0.707107 0.707107i
$$545$$ 0.648847i 0.648847i
$$546$$ 0 0
$$547$$ 0 0 0.980785 0.195090i $$-0.0625000\pi$$
−0.980785 + 0.195090i $$0.937500\pi$$
$$548$$ −0.541196 0.541196i −0.541196 0.541196i
$$549$$ 0.923880 + 0.617317i 0.923880 + 0.617317i
$$550$$ 0 0
$$551$$ 0 0
$$552$$ 0 0
$$553$$ 0 0
$$554$$ 1.38268 0.923880i 1.38268 0.923880i
$$555$$ 0 0
$$556$$ 0 0
$$557$$ 1.30656 1.30656i 1.30656 1.30656i 0.382683 0.923880i $$-0.375000\pi$$
0.923880 0.382683i $$-0.125000\pi$$
$$558$$ 0 0
$$559$$ 0 0
$$560$$ 0 0
$$561$$ 0 0
$$562$$ 0.765367 0.765367
$$563$$ 0 0 0.382683 0.923880i $$-0.375000\pi$$
−0.382683 + 0.923880i $$0.625000\pi$$
$$564$$ 0 0
$$565$$ −0.306563 + 0.306563i −0.306563 + 0.306563i
$$566$$ 0 0
$$567$$ 0 0
$$568$$ 0 0
$$569$$ −0.707107 1.70711i −0.707107 1.70711i −0.707107 0.707107i $$-0.750000\pi$$
1.00000i $$-0.5\pi$$
$$570$$ 0 0
$$571$$ 0 0 0.831470 0.555570i $$-0.187500\pi$$
−0.831470 + 0.555570i $$0.812500\pi$$
$$572$$ 0 0
$$573$$ 0 0
$$574$$ 0 0
$$575$$ 0 0
$$576$$ 0.382683 0.923880i 0.382683 0.923880i
$$577$$ 1.41421 1.41421 0.707107 0.707107i $$-0.250000\pi$$
0.707107 + 0.707107i $$0.250000\pi$$
$$578$$ 0.382683 + 0.923880i 0.382683 + 0.923880i
$$579$$ 0 0
$$580$$ 0.0582601 0.140652i 0.0582601 0.140652i
$$581$$ 0 0
$$582$$ 0 0
$$583$$ 0 0
$$584$$ −0.382683 + 1.92388i −0.382683 + 1.92388i
$$585$$ 0.306563 + 0.458804i 0.306563 + 0.458804i
$$586$$ 0.707107 0.292893i 0.707107 0.292893i
$$587$$ 0 0 −0.382683 0.923880i $$-0.625000\pi$$
0.382683 + 0.923880i $$0.375000\pi$$
$$588$$ 0 0
$$589$$ 0 0
$$590$$ 0 0
$$591$$ 0 0
$$592$$ −0.382683 1.92388i −0.382683 1.92388i
$$593$$ 1.84776 + 0.765367i 1.84776 + 0.765367i 0.923880 + 0.382683i $$0.125000\pi$$
0.923880 + 0.382683i $$0.125000\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ 1.41421 1.41421
$$597$$ 0 0
$$598$$ 0 0
$$599$$ 0 0 −0.707107 0.707107i $$-0.750000\pi$$
0.707107 + 0.707107i $$0.250000\pi$$
$$600$$ 0 0
$$601$$ −0.216773 + 1.08979i −0.216773 + 1.08979i 0.707107 + 0.707107i $$0.250000\pi$$
−0.923880 + 0.382683i $$0.875000\pi$$
$$602$$ 0 0
$$603$$ 0 0
$$604$$ 0 0
$$605$$ −0.216773 0.324423i −0.216773 0.324423i
$$606$$ 0 0
$$607$$ 0 0 0.555570 0.831470i $$-0.312500\pi$$
−0.555570 + 0.831470i $$0.687500\pi$$
$$608$$ 0 0
$$609$$ 0 0
$$610$$ −0.165911 + 0.400544i −0.165911 + 0.400544i
$$611$$ 0 0
$$612$$ −0.707107 + 0.707107i −0.707107 + 0.707107i
$$613$$ 1.41421 1.41421 0.707107 0.707107i $$-0.250000\pi$$
0.707107 + 0.707107i $$0.250000\pi$$
$$614$$ 0 0
$$615$$ 0 0
$$616$$ 0 0
$$617$$ −0.923880 + 1.38268i −0.923880 + 1.38268i 1.00000i $$0.5\pi$$
−0.923880 + 0.382683i $$0.875000\pi$$
$$618$$ 0 0
$$619$$ 0 0 0.831470 0.555570i $$-0.187500\pi$$
−0.831470 + 0.555570i $$0.812500\pi$$
$$620$$ 0 0
$$621$$ 0 0
$$622$$ 0 0
$$623$$ 0 0
$$624$$ 0 0
$$625$$ −0.400544 + 0.400544i −0.400544 + 0.400544i
$$626$$ −1.08979 + 0.216773i −1.08979 + 0.216773i
$$627$$ 0 0
$$628$$ 0.765367 0.765367
$$629$$ −0.382683 + 1.92388i −0.382683 + 1.92388i
$$630$$ 0 0
$$631$$ 0 0 −0.923880 0.382683i $$-0.875000\pi$$
0.923880 + 0.382683i $$0.125000\pi$$
$$632$$ 0 0
$$633$$ 0 0
$$634$$ 0.216773 0.324423i 0.216773 0.324423i
$$635$$ 0 0
$$636$$ 0 0
$$637$$ 0 0
$$638$$ 0 0
$$639$$ 0 0
$$640$$ 0.382683 + 0.0761205i 0.382683 + 0.0761205i
$$641$$ 1.38268 + 0.923880i 1.38268 + 0.923880i 1.00000 $$0$$
0.382683 + 0.923880i $$0.375000\pi$$
$$642$$ 0 0
$$643$$ 0 0 0.980785 0.195090i $$-0.0625000\pi$$
−0.980785 + 0.195090i $$0.937500\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ 0 0
$$647$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$648$$ −0.923880 0.382683i −0.923880 0.382683i
$$649$$ 0 0
$$650$$ 0.847759 0.847759i 0.847759 0.847759i
$$651$$ 0 0
$$652$$ 0 0
$$653$$ 1.08979 + 1.63099i 1.08979 + 1.63099i 0.707107 + 0.707107i $$0.250000\pi$$
0.382683 + 0.923880i $$0.375000\pi$$
$$654$$ 0 0
$$655$$ 0 0
$$656$$ 0.923880 + 1.38268i 0.923880 + 1.38268i
$$657$$ 1.92388 + 0.382683i 1.92388 + 0.382683i
$$658$$ 0 0
$$659$$ 0 0 0.707107 0.707107i $$-0.250000\pi$$
−0.707107 + 0.707107i $$0.750000\pi$$
$$660$$ 0 0
$$661$$ −1.30656 0.541196i −1.30656 0.541196i −0.382683 0.923880i $$-0.625000\pi$$
−0.923880 + 0.382683i $$0.875000\pi$$
$$662$$ 0 0
$$663$$ 0 0
$$664$$ 0 0
$$665$$ 0 0
$$666$$ −1.92388 + 0.382683i −1.92388 + 0.382683i
$$667$$ 0 0
$$668$$ 0 0
$$669$$ 0 0
$$670$$ 0 0
$$671$$ 0 0
$$672$$ 0 0
$$673$$ 0.923880 0.617317i 0.923880 0.617317i 1.00000i $$-0.5\pi$$
0.923880 + 0.382683i $$0.125000\pi$$
$$674$$ −0.216773 + 1.08979i −0.216773 + 1.08979i
$$675$$ 0 0
$$676$$ −0.707107 + 0.707107i −0.707107 + 0.707107i
$$677$$ 1.92388 0.382683i 1.92388 0.382683i 0.923880 0.382683i $$-0.125000\pi$$
1.00000 $$0$$
$$678$$ 0 0
$$679$$ 0 0
$$680$$ −0.324423 0.216773i −0.324423 0.216773i
$$681$$ 0 0
$$682$$ 0 0
$$683$$ 0 0 0.980785 0.195090i $$-0.0625000\pi$$
−0.980785 + 0.195090i $$0.937500\pi$$
$$684$$ 0 0
$$685$$ −0.248303 0.165911i −0.248303 0.165911i
$$686$$ 0 0
$$687$$ 0 0
$$688$$ 0 0
$$689$$ 0.414214 + 1.00000i 0.414214 + 1.00000i
$$690$$ 0 0
$$691$$ 0 0 −0.980785 0.195090i $$-0.937500\pi$$
0.980785 + 0.195090i $$0.0625000\pi$$
$$692$$ 0.923880 1.38268i 0.923880 1.38268i
$$693$$ 0 0
$$694$$ 0 0
$$695$$ 0 0
$$696$$ 0 0
$$697$$ −0.324423 1.63099i −0.324423 1.63099i
$$698$$ 0 0
$$699$$ 0 0
$$700$$ 0 0
$$701$$ −1.30656 1.30656i −1.30656 1.30656i −0.923880 0.382683i $$-0.875000\pi$$
−0.382683 0.923880i $$-0.625000\pi$$
$$702$$ 0 0
$$703$$ 0 0
$$704$$ 0 0
$$705$$ 0 0
$$706$$ −0.707107 1.70711i −0.707107 1.70711i
$$707$$ 0 0
$$708$$ 0 0
$$709$$ 0.324423 + 0.216773i 0.324423 + 0.216773i 0.707107 0.707107i $$-0.250000\pi$$
−0.382683 + 0.923880i $$0.625000\pi$$
$$710$$ 0 0
$$711$$ 0 0
$$712$$ 0 0
$$713$$ 0 0
$$714$$ 0 0
$$715$$ 0 0
$$716$$ 0 0
$$717$$ 0 0
$$718$$ 0 0
$$719$$ 0 0 −0.831470 0.555570i $$-0.812500\pi$$
0.831470 + 0.555570i $$0.187500\pi$$
$$720$$ 0.0761205 0.382683i 0.0761205 0.382683i
$$721$$ 0 0
$$722$$ 0.382683 + 0.923880i 0.382683 + 0.923880i
$$723$$ 0 0
$$724$$ −0.617317 0.923880i −0.617317 0.923880i
$$725$$ −0.0645318 + 0.324423i −0.0645318 + 0.324423i
$$726$$ 0 0
$$727$$ 0 0 −0.707107 0.707107i $$-0.750000\pi$$
0.707107 + 0.707107i $$0.250000\pi$$
$$728$$ 0 0
$$729$$ −0.382683 + 0.923880i −0.382683 + 0.923880i
$$730$$ 0.765367i 0.765367i
$$731$$ 0 0
$$732$$ 0 0
$$733$$ 0 0 −0.923880 0.382683i $$-0.875000\pi$$
0.923880 + 0.382683i $$0.125000\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ 0 0
$$738$$ 1.38268 0.923880i 1.38268 0.923880i
$$739$$ 0 0 −0.382683 0.923880i $$-0.625000\pi$$
0.382683 + 0.923880i $$0.375000\pi$$
$$740$$ −0.292893 0.707107i −0.292893 0.707107i
$$741$$ 0 0
$$742$$ 0 0
$$743$$ 0 0 −0.831470 0.555570i $$-0.812500\pi$$
0.831470 + 0.555570i $$0.187500\pi$$
$$744$$ 0 0
$$745$$ 0.541196 0.107651i 0.541196 0.107651i
$$746$$ 0.707107 1.70711i 0.707107 1.70711i
$$747$$ 0 0
$$748$$ 0 0
$$749$$ 0 0
$$750$$ 0 0
$$751$$ 0 0 0.980785 0.195090i $$-0.0625000\pi$$
−0.980785 + 0.195090i $$0.937500\pi$$
$$752$$ 0 0
$$753$$ 0 0
$$754$$ 0.107651 0.541196i 0.107651 0.541196i
$$755$$ 0 0
$$756$$ 0 0
$$757$$ 0 0 −0.382683 0.923880i $$-0.625000\pi$$
0.382683 + 0.923880i $$0.375000\pi$$
$$758$$ 0 0
$$759$$ 0 0
$$760$$ 0 0
$$761$$ −1.00000 1.00000i −1.00000 1.00000i 1.00000i $$-0.5\pi$$
−1.00000 $$\pi$$
$$762$$ 0 0
$$763$$ 0 0
$$764$$ 0 0
$$765$$ −0.216773 + 0.324423i −0.216773 + 0.324423i
$$766$$ 0 0
$$767$$ 0 0
$$768$$ 0 0
$$769$$ −1.41421 + 1.41421i −1.41421 + 1.41421i −0.707107 + 0.707107i $$0.750000\pi$$
−0.707107 + 0.707107i $$0.750000\pi$$
$$770$$ 0 0
$$771$$ 0 0
$$772$$ −1.08979 1.63099i −1.08979 1.63099i
$$773$$ −1.70711 + 0.707107i −1.70711 + 0.707107i −0.707107 + 0.707107i $$0.750000\pi$$
−1.00000 $$\pi$$
$$774$$ 0 0
$$775$$ 0 0
$$776$$ −1.92388 0.382683i −1.92388 0.382683i
$$777$$ 0 0
$$778$$ 1.00000 1.00000i 1.00000 1.00000i
$$779$$ 0 0
$$780$$ 0 0
$$781$$ 0 0
$$782$$ 0 0
$$783$$ 0 0
$$784$$ 0 0
$$785$$ 0.292893 0.0582601i 0.292893 0.0582601i
$$786$$ 0 0
$$787$$ 0 0 −0.831470 0.555570i $$-0.812500\pi$$
0.831470 + 0.555570i $$0.187500\pi$$
$$788$$ 1.08979 + 0.216773i 1.08979 + 0.216773i
$$789$$ 0 0
$$790$$ 0 0
$$791$$ 0 0
$$792$$ 0 0
$$793$$ −0.306563 + 1.54120i −0.306563 + 1.54120i
$$794$$ 0.923880 1.38268i 0.923880 1.38268i
$$795$$ 0 0
$$796$$ 0 0
$$797$$ −1.30656 0.541196i −1.30656 0.541196i −0.382683 0.923880i $$-0.625000\pi$$
−0.923880 + 0.382683i $$0.875000\pi$$
$$798$$