Properties

Label 3330.2.a.be.1.1
Level $3330$
Weight $2$
Character 3330.1
Self dual yes
Analytic conductor $26.590$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3330,2,Mod(1,3330)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3330.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3330, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3330 = 2 \cdot 3^{2} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3330.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2,0,2,-2,0,-1,2,0,-2,-3,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.5901838731\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{33}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1110)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(3.37228\) of defining polynomial
Character \(\chi\) \(=\) 3330.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} -1.00000 q^{5} -3.37228 q^{7} +1.00000 q^{8} -1.00000 q^{10} +1.37228 q^{11} +1.37228 q^{13} -3.37228 q^{14} +1.00000 q^{16} +1.37228 q^{17} -1.37228 q^{19} -1.00000 q^{20} +1.37228 q^{22} -3.37228 q^{23} +1.00000 q^{25} +1.37228 q^{26} -3.37228 q^{28} -6.00000 q^{29} +2.74456 q^{31} +1.00000 q^{32} +1.37228 q^{34} +3.37228 q^{35} -1.00000 q^{37} -1.37228 q^{38} -1.00000 q^{40} -8.74456 q^{41} -4.00000 q^{43} +1.37228 q^{44} -3.37228 q^{46} +4.74456 q^{47} +4.37228 q^{49} +1.00000 q^{50} +1.37228 q^{52} -5.37228 q^{53} -1.37228 q^{55} -3.37228 q^{56} -6.00000 q^{58} -14.7446 q^{59} -2.74456 q^{61} +2.74456 q^{62} +1.00000 q^{64} -1.37228 q^{65} +2.74456 q^{67} +1.37228 q^{68} +3.37228 q^{70} -1.25544 q^{71} -4.11684 q^{73} -1.00000 q^{74} -1.37228 q^{76} -4.62772 q^{77} +4.00000 q^{79} -1.00000 q^{80} -8.74456 q^{82} -0.627719 q^{83} -1.37228 q^{85} -4.00000 q^{86} +1.37228 q^{88} -13.3723 q^{89} -4.62772 q^{91} -3.37228 q^{92} +4.74456 q^{94} +1.37228 q^{95} +13.4891 q^{97} +4.37228 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{4} - 2 q^{5} - q^{7} + 2 q^{8} - 2 q^{10} - 3 q^{11} - 3 q^{13} - q^{14} + 2 q^{16} - 3 q^{17} + 3 q^{19} - 2 q^{20} - 3 q^{22} - q^{23} + 2 q^{25} - 3 q^{26} - q^{28} - 12 q^{29}+ \cdots + 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −3.37228 −1.27460 −0.637301 0.770615i \(-0.719949\pi\)
−0.637301 + 0.770615i \(0.719949\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) −1.00000 −0.316228
\(11\) 1.37228 0.413758 0.206879 0.978366i \(-0.433669\pi\)
0.206879 + 0.978366i \(0.433669\pi\)
\(12\) 0 0
\(13\) 1.37228 0.380602 0.190301 0.981726i \(-0.439054\pi\)
0.190301 + 0.981726i \(0.439054\pi\)
\(14\) −3.37228 −0.901280
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 1.37228 0.332827 0.166414 0.986056i \(-0.446781\pi\)
0.166414 + 0.986056i \(0.446781\pi\)
\(18\) 0 0
\(19\) −1.37228 −0.314823 −0.157411 0.987533i \(-0.550315\pi\)
−0.157411 + 0.987533i \(0.550315\pi\)
\(20\) −1.00000 −0.223607
\(21\) 0 0
\(22\) 1.37228 0.292571
\(23\) −3.37228 −0.703169 −0.351585 0.936156i \(-0.614357\pi\)
−0.351585 + 0.936156i \(0.614357\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 1.37228 0.269127
\(27\) 0 0
\(28\) −3.37228 −0.637301
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) 2.74456 0.492938 0.246469 0.969151i \(-0.420730\pi\)
0.246469 + 0.969151i \(0.420730\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 1.37228 0.235344
\(35\) 3.37228 0.570020
\(36\) 0 0
\(37\) −1.00000 −0.164399
\(38\) −1.37228 −0.222613
\(39\) 0 0
\(40\) −1.00000 −0.158114
\(41\) −8.74456 −1.36567 −0.682836 0.730572i \(-0.739253\pi\)
−0.682836 + 0.730572i \(0.739253\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 1.37228 0.206879
\(45\) 0 0
\(46\) −3.37228 −0.497216
\(47\) 4.74456 0.692066 0.346033 0.938222i \(-0.387529\pi\)
0.346033 + 0.938222i \(0.387529\pi\)
\(48\) 0 0
\(49\) 4.37228 0.624612
\(50\) 1.00000 0.141421
\(51\) 0 0
\(52\) 1.37228 0.190301
\(53\) −5.37228 −0.737940 −0.368970 0.929441i \(-0.620289\pi\)
−0.368970 + 0.929441i \(0.620289\pi\)
\(54\) 0 0
\(55\) −1.37228 −0.185038
\(56\) −3.37228 −0.450640
\(57\) 0 0
\(58\) −6.00000 −0.787839
\(59\) −14.7446 −1.91958 −0.959789 0.280721i \(-0.909426\pi\)
−0.959789 + 0.280721i \(0.909426\pi\)
\(60\) 0 0
\(61\) −2.74456 −0.351405 −0.175703 0.984443i \(-0.556220\pi\)
−0.175703 + 0.984443i \(0.556220\pi\)
\(62\) 2.74456 0.348560
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −1.37228 −0.170211
\(66\) 0 0
\(67\) 2.74456 0.335302 0.167651 0.985846i \(-0.446382\pi\)
0.167651 + 0.985846i \(0.446382\pi\)
\(68\) 1.37228 0.166414
\(69\) 0 0
\(70\) 3.37228 0.403065
\(71\) −1.25544 −0.148993 −0.0744965 0.997221i \(-0.523735\pi\)
−0.0744965 + 0.997221i \(0.523735\pi\)
\(72\) 0 0
\(73\) −4.11684 −0.481840 −0.240920 0.970545i \(-0.577449\pi\)
−0.240920 + 0.970545i \(0.577449\pi\)
\(74\) −1.00000 −0.116248
\(75\) 0 0
\(76\) −1.37228 −0.157411
\(77\) −4.62772 −0.527377
\(78\) 0 0
\(79\) 4.00000 0.450035 0.225018 0.974355i \(-0.427756\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(80\) −1.00000 −0.111803
\(81\) 0 0
\(82\) −8.74456 −0.965675
\(83\) −0.627719 −0.0689011 −0.0344505 0.999406i \(-0.510968\pi\)
−0.0344505 + 0.999406i \(0.510968\pi\)
\(84\) 0 0
\(85\) −1.37228 −0.148845
\(86\) −4.00000 −0.431331
\(87\) 0 0
\(88\) 1.37228 0.146286
\(89\) −13.3723 −1.41746 −0.708729 0.705480i \(-0.750731\pi\)
−0.708729 + 0.705480i \(0.750731\pi\)
\(90\) 0 0
\(91\) −4.62772 −0.485117
\(92\) −3.37228 −0.351585
\(93\) 0 0
\(94\) 4.74456 0.489364
\(95\) 1.37228 0.140793
\(96\) 0 0
\(97\) 13.4891 1.36961 0.684807 0.728725i \(-0.259887\pi\)
0.684807 + 0.728725i \(0.259887\pi\)
\(98\) 4.37228 0.441667
\(99\) 0 0
\(100\) 1.00000 0.100000
\(101\) −10.7446 −1.06912 −0.534562 0.845129i \(-0.679523\pi\)
−0.534562 + 0.845129i \(0.679523\pi\)
\(102\) 0 0
\(103\) −0.744563 −0.0733639 −0.0366820 0.999327i \(-0.511679\pi\)
−0.0366820 + 0.999327i \(0.511679\pi\)
\(104\) 1.37228 0.134563
\(105\) 0 0
\(106\) −5.37228 −0.521802
\(107\) −3.37228 −0.326011 −0.163005 0.986625i \(-0.552119\pi\)
−0.163005 + 0.986625i \(0.552119\pi\)
\(108\) 0 0
\(109\) 4.62772 0.443255 0.221628 0.975131i \(-0.428863\pi\)
0.221628 + 0.975131i \(0.428863\pi\)
\(110\) −1.37228 −0.130842
\(111\) 0 0
\(112\) −3.37228 −0.318651
\(113\) −19.4891 −1.83338 −0.916691 0.399596i \(-0.869150\pi\)
−0.916691 + 0.399596i \(0.869150\pi\)
\(114\) 0 0
\(115\) 3.37228 0.314467
\(116\) −6.00000 −0.557086
\(117\) 0 0
\(118\) −14.7446 −1.35735
\(119\) −4.62772 −0.424222
\(120\) 0 0
\(121\) −9.11684 −0.828804
\(122\) −2.74456 −0.248481
\(123\) 0 0
\(124\) 2.74456 0.246469
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 3.37228 0.299242 0.149621 0.988743i \(-0.452195\pi\)
0.149621 + 0.988743i \(0.452195\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) −1.37228 −0.120357
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 4.62772 0.401274
\(134\) 2.74456 0.237094
\(135\) 0 0
\(136\) 1.37228 0.117672
\(137\) −10.7446 −0.917970 −0.458985 0.888444i \(-0.651787\pi\)
−0.458985 + 0.888444i \(0.651787\pi\)
\(138\) 0 0
\(139\) 2.74456 0.232791 0.116395 0.993203i \(-0.462866\pi\)
0.116395 + 0.993203i \(0.462866\pi\)
\(140\) 3.37228 0.285010
\(141\) 0 0
\(142\) −1.25544 −0.105354
\(143\) 1.88316 0.157477
\(144\) 0 0
\(145\) 6.00000 0.498273
\(146\) −4.11684 −0.340712
\(147\) 0 0
\(148\) −1.00000 −0.0821995
\(149\) −9.25544 −0.758235 −0.379117 0.925349i \(-0.623772\pi\)
−0.379117 + 0.925349i \(0.623772\pi\)
\(150\) 0 0
\(151\) −3.37228 −0.274432 −0.137216 0.990541i \(-0.543816\pi\)
−0.137216 + 0.990541i \(0.543816\pi\)
\(152\) −1.37228 −0.111307
\(153\) 0 0
\(154\) −4.62772 −0.372912
\(155\) −2.74456 −0.220449
\(156\) 0 0
\(157\) 3.25544 0.259812 0.129906 0.991526i \(-0.458532\pi\)
0.129906 + 0.991526i \(0.458532\pi\)
\(158\) 4.00000 0.318223
\(159\) 0 0
\(160\) −1.00000 −0.0790569
\(161\) 11.3723 0.896261
\(162\) 0 0
\(163\) 4.86141 0.380775 0.190387 0.981709i \(-0.439026\pi\)
0.190387 + 0.981709i \(0.439026\pi\)
\(164\) −8.74456 −0.682836
\(165\) 0 0
\(166\) −0.627719 −0.0487204
\(167\) 1.88316 0.145723 0.0728615 0.997342i \(-0.476787\pi\)
0.0728615 + 0.997342i \(0.476787\pi\)
\(168\) 0 0
\(169\) −11.1168 −0.855142
\(170\) −1.37228 −0.105249
\(171\) 0 0
\(172\) −4.00000 −0.304997
\(173\) 6.86141 0.521663 0.260832 0.965384i \(-0.416003\pi\)
0.260832 + 0.965384i \(0.416003\pi\)
\(174\) 0 0
\(175\) −3.37228 −0.254921
\(176\) 1.37228 0.103440
\(177\) 0 0
\(178\) −13.3723 −1.00229
\(179\) −5.48913 −0.410276 −0.205138 0.978733i \(-0.565764\pi\)
−0.205138 + 0.978733i \(0.565764\pi\)
\(180\) 0 0
\(181\) −20.9783 −1.55930 −0.779651 0.626215i \(-0.784603\pi\)
−0.779651 + 0.626215i \(0.784603\pi\)
\(182\) −4.62772 −0.343029
\(183\) 0 0
\(184\) −3.37228 −0.248608
\(185\) 1.00000 0.0735215
\(186\) 0 0
\(187\) 1.88316 0.137710
\(188\) 4.74456 0.346033
\(189\) 0 0
\(190\) 1.37228 0.0995558
\(191\) 19.3723 1.40173 0.700865 0.713294i \(-0.252798\pi\)
0.700865 + 0.713294i \(0.252798\pi\)
\(192\) 0 0
\(193\) −1.25544 −0.0903684 −0.0451842 0.998979i \(-0.514387\pi\)
−0.0451842 + 0.998979i \(0.514387\pi\)
\(194\) 13.4891 0.968463
\(195\) 0 0
\(196\) 4.37228 0.312306
\(197\) 18.8614 1.34382 0.671910 0.740633i \(-0.265474\pi\)
0.671910 + 0.740633i \(0.265474\pi\)
\(198\) 0 0
\(199\) 8.00000 0.567105 0.283552 0.958957i \(-0.408487\pi\)
0.283552 + 0.958957i \(0.408487\pi\)
\(200\) 1.00000 0.0707107
\(201\) 0 0
\(202\) −10.7446 −0.755985
\(203\) 20.2337 1.42013
\(204\) 0 0
\(205\) 8.74456 0.610747
\(206\) −0.744563 −0.0518761
\(207\) 0 0
\(208\) 1.37228 0.0951506
\(209\) −1.88316 −0.130261
\(210\) 0 0
\(211\) −9.25544 −0.637171 −0.318585 0.947894i \(-0.603208\pi\)
−0.318585 + 0.947894i \(0.603208\pi\)
\(212\) −5.37228 −0.368970
\(213\) 0 0
\(214\) −3.37228 −0.230524
\(215\) 4.00000 0.272798
\(216\) 0 0
\(217\) −9.25544 −0.628300
\(218\) 4.62772 0.313429
\(219\) 0 0
\(220\) −1.37228 −0.0925192
\(221\) 1.88316 0.126675
\(222\) 0 0
\(223\) 18.9783 1.27088 0.635439 0.772151i \(-0.280819\pi\)
0.635439 + 0.772151i \(0.280819\pi\)
\(224\) −3.37228 −0.225320
\(225\) 0 0
\(226\) −19.4891 −1.29640
\(227\) −4.00000 −0.265489 −0.132745 0.991150i \(-0.542379\pi\)
−0.132745 + 0.991150i \(0.542379\pi\)
\(228\) 0 0
\(229\) −6.00000 −0.396491 −0.198246 0.980152i \(-0.563524\pi\)
−0.198246 + 0.980152i \(0.563524\pi\)
\(230\) 3.37228 0.222362
\(231\) 0 0
\(232\) −6.00000 −0.393919
\(233\) 22.7446 1.49005 0.745023 0.667039i \(-0.232439\pi\)
0.745023 + 0.667039i \(0.232439\pi\)
\(234\) 0 0
\(235\) −4.74456 −0.309501
\(236\) −14.7446 −0.959789
\(237\) 0 0
\(238\) −4.62772 −0.299970
\(239\) 5.48913 0.355062 0.177531 0.984115i \(-0.443189\pi\)
0.177531 + 0.984115i \(0.443189\pi\)
\(240\) 0 0
\(241\) −0.510875 −0.0329083 −0.0164542 0.999865i \(-0.505238\pi\)
−0.0164542 + 0.999865i \(0.505238\pi\)
\(242\) −9.11684 −0.586053
\(243\) 0 0
\(244\) −2.74456 −0.175703
\(245\) −4.37228 −0.279335
\(246\) 0 0
\(247\) −1.88316 −0.119822
\(248\) 2.74456 0.174280
\(249\) 0 0
\(250\) −1.00000 −0.0632456
\(251\) 26.7446 1.68810 0.844051 0.536263i \(-0.180164\pi\)
0.844051 + 0.536263i \(0.180164\pi\)
\(252\) 0 0
\(253\) −4.62772 −0.290942
\(254\) 3.37228 0.211596
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 5.37228 0.335114 0.167557 0.985862i \(-0.446412\pi\)
0.167557 + 0.985862i \(0.446412\pi\)
\(258\) 0 0
\(259\) 3.37228 0.209543
\(260\) −1.37228 −0.0851053
\(261\) 0 0
\(262\) 0 0
\(263\) −10.2337 −0.631036 −0.315518 0.948920i \(-0.602178\pi\)
−0.315518 + 0.948920i \(0.602178\pi\)
\(264\) 0 0
\(265\) 5.37228 0.330017
\(266\) 4.62772 0.283744
\(267\) 0 0
\(268\) 2.74456 0.167651
\(269\) −0.627719 −0.0382727 −0.0191363 0.999817i \(-0.506092\pi\)
−0.0191363 + 0.999817i \(0.506092\pi\)
\(270\) 0 0
\(271\) 13.4891 0.819406 0.409703 0.912219i \(-0.365632\pi\)
0.409703 + 0.912219i \(0.365632\pi\)
\(272\) 1.37228 0.0832068
\(273\) 0 0
\(274\) −10.7446 −0.649103
\(275\) 1.37228 0.0827517
\(276\) 0 0
\(277\) 25.6060 1.53851 0.769257 0.638940i \(-0.220627\pi\)
0.769257 + 0.638940i \(0.220627\pi\)
\(278\) 2.74456 0.164608
\(279\) 0 0
\(280\) 3.37228 0.201532
\(281\) −1.37228 −0.0818634 −0.0409317 0.999162i \(-0.513033\pi\)
−0.0409317 + 0.999162i \(0.513033\pi\)
\(282\) 0 0
\(283\) −11.6060 −0.689903 −0.344952 0.938620i \(-0.612105\pi\)
−0.344952 + 0.938620i \(0.612105\pi\)
\(284\) −1.25544 −0.0744965
\(285\) 0 0
\(286\) 1.88316 0.111353
\(287\) 29.4891 1.74069
\(288\) 0 0
\(289\) −15.1168 −0.889226
\(290\) 6.00000 0.352332
\(291\) 0 0
\(292\) −4.11684 −0.240920
\(293\) 4.11684 0.240509 0.120254 0.992743i \(-0.461629\pi\)
0.120254 + 0.992743i \(0.461629\pi\)
\(294\) 0 0
\(295\) 14.7446 0.858462
\(296\) −1.00000 −0.0581238
\(297\) 0 0
\(298\) −9.25544 −0.536153
\(299\) −4.62772 −0.267628
\(300\) 0 0
\(301\) 13.4891 0.777500
\(302\) −3.37228 −0.194053
\(303\) 0 0
\(304\) −1.37228 −0.0787057
\(305\) 2.74456 0.157153
\(306\) 0 0
\(307\) −10.7446 −0.613225 −0.306612 0.951834i \(-0.599195\pi\)
−0.306612 + 0.951834i \(0.599195\pi\)
\(308\) −4.62772 −0.263689
\(309\) 0 0
\(310\) −2.74456 −0.155881
\(311\) 8.00000 0.453638 0.226819 0.973937i \(-0.427167\pi\)
0.226819 + 0.973937i \(0.427167\pi\)
\(312\) 0 0
\(313\) 8.00000 0.452187 0.226093 0.974106i \(-0.427405\pi\)
0.226093 + 0.974106i \(0.427405\pi\)
\(314\) 3.25544 0.183715
\(315\) 0 0
\(316\) 4.00000 0.225018
\(317\) 16.9783 0.953594 0.476797 0.879014i \(-0.341798\pi\)
0.476797 + 0.879014i \(0.341798\pi\)
\(318\) 0 0
\(319\) −8.23369 −0.460998
\(320\) −1.00000 −0.0559017
\(321\) 0 0
\(322\) 11.3723 0.633752
\(323\) −1.88316 −0.104782
\(324\) 0 0
\(325\) 1.37228 0.0761205
\(326\) 4.86141 0.269248
\(327\) 0 0
\(328\) −8.74456 −0.482838
\(329\) −16.0000 −0.882109
\(330\) 0 0
\(331\) −8.74456 −0.480645 −0.240322 0.970693i \(-0.577253\pi\)
−0.240322 + 0.970693i \(0.577253\pi\)
\(332\) −0.627719 −0.0344505
\(333\) 0 0
\(334\) 1.88316 0.103042
\(335\) −2.74456 −0.149951
\(336\) 0 0
\(337\) −4.11684 −0.224259 −0.112129 0.993694i \(-0.535767\pi\)
−0.112129 + 0.993694i \(0.535767\pi\)
\(338\) −11.1168 −0.604677
\(339\) 0 0
\(340\) −1.37228 −0.0744224
\(341\) 3.76631 0.203957
\(342\) 0 0
\(343\) 8.86141 0.478471
\(344\) −4.00000 −0.215666
\(345\) 0 0
\(346\) 6.86141 0.368872
\(347\) −1.48913 −0.0799404 −0.0399702 0.999201i \(-0.512726\pi\)
−0.0399702 + 0.999201i \(0.512726\pi\)
\(348\) 0 0
\(349\) 16.7446 0.896316 0.448158 0.893954i \(-0.352080\pi\)
0.448158 + 0.893954i \(0.352080\pi\)
\(350\) −3.37228 −0.180256
\(351\) 0 0
\(352\) 1.37228 0.0731428
\(353\) −3.48913 −0.185707 −0.0928537 0.995680i \(-0.529599\pi\)
−0.0928537 + 0.995680i \(0.529599\pi\)
\(354\) 0 0
\(355\) 1.25544 0.0666317
\(356\) −13.3723 −0.708729
\(357\) 0 0
\(358\) −5.48913 −0.290109
\(359\) −32.4674 −1.71356 −0.856781 0.515680i \(-0.827539\pi\)
−0.856781 + 0.515680i \(0.827539\pi\)
\(360\) 0 0
\(361\) −17.1168 −0.900887
\(362\) −20.9783 −1.10259
\(363\) 0 0
\(364\) −4.62772 −0.242558
\(365\) 4.11684 0.215485
\(366\) 0 0
\(367\) 20.6277 1.07676 0.538379 0.842703i \(-0.319037\pi\)
0.538379 + 0.842703i \(0.319037\pi\)
\(368\) −3.37228 −0.175792
\(369\) 0 0
\(370\) 1.00000 0.0519875
\(371\) 18.1168 0.940580
\(372\) 0 0
\(373\) 3.48913 0.180660 0.0903300 0.995912i \(-0.471208\pi\)
0.0903300 + 0.995912i \(0.471208\pi\)
\(374\) 1.88316 0.0973757
\(375\) 0 0
\(376\) 4.74456 0.244682
\(377\) −8.23369 −0.424057
\(378\) 0 0
\(379\) 24.2337 1.24480 0.622400 0.782699i \(-0.286158\pi\)
0.622400 + 0.782699i \(0.286158\pi\)
\(380\) 1.37228 0.0703965
\(381\) 0 0
\(382\) 19.3723 0.991172
\(383\) −27.6060 −1.41060 −0.705300 0.708909i \(-0.749188\pi\)
−0.705300 + 0.708909i \(0.749188\pi\)
\(384\) 0 0
\(385\) 4.62772 0.235850
\(386\) −1.25544 −0.0639001
\(387\) 0 0
\(388\) 13.4891 0.684807
\(389\) −23.4891 −1.19095 −0.595473 0.803375i \(-0.703035\pi\)
−0.595473 + 0.803375i \(0.703035\pi\)
\(390\) 0 0
\(391\) −4.62772 −0.234034
\(392\) 4.37228 0.220834
\(393\) 0 0
\(394\) 18.8614 0.950224
\(395\) −4.00000 −0.201262
\(396\) 0 0
\(397\) 20.7446 1.04114 0.520570 0.853819i \(-0.325720\pi\)
0.520570 + 0.853819i \(0.325720\pi\)
\(398\) 8.00000 0.401004
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) 36.1168 1.80359 0.901795 0.432165i \(-0.142250\pi\)
0.901795 + 0.432165i \(0.142250\pi\)
\(402\) 0 0
\(403\) 3.76631 0.187613
\(404\) −10.7446 −0.534562
\(405\) 0 0
\(406\) 20.2337 1.00418
\(407\) −1.37228 −0.0680215
\(408\) 0 0
\(409\) −8.74456 −0.432391 −0.216195 0.976350i \(-0.569365\pi\)
−0.216195 + 0.976350i \(0.569365\pi\)
\(410\) 8.74456 0.431863
\(411\) 0 0
\(412\) −0.744563 −0.0366820
\(413\) 49.7228 2.44670
\(414\) 0 0
\(415\) 0.627719 0.0308135
\(416\) 1.37228 0.0672816
\(417\) 0 0
\(418\) −1.88316 −0.0921082
\(419\) −7.88316 −0.385117 −0.192559 0.981285i \(-0.561679\pi\)
−0.192559 + 0.981285i \(0.561679\pi\)
\(420\) 0 0
\(421\) 24.2337 1.18108 0.590539 0.807009i \(-0.298915\pi\)
0.590539 + 0.807009i \(0.298915\pi\)
\(422\) −9.25544 −0.450548
\(423\) 0 0
\(424\) −5.37228 −0.260901
\(425\) 1.37228 0.0665654
\(426\) 0 0
\(427\) 9.25544 0.447902
\(428\) −3.37228 −0.163005
\(429\) 0 0
\(430\) 4.00000 0.192897
\(431\) 31.6060 1.52241 0.761203 0.648514i \(-0.224609\pi\)
0.761203 + 0.648514i \(0.224609\pi\)
\(432\) 0 0
\(433\) −10.8614 −0.521966 −0.260983 0.965343i \(-0.584047\pi\)
−0.260983 + 0.965343i \(0.584047\pi\)
\(434\) −9.25544 −0.444275
\(435\) 0 0
\(436\) 4.62772 0.221628
\(437\) 4.62772 0.221374
\(438\) 0 0
\(439\) −32.0000 −1.52728 −0.763638 0.645644i \(-0.776589\pi\)
−0.763638 + 0.645644i \(0.776589\pi\)
\(440\) −1.37228 −0.0654209
\(441\) 0 0
\(442\) 1.88316 0.0895726
\(443\) 4.00000 0.190046 0.0950229 0.995475i \(-0.469708\pi\)
0.0950229 + 0.995475i \(0.469708\pi\)
\(444\) 0 0
\(445\) 13.3723 0.633907
\(446\) 18.9783 0.898646
\(447\) 0 0
\(448\) −3.37228 −0.159325
\(449\) −36.9783 −1.74511 −0.872556 0.488515i \(-0.837539\pi\)
−0.872556 + 0.488515i \(0.837539\pi\)
\(450\) 0 0
\(451\) −12.0000 −0.565058
\(452\) −19.4891 −0.916691
\(453\) 0 0
\(454\) −4.00000 −0.187729
\(455\) 4.62772 0.216951
\(456\) 0 0
\(457\) −40.4674 −1.89298 −0.946492 0.322727i \(-0.895400\pi\)
−0.946492 + 0.322727i \(0.895400\pi\)
\(458\) −6.00000 −0.280362
\(459\) 0 0
\(460\) 3.37228 0.157233
\(461\) −7.48913 −0.348803 −0.174402 0.984675i \(-0.555799\pi\)
−0.174402 + 0.984675i \(0.555799\pi\)
\(462\) 0 0
\(463\) −19.7228 −0.916597 −0.458298 0.888798i \(-0.651541\pi\)
−0.458298 + 0.888798i \(0.651541\pi\)
\(464\) −6.00000 −0.278543
\(465\) 0 0
\(466\) 22.7446 1.05362
\(467\) −1.48913 −0.0689085 −0.0344543 0.999406i \(-0.510969\pi\)
−0.0344543 + 0.999406i \(0.510969\pi\)
\(468\) 0 0
\(469\) −9.25544 −0.427376
\(470\) −4.74456 −0.218850
\(471\) 0 0
\(472\) −14.7446 −0.678674
\(473\) −5.48913 −0.252390
\(474\) 0 0
\(475\) −1.37228 −0.0629646
\(476\) −4.62772 −0.212111
\(477\) 0 0
\(478\) 5.48913 0.251067
\(479\) 18.1168 0.827780 0.413890 0.910327i \(-0.364170\pi\)
0.413890 + 0.910327i \(0.364170\pi\)
\(480\) 0 0
\(481\) −1.37228 −0.0625706
\(482\) −0.510875 −0.0232697
\(483\) 0 0
\(484\) −9.11684 −0.414402
\(485\) −13.4891 −0.612510
\(486\) 0 0
\(487\) −30.4674 −1.38061 −0.690304 0.723519i \(-0.742523\pi\)
−0.690304 + 0.723519i \(0.742523\pi\)
\(488\) −2.74456 −0.124241
\(489\) 0 0
\(490\) −4.37228 −0.197520
\(491\) −2.62772 −0.118587 −0.0592936 0.998241i \(-0.518885\pi\)
−0.0592936 + 0.998241i \(0.518885\pi\)
\(492\) 0 0
\(493\) −8.23369 −0.370827
\(494\) −1.88316 −0.0847272
\(495\) 0 0
\(496\) 2.74456 0.123235
\(497\) 4.23369 0.189907
\(498\) 0 0
\(499\) 20.3505 0.911015 0.455507 0.890232i \(-0.349458\pi\)
0.455507 + 0.890232i \(0.349458\pi\)
\(500\) −1.00000 −0.0447214
\(501\) 0 0
\(502\) 26.7446 1.19367
\(503\) −5.48913 −0.244748 −0.122374 0.992484i \(-0.539051\pi\)
−0.122374 + 0.992484i \(0.539051\pi\)
\(504\) 0 0
\(505\) 10.7446 0.478127
\(506\) −4.62772 −0.205727
\(507\) 0 0
\(508\) 3.37228 0.149621
\(509\) −18.3505 −0.813373 −0.406687 0.913568i \(-0.633316\pi\)
−0.406687 + 0.913568i \(0.633316\pi\)
\(510\) 0 0
\(511\) 13.8832 0.614155
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 5.37228 0.236961
\(515\) 0.744563 0.0328094
\(516\) 0 0
\(517\) 6.51087 0.286348
\(518\) 3.37228 0.148170
\(519\) 0 0
\(520\) −1.37228 −0.0601785
\(521\) 5.76631 0.252627 0.126313 0.991990i \(-0.459686\pi\)
0.126313 + 0.991990i \(0.459686\pi\)
\(522\) 0 0
\(523\) −6.97825 −0.305138 −0.152569 0.988293i \(-0.548755\pi\)
−0.152569 + 0.988293i \(0.548755\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −10.2337 −0.446210
\(527\) 3.76631 0.164063
\(528\) 0 0
\(529\) −11.6277 −0.505553
\(530\) 5.37228 0.233357
\(531\) 0 0
\(532\) 4.62772 0.200637
\(533\) −12.0000 −0.519778
\(534\) 0 0
\(535\) 3.37228 0.145796
\(536\) 2.74456 0.118547
\(537\) 0 0
\(538\) −0.627719 −0.0270629
\(539\) 6.00000 0.258438
\(540\) 0 0
\(541\) 4.86141 0.209008 0.104504 0.994524i \(-0.466674\pi\)
0.104504 + 0.994524i \(0.466674\pi\)
\(542\) 13.4891 0.579408
\(543\) 0 0
\(544\) 1.37228 0.0588361
\(545\) −4.62772 −0.198230
\(546\) 0 0
\(547\) −2.11684 −0.0905097 −0.0452549 0.998975i \(-0.514410\pi\)
−0.0452549 + 0.998975i \(0.514410\pi\)
\(548\) −10.7446 −0.458985
\(549\) 0 0
\(550\) 1.37228 0.0585143
\(551\) 8.23369 0.350767
\(552\) 0 0
\(553\) −13.4891 −0.573616
\(554\) 25.6060 1.08789
\(555\) 0 0
\(556\) 2.74456 0.116395
\(557\) −40.7446 −1.72640 −0.863201 0.504860i \(-0.831544\pi\)
−0.863201 + 0.504860i \(0.831544\pi\)
\(558\) 0 0
\(559\) −5.48913 −0.232165
\(560\) 3.37228 0.142505
\(561\) 0 0
\(562\) −1.37228 −0.0578862
\(563\) −13.2554 −0.558650 −0.279325 0.960197i \(-0.590111\pi\)
−0.279325 + 0.960197i \(0.590111\pi\)
\(564\) 0 0
\(565\) 19.4891 0.819914
\(566\) −11.6060 −0.487835
\(567\) 0 0
\(568\) −1.25544 −0.0526770
\(569\) 32.3505 1.35620 0.678102 0.734967i \(-0.262803\pi\)
0.678102 + 0.734967i \(0.262803\pi\)
\(570\) 0 0
\(571\) −1.25544 −0.0525384 −0.0262692 0.999655i \(-0.508363\pi\)
−0.0262692 + 0.999655i \(0.508363\pi\)
\(572\) 1.88316 0.0787387
\(573\) 0 0
\(574\) 29.4891 1.23085
\(575\) −3.37228 −0.140634
\(576\) 0 0
\(577\) 26.7446 1.11339 0.556695 0.830717i \(-0.312069\pi\)
0.556695 + 0.830717i \(0.312069\pi\)
\(578\) −15.1168 −0.628778
\(579\) 0 0
\(580\) 6.00000 0.249136
\(581\) 2.11684 0.0878215
\(582\) 0 0
\(583\) −7.37228 −0.305329
\(584\) −4.11684 −0.170356
\(585\) 0 0
\(586\) 4.11684 0.170065
\(587\) −1.48913 −0.0614628 −0.0307314 0.999528i \(-0.509784\pi\)
−0.0307314 + 0.999528i \(0.509784\pi\)
\(588\) 0 0
\(589\) −3.76631 −0.155188
\(590\) 14.7446 0.607024
\(591\) 0 0
\(592\) −1.00000 −0.0410997
\(593\) 22.9783 0.943604 0.471802 0.881705i \(-0.343604\pi\)
0.471802 + 0.881705i \(0.343604\pi\)
\(594\) 0 0
\(595\) 4.62772 0.189718
\(596\) −9.25544 −0.379117
\(597\) 0 0
\(598\) −4.62772 −0.189241
\(599\) 22.9783 0.938866 0.469433 0.882968i \(-0.344458\pi\)
0.469433 + 0.882968i \(0.344458\pi\)
\(600\) 0 0
\(601\) 30.8614 1.25886 0.629432 0.777056i \(-0.283288\pi\)
0.629432 + 0.777056i \(0.283288\pi\)
\(602\) 13.4891 0.549776
\(603\) 0 0
\(604\) −3.37228 −0.137216
\(605\) 9.11684 0.370652
\(606\) 0 0
\(607\) 38.4674 1.56134 0.780671 0.624942i \(-0.214877\pi\)
0.780671 + 0.624942i \(0.214877\pi\)
\(608\) −1.37228 −0.0556534
\(609\) 0 0
\(610\) 2.74456 0.111124
\(611\) 6.51087 0.263402
\(612\) 0 0
\(613\) 30.4674 1.23057 0.615283 0.788306i \(-0.289042\pi\)
0.615283 + 0.788306i \(0.289042\pi\)
\(614\) −10.7446 −0.433615
\(615\) 0 0
\(616\) −4.62772 −0.186456
\(617\) −32.2337 −1.29768 −0.648840 0.760925i \(-0.724745\pi\)
−0.648840 + 0.760925i \(0.724745\pi\)
\(618\) 0 0
\(619\) −26.9783 −1.08435 −0.542174 0.840266i \(-0.682399\pi\)
−0.542174 + 0.840266i \(0.682399\pi\)
\(620\) −2.74456 −0.110224
\(621\) 0 0
\(622\) 8.00000 0.320771
\(623\) 45.0951 1.80670
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 8.00000 0.319744
\(627\) 0 0
\(628\) 3.25544 0.129906
\(629\) −1.37228 −0.0547164
\(630\) 0 0
\(631\) 40.0000 1.59237 0.796187 0.605050i \(-0.206847\pi\)
0.796187 + 0.605050i \(0.206847\pi\)
\(632\) 4.00000 0.159111
\(633\) 0 0
\(634\) 16.9783 0.674292
\(635\) −3.37228 −0.133825
\(636\) 0 0
\(637\) 6.00000 0.237729
\(638\) −8.23369 −0.325975
\(639\) 0 0
\(640\) −1.00000 −0.0395285
\(641\) −43.7228 −1.72695 −0.863474 0.504394i \(-0.831716\pi\)
−0.863474 + 0.504394i \(0.831716\pi\)
\(642\) 0 0
\(643\) 23.6060 0.930929 0.465464 0.885067i \(-0.345887\pi\)
0.465464 + 0.885067i \(0.345887\pi\)
\(644\) 11.3723 0.448131
\(645\) 0 0
\(646\) −1.88316 −0.0740918
\(647\) 39.6060 1.55707 0.778536 0.627600i \(-0.215963\pi\)
0.778536 + 0.627600i \(0.215963\pi\)
\(648\) 0 0
\(649\) −20.2337 −0.794242
\(650\) 1.37228 0.0538253
\(651\) 0 0
\(652\) 4.86141 0.190387
\(653\) −19.7228 −0.771813 −0.385907 0.922538i \(-0.626111\pi\)
−0.385907 + 0.922538i \(0.626111\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −8.74456 −0.341418
\(657\) 0 0
\(658\) −16.0000 −0.623745
\(659\) 2.23369 0.0870121 0.0435061 0.999053i \(-0.486147\pi\)
0.0435061 + 0.999053i \(0.486147\pi\)
\(660\) 0 0
\(661\) −26.1168 −1.01583 −0.507914 0.861408i \(-0.669583\pi\)
−0.507914 + 0.861408i \(0.669583\pi\)
\(662\) −8.74456 −0.339867
\(663\) 0 0
\(664\) −0.627719 −0.0243602
\(665\) −4.62772 −0.179455
\(666\) 0 0
\(667\) 20.2337 0.783452
\(668\) 1.88316 0.0728615
\(669\) 0 0
\(670\) −2.74456 −0.106032
\(671\) −3.76631 −0.145397
\(672\) 0 0
\(673\) 2.86141 0.110299 0.0551496 0.998478i \(-0.482436\pi\)
0.0551496 + 0.998478i \(0.482436\pi\)
\(674\) −4.11684 −0.158575
\(675\) 0 0
\(676\) −11.1168 −0.427571
\(677\) 2.86141 0.109973 0.0549864 0.998487i \(-0.482488\pi\)
0.0549864 + 0.998487i \(0.482488\pi\)
\(678\) 0 0
\(679\) −45.4891 −1.74571
\(680\) −1.37228 −0.0526246
\(681\) 0 0
\(682\) 3.76631 0.144220
\(683\) −30.9783 −1.18535 −0.592675 0.805442i \(-0.701928\pi\)
−0.592675 + 0.805442i \(0.701928\pi\)
\(684\) 0 0
\(685\) 10.7446 0.410529
\(686\) 8.86141 0.338330
\(687\) 0 0
\(688\) −4.00000 −0.152499
\(689\) −7.37228 −0.280862
\(690\) 0 0
\(691\) 22.7446 0.865244 0.432622 0.901575i \(-0.357588\pi\)
0.432622 + 0.901575i \(0.357588\pi\)
\(692\) 6.86141 0.260832
\(693\) 0 0
\(694\) −1.48913 −0.0565264
\(695\) −2.74456 −0.104107
\(696\) 0 0
\(697\) −12.0000 −0.454532
\(698\) 16.7446 0.633791
\(699\) 0 0
\(700\) −3.37228 −0.127460
\(701\) 47.7228 1.80247 0.901233 0.433335i \(-0.142663\pi\)
0.901233 + 0.433335i \(0.142663\pi\)
\(702\) 0 0
\(703\) 1.37228 0.0517566
\(704\) 1.37228 0.0517198
\(705\) 0 0
\(706\) −3.48913 −0.131315
\(707\) 36.2337 1.36271
\(708\) 0 0
\(709\) −20.6277 −0.774690 −0.387345 0.921935i \(-0.626608\pi\)
−0.387345 + 0.921935i \(0.626608\pi\)
\(710\) 1.25544 0.0471157
\(711\) 0 0
\(712\) −13.3723 −0.501147
\(713\) −9.25544 −0.346619
\(714\) 0 0
\(715\) −1.88316 −0.0704260
\(716\) −5.48913 −0.205138
\(717\) 0 0
\(718\) −32.4674 −1.21167
\(719\) 13.7228 0.511775 0.255887 0.966707i \(-0.417632\pi\)
0.255887 + 0.966707i \(0.417632\pi\)
\(720\) 0 0
\(721\) 2.51087 0.0935099
\(722\) −17.1168 −0.637023
\(723\) 0 0
\(724\) −20.9783 −0.779651
\(725\) −6.00000 −0.222834
\(726\) 0 0
\(727\) 8.97825 0.332985 0.166492 0.986043i \(-0.446756\pi\)
0.166492 + 0.986043i \(0.446756\pi\)
\(728\) −4.62772 −0.171515
\(729\) 0 0
\(730\) 4.11684 0.152371
\(731\) −5.48913 −0.203023
\(732\) 0 0
\(733\) 3.48913 0.128874 0.0644369 0.997922i \(-0.479475\pi\)
0.0644369 + 0.997922i \(0.479475\pi\)
\(734\) 20.6277 0.761383
\(735\) 0 0
\(736\) −3.37228 −0.124304
\(737\) 3.76631 0.138734
\(738\) 0 0
\(739\) 25.7228 0.946229 0.473114 0.881001i \(-0.343130\pi\)
0.473114 + 0.881001i \(0.343130\pi\)
\(740\) 1.00000 0.0367607
\(741\) 0 0
\(742\) 18.1168 0.665090
\(743\) −22.4674 −0.824248 −0.412124 0.911128i \(-0.635213\pi\)
−0.412124 + 0.911128i \(0.635213\pi\)
\(744\) 0 0
\(745\) 9.25544 0.339093
\(746\) 3.48913 0.127746
\(747\) 0 0
\(748\) 1.88316 0.0688550
\(749\) 11.3723 0.415534
\(750\) 0 0
\(751\) −10.5109 −0.383547 −0.191774 0.981439i \(-0.561424\pi\)
−0.191774 + 0.981439i \(0.561424\pi\)
\(752\) 4.74456 0.173016
\(753\) 0 0
\(754\) −8.23369 −0.299853
\(755\) 3.37228 0.122730
\(756\) 0 0
\(757\) 44.1168 1.60345 0.801727 0.597690i \(-0.203915\pi\)
0.801727 + 0.597690i \(0.203915\pi\)
\(758\) 24.2337 0.880207
\(759\) 0 0
\(760\) 1.37228 0.0497779
\(761\) 12.5109 0.453519 0.226759 0.973951i \(-0.427187\pi\)
0.226759 + 0.973951i \(0.427187\pi\)
\(762\) 0 0
\(763\) −15.6060 −0.564974
\(764\) 19.3723 0.700865
\(765\) 0 0
\(766\) −27.6060 −0.997444
\(767\) −20.2337 −0.730596
\(768\) 0 0
\(769\) −51.4891 −1.85675 −0.928373 0.371651i \(-0.878792\pi\)
−0.928373 + 0.371651i \(0.878792\pi\)
\(770\) 4.62772 0.166771
\(771\) 0 0
\(772\) −1.25544 −0.0451842
\(773\) −20.1168 −0.723553 −0.361776 0.932265i \(-0.617830\pi\)
−0.361776 + 0.932265i \(0.617830\pi\)
\(774\) 0 0
\(775\) 2.74456 0.0985876
\(776\) 13.4891 0.484231
\(777\) 0 0
\(778\) −23.4891 −0.842126
\(779\) 12.0000 0.429945
\(780\) 0 0
\(781\) −1.72281 −0.0616471
\(782\) −4.62772 −0.165487
\(783\) 0 0
\(784\) 4.37228 0.156153
\(785\) −3.25544 −0.116192
\(786\) 0 0
\(787\) 10.7446 0.383002 0.191501 0.981492i \(-0.438664\pi\)
0.191501 + 0.981492i \(0.438664\pi\)
\(788\) 18.8614 0.671910
\(789\) 0 0
\(790\) −4.00000 −0.142314
\(791\) 65.7228 2.33683
\(792\) 0 0
\(793\) −3.76631 −0.133746
\(794\) 20.7446 0.736197
\(795\) 0 0
\(796\) 8.00000 0.283552
\(797\) −4.51087 −0.159783 −0.0798917 0.996804i \(-0.525457\pi\)
−0.0798917 + 0.996804i \(0.525457\pi\)
\(798\) 0 0
\(799\) 6.51087 0.230338
\(800\) 1.00000 0.0353553
\(801\) 0 0
\(802\) 36.1168 1.27533
\(803\) −5.64947 −0.199365
\(804\) 0 0
\(805\) −11.3723 −0.400820
\(806\) 3.76631 0.132663
\(807\) 0 0
\(808\) −10.7446 −0.377992
\(809\) 24.1168 0.847903 0.423952 0.905685i \(-0.360643\pi\)
0.423952 + 0.905685i \(0.360643\pi\)
\(810\) 0 0
\(811\) 20.0000 0.702295 0.351147 0.936320i \(-0.385792\pi\)
0.351147 + 0.936320i \(0.385792\pi\)
\(812\) 20.2337 0.710063
\(813\) 0 0
\(814\) −1.37228 −0.0480984
\(815\) −4.86141 −0.170288
\(816\) 0 0
\(817\) 5.48913 0.192040
\(818\) −8.74456 −0.305746
\(819\) 0 0
\(820\) 8.74456 0.305373
\(821\) −26.3505 −0.919640 −0.459820 0.888012i \(-0.652086\pi\)
−0.459820 + 0.888012i \(0.652086\pi\)
\(822\) 0 0
\(823\) 25.8832 0.902230 0.451115 0.892466i \(-0.351026\pi\)
0.451115 + 0.892466i \(0.351026\pi\)
\(824\) −0.744563 −0.0259381
\(825\) 0 0
\(826\) 49.7228 1.73008
\(827\) 20.0000 0.695468 0.347734 0.937593i \(-0.386951\pi\)
0.347734 + 0.937593i \(0.386951\pi\)
\(828\) 0 0
\(829\) −35.8397 −1.24476 −0.622381 0.782714i \(-0.713835\pi\)
−0.622381 + 0.782714i \(0.713835\pi\)
\(830\) 0.627719 0.0217884
\(831\) 0 0
\(832\) 1.37228 0.0475753
\(833\) 6.00000 0.207888
\(834\) 0 0
\(835\) −1.88316 −0.0651693
\(836\) −1.88316 −0.0651303
\(837\) 0 0
\(838\) −7.88316 −0.272319
\(839\) 9.25544 0.319533 0.159767 0.987155i \(-0.448926\pi\)
0.159767 + 0.987155i \(0.448926\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 24.2337 0.835148
\(843\) 0 0
\(844\) −9.25544 −0.318585
\(845\) 11.1168 0.382431
\(846\) 0 0
\(847\) 30.7446 1.05640
\(848\) −5.37228 −0.184485
\(849\) 0 0
\(850\) 1.37228 0.0470689
\(851\) 3.37228 0.115600
\(852\) 0 0
\(853\) 40.3505 1.38158 0.690788 0.723057i \(-0.257264\pi\)
0.690788 + 0.723057i \(0.257264\pi\)
\(854\) 9.25544 0.316715
\(855\) 0 0
\(856\) −3.37228 −0.115262
\(857\) −17.8397 −0.609391 −0.304696 0.952450i \(-0.598555\pi\)
−0.304696 + 0.952450i \(0.598555\pi\)
\(858\) 0 0
\(859\) 17.8397 0.608681 0.304341 0.952563i \(-0.401564\pi\)
0.304341 + 0.952563i \(0.401564\pi\)
\(860\) 4.00000 0.136399
\(861\) 0 0
\(862\) 31.6060 1.07650
\(863\) −3.25544 −0.110816 −0.0554082 0.998464i \(-0.517646\pi\)
−0.0554082 + 0.998464i \(0.517646\pi\)
\(864\) 0 0
\(865\) −6.86141 −0.233295
\(866\) −10.8614 −0.369086
\(867\) 0 0
\(868\) −9.25544 −0.314150
\(869\) 5.48913 0.186206
\(870\) 0 0
\(871\) 3.76631 0.127617
\(872\) 4.62772 0.156714
\(873\) 0 0
\(874\) 4.62772 0.156535
\(875\) 3.37228 0.114004
\(876\) 0 0
\(877\) −54.2337 −1.83134 −0.915671 0.401929i \(-0.868340\pi\)
−0.915671 + 0.401929i \(0.868340\pi\)
\(878\) −32.0000 −1.07995
\(879\) 0 0
\(880\) −1.37228 −0.0462596
\(881\) 14.2337 0.479545 0.239773 0.970829i \(-0.422927\pi\)
0.239773 + 0.970829i \(0.422927\pi\)
\(882\) 0 0
\(883\) −50.1168 −1.68657 −0.843283 0.537470i \(-0.819380\pi\)
−0.843283 + 0.537470i \(0.819380\pi\)
\(884\) 1.88316 0.0633374
\(885\) 0 0
\(886\) 4.00000 0.134383
\(887\) 42.0000 1.41022 0.705111 0.709097i \(-0.250897\pi\)
0.705111 + 0.709097i \(0.250897\pi\)
\(888\) 0 0
\(889\) −11.3723 −0.381414
\(890\) 13.3723 0.448240
\(891\) 0 0
\(892\) 18.9783 0.635439
\(893\) −6.51087 −0.217878
\(894\) 0 0
\(895\) 5.48913 0.183481
\(896\) −3.37228 −0.112660
\(897\) 0 0
\(898\) −36.9783 −1.23398
\(899\) −16.4674 −0.549218
\(900\) 0 0
\(901\) −7.37228 −0.245606
\(902\) −12.0000 −0.399556
\(903\) 0 0
\(904\) −19.4891 −0.648199
\(905\) 20.9783 0.697341
\(906\) 0 0
\(907\) −3.60597 −0.119734 −0.0598671 0.998206i \(-0.519068\pi\)
−0.0598671 + 0.998206i \(0.519068\pi\)
\(908\) −4.00000 −0.132745
\(909\) 0 0
\(910\) 4.62772 0.153407
\(911\) −34.9783 −1.15888 −0.579441 0.815014i \(-0.696729\pi\)
−0.579441 + 0.815014i \(0.696729\pi\)
\(912\) 0 0
\(913\) −0.861407 −0.0285084
\(914\) −40.4674 −1.33854
\(915\) 0 0
\(916\) −6.00000 −0.198246
\(917\) 0 0
\(918\) 0 0
\(919\) −34.5109 −1.13841 −0.569204 0.822196i \(-0.692749\pi\)
−0.569204 + 0.822196i \(0.692749\pi\)
\(920\) 3.37228 0.111181
\(921\) 0 0
\(922\) −7.48913 −0.246641
\(923\) −1.72281 −0.0567071
\(924\) 0 0
\(925\) −1.00000 −0.0328798
\(926\) −19.7228 −0.648132
\(927\) 0 0
\(928\) −6.00000 −0.196960
\(929\) 12.5109 0.410468 0.205234 0.978713i \(-0.434204\pi\)
0.205234 + 0.978713i \(0.434204\pi\)
\(930\) 0 0
\(931\) −6.00000 −0.196642
\(932\) 22.7446 0.745023
\(933\) 0 0
\(934\) −1.48913 −0.0487257
\(935\) −1.88316 −0.0615858
\(936\) 0 0
\(937\) 22.0000 0.718709 0.359354 0.933201i \(-0.382997\pi\)
0.359354 + 0.933201i \(0.382997\pi\)
\(938\) −9.25544 −0.302201
\(939\) 0 0
\(940\) −4.74456 −0.154751
\(941\) −15.7663 −0.513967 −0.256984 0.966416i \(-0.582729\pi\)
−0.256984 + 0.966416i \(0.582729\pi\)
\(942\) 0 0
\(943\) 29.4891 0.960298
\(944\) −14.7446 −0.479895
\(945\) 0 0
\(946\) −5.48913 −0.178467
\(947\) 28.4674 0.925065 0.462533 0.886602i \(-0.346941\pi\)
0.462533 + 0.886602i \(0.346941\pi\)
\(948\) 0 0
\(949\) −5.64947 −0.183389
\(950\) −1.37228 −0.0445227
\(951\) 0 0
\(952\) −4.62772 −0.149985
\(953\) 50.7446 1.64378 0.821889 0.569648i \(-0.192920\pi\)
0.821889 + 0.569648i \(0.192920\pi\)
\(954\) 0 0
\(955\) −19.3723 −0.626872
\(956\) 5.48913 0.177531
\(957\) 0 0
\(958\) 18.1168 0.585329
\(959\) 36.2337 1.17005
\(960\) 0 0
\(961\) −23.4674 −0.757012
\(962\) −1.37228 −0.0442441
\(963\) 0 0
\(964\) −0.510875 −0.0164542
\(965\) 1.25544 0.0404140
\(966\) 0 0
\(967\) −16.9783 −0.545984 −0.272992 0.962016i \(-0.588013\pi\)
−0.272992 + 0.962016i \(0.588013\pi\)
\(968\) −9.11684 −0.293026
\(969\) 0 0
\(970\) −13.4891 −0.433110
\(971\) −50.2337 −1.61208 −0.806038 0.591864i \(-0.798392\pi\)
−0.806038 + 0.591864i \(0.798392\pi\)
\(972\) 0 0
\(973\) −9.25544 −0.296716
\(974\) −30.4674 −0.976238
\(975\) 0 0
\(976\) −2.74456 −0.0878513
\(977\) −25.1386 −0.804255 −0.402127 0.915584i \(-0.631729\pi\)
−0.402127 + 0.915584i \(0.631729\pi\)
\(978\) 0 0
\(979\) −18.3505 −0.586486
\(980\) −4.37228 −0.139667
\(981\) 0 0
\(982\) −2.62772 −0.0838539
\(983\) 12.5109 0.399035 0.199517 0.979894i \(-0.436063\pi\)
0.199517 + 0.979894i \(0.436063\pi\)
\(984\) 0 0
\(985\) −18.8614 −0.600974
\(986\) −8.23369 −0.262214
\(987\) 0 0
\(988\) −1.88316 −0.0599112
\(989\) 13.4891 0.428929
\(990\) 0 0
\(991\) 22.9783 0.729928 0.364964 0.931022i \(-0.381081\pi\)
0.364964 + 0.931022i \(0.381081\pi\)
\(992\) 2.74456 0.0871400
\(993\) 0 0
\(994\) 4.23369 0.134284
\(995\) −8.00000 −0.253617
\(996\) 0 0
\(997\) 16.1168 0.510426 0.255213 0.966885i \(-0.417854\pi\)
0.255213 + 0.966885i \(0.417854\pi\)
\(998\) 20.3505 0.644185
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3330.2.a.be.1.1 2
3.2 odd 2 1110.2.a.p.1.1 2
12.11 even 2 8880.2.a.br.1.2 2
15.14 odd 2 5550.2.a.ca.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1110.2.a.p.1.1 2 3.2 odd 2
3330.2.a.be.1.1 2 1.1 even 1 trivial
5550.2.a.ca.1.2 2 15.14 odd 2
8880.2.a.br.1.2 2 12.11 even 2