# Properties

 Label 3330.2.a.p Level $3330$ Weight $2$ Character orbit 3330.a Self dual yes Analytic conductor $26.590$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [3330,2,Mod(1,3330)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(3330, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("3330.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$3330 = 2 \cdot 3^{2} \cdot 5 \cdot 37$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 3330.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$26.5901838731$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 370) Fricke sign: $$+1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q + q^{2} + q^{4} - q^{5} + q^{7} + q^{8}+O(q^{10})$$ q + q^2 + q^4 - q^5 + q^7 + q^8 $$q + q^{2} + q^{4} - q^{5} + q^{7} + q^{8} - q^{10} - 3 q^{11} + q^{14} + q^{16} - 3 q^{17} - 6 q^{19} - q^{20} - 3 q^{22} - 2 q^{23} + q^{25} + q^{28} + 3 q^{29} + 3 q^{31} + q^{32} - 3 q^{34} - q^{35} - q^{37} - 6 q^{38} - q^{40} - 3 q^{41} - q^{43} - 3 q^{44} - 2 q^{46} - 4 q^{47} - 6 q^{49} + q^{50} - 13 q^{53} + 3 q^{55} + q^{56} + 3 q^{58} - 15 q^{61} + 3 q^{62} + q^{64} - 3 q^{68} - q^{70} + 2 q^{71} - q^{74} - 6 q^{76} - 3 q^{77} - 8 q^{79} - q^{80} - 3 q^{82} + 4 q^{83} + 3 q^{85} - q^{86} - 3 q^{88} + 18 q^{89} - 2 q^{92} - 4 q^{94} + 6 q^{95} - 7 q^{97} - 6 q^{98}+O(q^{100})$$ q + q^2 + q^4 - q^5 + q^7 + q^8 - q^10 - 3 * q^11 + q^14 + q^16 - 3 * q^17 - 6 * q^19 - q^20 - 3 * q^22 - 2 * q^23 + q^25 + q^28 + 3 * q^29 + 3 * q^31 + q^32 - 3 * q^34 - q^35 - q^37 - 6 * q^38 - q^40 - 3 * q^41 - q^43 - 3 * q^44 - 2 * q^46 - 4 * q^47 - 6 * q^49 + q^50 - 13 * q^53 + 3 * q^55 + q^56 + 3 * q^58 - 15 * q^61 + 3 * q^62 + q^64 - 3 * q^68 - q^70 + 2 * q^71 - q^74 - 6 * q^76 - 3 * q^77 - 8 * q^79 - q^80 - 3 * q^82 + 4 * q^83 + 3 * q^85 - q^86 - 3 * q^88 + 18 * q^89 - 2 * q^92 - 4 * q^94 + 6 * q^95 - 7 * q^97 - 6 * q^98

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
1.00000 0 1.00000 −1.00000 0 1.00000 1.00000 0 −1.00000
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$-1$$
$$5$$ $$+1$$
$$37$$ $$+1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3330.2.a.p 1
3.b odd 2 1 370.2.a.c 1
12.b even 2 1 2960.2.a.c 1
15.d odd 2 1 1850.2.a.i 1
15.e even 4 2 1850.2.b.c 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
370.2.a.c 1 3.b odd 2 1
1850.2.a.i 1 15.d odd 2 1
1850.2.b.c 2 15.e even 4 2
2960.2.a.c 1 12.b even 2 1
3330.2.a.p 1 1.a even 1 1 trivial

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(3330))$$:

 $$T_{7} - 1$$ T7 - 1 $$T_{11} + 3$$ T11 + 3 $$T_{13}$$ T13 $$T_{17} + 3$$ T17 + 3

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T - 1$$
$3$ $$T$$
$5$ $$T + 1$$
$7$ $$T - 1$$
$11$ $$T + 3$$
$13$ $$T$$
$17$ $$T + 3$$
$19$ $$T + 6$$
$23$ $$T + 2$$
$29$ $$T - 3$$
$31$ $$T - 3$$
$37$ $$T + 1$$
$41$ $$T + 3$$
$43$ $$T + 1$$
$47$ $$T + 4$$
$53$ $$T + 13$$
$59$ $$T$$
$61$ $$T + 15$$
$67$ $$T$$
$71$ $$T - 2$$
$73$ $$T$$
$79$ $$T + 8$$
$83$ $$T - 4$$
$89$ $$T - 18$$
$97$ $$T + 7$$