Properties

Label 3330.2.a.r
Level $3330$
Weight $2$
Character orbit 3330.a
Self dual yes
Analytic conductor $26.590$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 3330 = 2 \cdot 3^{2} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3330.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(26.5901838731\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{2} + q^{4} - q^{5} + 4q^{7} + q^{8} + O(q^{10}) \) \( q + q^{2} + q^{4} - q^{5} + 4q^{7} + q^{8} - q^{10} + 6q^{13} + 4q^{14} + q^{16} + 6q^{17} + 6q^{19} - q^{20} - 8q^{23} + q^{25} + 6q^{26} + 4q^{28} - 6q^{29} - 6q^{31} + q^{32} + 6q^{34} - 4q^{35} - q^{37} + 6q^{38} - q^{40} - 10q^{43} - 8q^{46} + 8q^{47} + 9q^{49} + q^{50} + 6q^{52} - 4q^{53} + 4q^{56} - 6q^{58} - 12q^{59} + 6q^{61} - 6q^{62} + q^{64} - 6q^{65} + 12q^{67} + 6q^{68} - 4q^{70} - 4q^{71} + 6q^{73} - q^{74} + 6q^{76} - 14q^{79} - q^{80} + 16q^{83} - 6q^{85} - 10q^{86} + 18q^{89} + 24q^{91} - 8q^{92} + 8q^{94} - 6q^{95} + 2q^{97} + 9q^{98} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 0 1.00000 −1.00000 0 4.00000 1.00000 0 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(1\)
\(5\) \(1\)
\(37\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3330.2.a.r yes 1
3.b odd 2 1 3330.2.a.k 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3330.2.a.k 1 3.b odd 2 1
3330.2.a.r yes 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3330))\):

\( T_{7} - 4 \)
\( T_{11} \)
\( T_{13} - 6 \)
\( T_{17} - 6 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( -1 + T \)
$3$ \( T \)
$5$ \( 1 + T \)
$7$ \( -4 + T \)
$11$ \( T \)
$13$ \( -6 + T \)
$17$ \( -6 + T \)
$19$ \( -6 + T \)
$23$ \( 8 + T \)
$29$ \( 6 + T \)
$31$ \( 6 + T \)
$37$ \( 1 + T \)
$41$ \( T \)
$43$ \( 10 + T \)
$47$ \( -8 + T \)
$53$ \( 4 + T \)
$59$ \( 12 + T \)
$61$ \( -6 + T \)
$67$ \( -12 + T \)
$71$ \( 4 + T \)
$73$ \( -6 + T \)
$79$ \( 14 + T \)
$83$ \( -16 + T \)
$89$ \( -18 + T \)
$97$ \( -2 + T \)
show more
show less